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Abstract

In this paper, we propose a novel method of computing
the optical flow using the Fourier Mellin Transform (FMT).
Each image in a sequence is divided into a regular grid of
patches and the optical flow is estimated by calculating the
phase correlation of each pair of co-sited patches using the
FMT. By applying the FMT in calculating the phase cor-
relation, we are able to estimate not only the pure transla-
tion, as limited in the case of the basic phase correlation
techniques, but also the scale and rotation motion of im-
age patches, i.e. full similarity transforms. Moreover, the
motion parameters of each patch can be estimated to sub-
pixel accuracy based on a recently proposed algorithm that
uses a 2D esinc function in fitting the data from the phase
correlation output. We also improve the estimation of the
optical flow by presenting a method of smoothing the field
by using a vector weighted average filter. Finally, experi-
mental results, using publicly available data sets are pre-
sented, demonstrating the accuracy and improvements of
our method over previous optical flow methods.

1. Introduction
Without doubt, the measurement of optical flow is one of

the fundamental problems in computer vision. It is the pro-
cess of approximating the movement of brightness patterns
in an image sequence and, thus, provides useful information
for the determination of the 3D structure of the environment
and the relative motion between the camera and the objects
in the image [1]. There are many techniques for computing
optical flow that have been proposed including Gradient-
based techniques [10, 14] that are based on spatio-temporal
derivatives of image intensity; Variational techniques [3, 7]
that extend the gradient-based techniques by using differ-
ent data or smoothness constraints [21]; Block matching-
based techniques [1, 12] that assume all pixels in a block
undergo the same motion; Energy-based techniques [9] that
are based on the output energy of velocity-tuned filters [5];
Bayesian techniques [11] that utilize probability smooth-
ness constraints in the form of a Gibbs random field; and

Phase correlation techniques [20] that compute the flow by
applying the phase correlation to the images locally.

In addition to its applications in image registration, phase
correlation has become one of the most common methods
used for estimating the optical flow of image sequences. Its
most important advantage is its immunity to illumination
changes and moving shadows because the phase correla-
tion function is normalized by the Fourier magnitude [2].
Furthermore, as the phase correlation method is performed
in the frequency domain, it is much more computationally
efficient than the block matching method [20]. However,
the main disadvantage of this method is that it can only
estimate displacements assuming a pure translation model
within the image or block [16]. Our work extends the phase
correlation technique by using the Fourier Mellin Transform
(FMT) instead of the Fourier Transform to analyze not only
the pure translation but also the scale and rotation motions
of an image or image block. Thus, the proposed method
can handle a full rigid motion model that ordinary phase
correlation methods could not. As a result, a more accu-
rate estimation of the optical flow can be achieved. We also
estimate the optical flow to sub-pixel accuracy based on a
recently proposed algorithm that uses a 2D esinc function
in fitting the phase correlation outputs [2]. Furthermore,
a vector weighted average filter that uses phase correlation
scores from the FMT as weighting coefficients is proposed
in order to smooth the optical flow field. Finally, the pro-
posed approach is tested on a variety of image sequences
including both synthetic and real scenes taken from pub-
licly available data sets [4, 5, 15]. The results are compared
with the ground truth as well as results by Lucas-Kanade’s
method [14], due to the popularity of this algorithm. We
also compare our results with the multi-scale version of
the anisotropic diffusion method of Proesmans et al. [18],
which was highly regarded in the evaluations performed in
[15], and with results of the 2D Combined Local Global
(2D-CLG) method proposed by Bruhn et al. [7].

The remainder of the paper is organized as follows. Sec-
tion 2 describes the FMT and how it can handle the trans-
lation as well scale and rotation motion of images or image
patches. The application of FMT in calculating the opti-
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cal flow of an image sequence is described in Section 3. In
Section 4, we discuss how to improve the accuracy of our
method by estimating sub-pixel accuracy and smoothing the
flow field. Section 5 discusses a number of implementation
issues. Next, in Section 6, we show a number of experimen-
tal results to demonstrate the effectiveness of our approach.
Finally, the conclusions are given in Section 7.

2. Fourier Mellin Transform
The use of the Fourier Mellin Transform for rigid image

registration was proposed in [19], that is to match images
that are translated, rotated and scaled with respect to one
another. Let F1(ξ, η) and F2(ξ, η) be the Fourier transforms
of images f1(x, y) and f2(x, y), respectively. If f2 differs
from f1 only by a displacement (x0, y0) then

f2(x, y) = f1(x− x0, y − y0) , (1)

or in frequency domain, using the Fourier shift theorem [20]

F2(ξ, η) = e−j2π(ξx0+ηy0) × F1(ξ, η) . (2)

The cross-power spectrum is then defined as

C(ξ, η) =
F1(ξ, η)F ∗

2 (ξ, η)
|F1(ξ, η)F2(ξ, η)|

= ej2π(ξx0+ηy0) (3)

where F ∗ is the complex conjugate of F . The Fourier shift
theorem guarantees that the phase of the cross-power spec-
trum is equivalent to the phase difference between the im-
ages. The inverse of (3) results in

c(x, y) = δ(x− x0, y − y0) (4)

which is approximately zero everywhere except at the opti-
mal registration point.

Iff1 and f2 are related by a translation (x0, y0) and a
rotation θ0 then

f2(x, y) = f1(x cos θ0 + y sin θ0 − x0, (5)
−x sin θ0 + y cos θ0 − y0) . (6)

Using the Fourier translation property and the Fourier rota-
tion property [19], we have

F2(ξ, η) = e−j2π(ξx0+ηy0) × (7)
F1(ξ cos θ0 + η sin θ0,−ξ sin θ0 + η cos θ0).

