Image Processing

Dr. Volker Krüger

Chapter 2 Image Processing Digital Color Images

Lecture Sistemi intelligenti naturali ed artificiali (SINA) from 15.

Edward H Adelson

Dr. Volker Krüger Dept. of Robotics, Brain and Cognitive Sciences Italian Inst. of Technology

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space YUV Color Space

Why Different Color

Spaces?

Pseudo Color

Program for today

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

2 What are Color Space

RGB Color Space HIS Color Space YUV Color Space Why Different Color Spaces?

3 Pseudo Color

4 Concluding Remarks

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

What is Color

What is Color?

Image Processing

Dr. Volker Krüger

What is Cold

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

What is Color

- The colors that humans perceive are determined by the nature of the light reflected from an object! Green objects reflect "green" light!
- Achromatic: Only *intensities* (amount of light). Achromatic information ranges from black to white

Black		White

Example: Gray levels as seen on black/white TV screens.

Chromatic: Lightwaves; Visual range: 400nm-700nm

Image Processing

Dr. Volker Krüger

What is Cold

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

Red, Green, Blue

- R,G,B are called Primary Colors
- R,G,B are used in cameras
- R,G,B were chosen due to the structue of the human eye

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS)

Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space YUV Color Space

Why Different Color Spaces?

Pseudo Color

Receptivity of the Eye Cells

Image Processing

Dr. Volker Krüger

Red, Green, Blue=White? Really???

· So why don't we get white, when we use paint?

Subtractive Color!!

• But why does it work for the TV?

Additive Color!!

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS)

Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

Additive / Subtractive Color

• Additive Color: Sum of light of different wave lengths. That light reaches our eye directly.

Example

- TV, Video Projectors, LCD Monitors
- Subtractive Color: White Color is emitted by the sun and is only partially reflected from an object!

Example

- Red paint filters all light except red!
- · Yellow paint absorbs blue, but reflects red and grean

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS)

Additive / Subtractive Color

What are Color Space

RGB Color Space HIS Color Space

YUV Color Space Why Different Color

Spaces?

Pseudo Color

What are Color Spaces

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space HIS Color Space YUV Color Space

Why Different Color Spaces?

Pseudo Color

Concluding Remarks

What are Color Spaces?

RGB Color Space

- the classical Computer Color space
- 3 different colors: Red, Green, Blue.
- Similar to the human visual system
- If R,G,B have the same energy we perceive a shade of white (gray, black).

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

RGB Color Space

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space Why Different Color

Why Different Colo Spaces?

Pseudo Color

Concluding Remarks

A single pixel consists of three components: [0, 255]. Each pixel is a vector.

128 251 60 =

Sometimes pixels are not stored as vectors but in Image Bands. First, the complete red-component is stored, then the complete green, then blue.

Pixel-vector in the computer memory

Caution

Final pixel color in the image

Example RGB

Original Image

Red Band

Blue Band

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space YUV Color Space

Why Different Color Spaces?

Pseudo Color

Concluding Remarks

2.12

Green Band

Convert Color to Grayscale Images

Image Processing

Dr. Volker Krüger

RGB to Gray Conversion

$$I = \frac{R+G+B}{3}$$

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

Image Processing

Dr. Volker Krüger

• Same Color,

What is Color

Colors and the Human Visual System (HVS)

Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

N

NO

R

G

m

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS)

Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

- Same Color,
- different intensities

Image Processing

Dr. Volker Krüger

- Same Color,
- different intensities
- Chromaticiy Plane

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

Huditive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

Image Processing

Dr. Volker Krüger

iit

What is Color

Colors and the Human Visual System (HVS)

Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space YUV Color Space

Why Different Color

Spaces?

Pseudo Color

Concluding Remarks

• Same Color,

- different intensities
- Chromaticiy Plane
- *r* + *g* + *b* = 1

Image Processing

Dr. Volker Krüger

- Same Color,
- different intensities
- Chromaticiy Plane
- *r* + *g* + *b* = 1

Image Processing

Dr. Volker Krüger

- Same Color,
- different intensities
- Chromaticiy Plane
- *r* + *g* + *b* = 1

RGB to Chromaticity concersion

$$r = \frac{R}{R+G+B} g = \frac{G}{R+G+B} b = \frac{B}{R+G+B}$$

What is Color Colors and the Human Visual System (HVS) Additive / Subtractive Color What are Color Space RGB Color Space HIS Color Space YUV Color Space

Why Different Color Spaces?

Pseudo Color

Another way of separating color and intensity: HSI

- H=Hue, S=Saturation, I=intensity
- intensity I:
- H and S may characterize a color: Chromatics

Hue

- associated with the dominant wavelength in the mixture of light waves, as perceived by an observer.
- · is the color attribute that describes a pure color

Saturation

- relative purity
- · amount of white light in the color
- mixed with hue

Example

Pure colors are fully saturated. Not saturated is, e.g., pink (red+white).

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space YUV Color Space

Why Different Color Spaces?

Pseudo Color

HSI Color Space

- Perhaps the most intuitive color representation
- Used in Computer Graphics and Computer Vision

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

HSI Color Space

Image Processing

Dr. Volker Krüger

iit

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

Concluding Remarks

A single pixel consists of three components: [0, 255]. Each pixel is a vector.

Sometimes pixels are not stored as vectors but in Image Bands. First, the complete red-component is stored, then the complete green, then blue.

Pixel-vector in the computer memory

Caution

Final pixel color in the image

Example HSI

Original Image

Hue

Intensity

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

Concluding Remarks

Saturation

YUV Color Space

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

- YUV: used in commercial color TV broadcasting and video signals
- backwards compatible to the old B/W TV.
- We need a format that decouples grayscale and color: HSI
- "Poor-man's" HSI because it is much easier to compute from RGB than HSI

YUV Color Space

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

Concluding Remarks

A single pixel consists of three components: [0, 255]. Each pixel is a vector.

128 **251 60** =

Sometimes pixels are not stored as vectors but in Image Bands. First, the complete red-component is stored, then the complete green, then blue.

Pixel-vector in the computer memory

Caution

Final pixel color in the image

Example YUV

Original Image

Y-band

Image Processing Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

Concluding Remarks

U-Band

V-Band

So Why Different Color Spaces

RGB Color space

- 🚽 works like Human Visual System (HVS)
- difficult to decouble color from intensity

HSI Color space

- a more physically motivated description of color
- + decoubles color, intensity and saturity
- difficult to compute

YUV Color space

- Simple to compute
- 👍 similar to HSI
- motivated by broadcasting technology
- saves memory through biological arguments
- hardly used in Computer Vision and Computer Graphics

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS)

Additive / Subtractive Color

What are Color Space

RGB Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

What is Pseude Color

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space YUV Color Space

Why Different Color Spaces?

Pseudo Color

Concluding Remarks

What is Pseudo Color?

Full Color / Pseudo Color

- Full Color Images: Acquired by a (TV/DV) camera, digital camer or scanner
- Pseudo Color Images: Assigned a shade of color to a monochrome intensity or range of intensities

Example

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space HIS Color Space YUV Color Space

Why Different Color Spaces?

Pseudo Color

Full Color / Pseudo Color

Example

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space HIS Color Space YUV Color Space Why Different Color Spaces?

Pseudo Color

Full Color / Pseudo Color

Example

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space HIS Color Space YUV Color Space

Why Different Color Spaces?

Pseudo Color

What to remember

- Achromatic vs. Chromatic
- How come that with RGB we can represent all (all?!?) colors?
- Subtractive Color vs. Additive Color
- Color Spaces
 - RGB: Used in cameras and the HVS
 - Normalized RGB: Decouples intensity and color: Used in Computer Vision
 - HSI: Decouples intensity, hue and saturity: Used in CG and Computer Vision
 - YUV: Used in commercial color TV
- Pseudo color: represent grayscales as colors

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space

HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color

Exercises

- Questions about the lecture?
- What was good about the lecture and what oculd have been better?
- How many different 512 \times 512 grayscale (8bit) images exist?
- · How many different colors exist for 24bit pixel?
- How many different 512 × 512 color (24bit) images exist?

Questions

- Why can we use RGB to generate almost all pixel colors?
- What is the difference between Achromatic and Chromatic?
- What is the difference between Subtractive Color and Additive Color?
- Describe the four different color spaces (RGB, rg, HSI, YUV)
- · What are their characteristics and where are they used?
- What is a pseudo color image?

A How can a Pseudo color image be generated from a gray value image?

Image Processing

Dr. Volker Krüger

What is Color

Colors and the Human Visual System (HVS) Additive / Subtractive Color

What are Color Space

RGB Color Space HIS Color Space

YUV Color Space

Why Different Color Spaces?

Pseudo Color