Let M1 and M2 be the magnitudes of F1 and F2, respec-
tively. They are related by

M2(ξ, η) = M1(ξ cos θ0 + η sin θ0,−ξ sin θ0 + η cos θ0)
(8)

To recover the rotation, the Fourier magnitude spectra are
transformed to polar representation

M1(ρ, θ) = M2(ρ, θ − θ0) (9)

where ρ and θ are the radius and angle in the polar co-
ordinate system, respectively. Then, (3) can be applied to
find θ0.

If f1 is a translated, rotated and scaled version of f2,
the Fourier magnitude spectra are transformed to log-polar
representations and related by

M2(ρ, θ) = M1(ρ/s, θ − θ0) (10)
M2(log ρ, θ) = M1(log ρ− log s, θ − θ0) (11)

i.e.,
M2(ξ, θ) = M1(ξ − d, θ − θ0) (12)

where s is the scaling factor, ξ = log ρ and d = log s.
The phase correlation in (3) is first applied to obtain the

scale s and angle θ0, before the translation is found with
another phase correlation on the scaled and rotated image.

Fig. 1 shows an example of frame 10 in the Venus se-
quence [4], together with its frequency log-polar and win-
dowed frequency log-polar plots, respectively. More details
on applying a window to an image before calculating its
transform are discussed in Section 5.

3. Applying Fourier Mellin Transform to Opti-
cal Flow

Assume that we have two blocksB1 andB2 of sizeM×
N pixels located at the same position p = (x, y) in two
images f1 and f2, respectively. If B2 is related to B1 by a
translation (x0, y0), scale s and rotation θ0, by applying the
Fourier Mellin Transform as described in Section 2 to these
two blocks, we can get the motion vector vp = (vx, vy).
vp can be computed as

vx =
N

2

(
1− (cos θ0 + sin θ0)s

)
− x0 (13)

vy =
M

2

(
1− (cos θ0 + sin θ0)s

)
− y0 (14)

The above calculation can be repeated for every pixel in
the input images. However, we are also able to divide the
input images into a (regular) grid and only perform the mo-
tion vector calculation on the nodes of the grid. The dense
flow field can be obtained later by interpolation based on
the smoothness constraint of the optical flow [8].

4. Improving the Accuracy of the Optical Flow
4.1. Sub-pixel Accuracy

Sub-pixel accuracy can be considered as a key perfor-
mance issue in motion estimation. We employ a recently
proposed method in [2] to obtain high accuracy sub-pixel
motion estimates for our algorithm. We can increase the
accuracy of the rotation and scale parameters by using a
higher resolution for the log polar coordinates in Section 2.



Figure 1: An example of a frame in the Venus sequence and its frequency log-polar and windowed frequency log-polar plots.

Thus, we only need to concentrate on getting the sub-pixel
accuracy for the translation parameter.

Sub-pixel accuracy can be achieved by using bilinear in-
terpolation, for example. However, such methods are com-
putationally expensive and require the storage of a signifi-
cant amount of data. In [2], a method of calculating sub-
pixel accuracy by fitting a modified sinc function to the
peaks of the phase correlation was proposed:

esinc(x) = exp(−x2)
sinπx
πx

. (15)

The function esinc is parameterized with regard to
magnitude (A), scale (B), and shift changes (C), i.e.
A esinc(B(x− C)). Let us just consider the fitting for the
one-dimensional case (x-axis). Let c(xm) be the maximum
peak of the correlation surface and c(xm−1), c(xm+1) be
the nearest neighbors on either side of c(xm). The unknown
parameters Ax, Bx and Cx can then be approximated by
solving numerically the following least-squares minimiza-
tion problem, for example, using a gradient descent method:

(Ax, Bx, Cx) = argmin
∑

xi=xm−1,xm,xm+1

[
c(xi) (16)

−Ax exp
(
−

(
Bx(xi − Cx)

)2
) sin(π(xi − Cx))

π(xi − Cx)

]2

.

We then compute Ay , By and Cy in a similar way.

4.2. Smoothing the Optical Flow

There may be a few mismatches in the correlation out-
put that can be considered as noise on the estimated optical
flow. Therefore, we need a method of smoothing the flow
to filter out these outliers. A vector weighted average filter
that uses the phase correlation scores from the FMT com-
putation is proposed as a solution to this problem.

Let vpi
= (vxi

, vyi
) be the estimated velocity for a pixel

pi = (xi, yi). Then, the output smoothed velocity at pi is

v′pi
= (v′xi

, v′yi
), computed as

v′pi
=

∑
pj∈Ni

(cpj
vpj

)∑
pj∈Ni

cpj

, j 6= i (17)

where pj is a pixel in Ni, the 8-pixel neighborhood of the
pixel pi. cpj

is the peak in the correlation surface when
calculating the translation for vector v′pj

. In other words,
the velocity at a pixel will be replaced by the weighted av-
erage of the velocities of its 8 neighbors with the weighting
coefficients being the correlation scores.

5. Implementation
For the implementation of the algorithm in practice, we

have to take into account a number of issues:
Boundary effects: The shift in the spatial domain must be
cyclic in order to obtain a perfect impulse [16, 20]. Since
the 2D Discrete Fourier Transform assumes periodicity in
both directions, spurious peaks may be caused by disconti-
nuities from left to right boundaries, and from top to bot-
tom. In order to limit this effect, we can apply a 2D weight-
ing window w(x, y) to each M × N block. The window
may be a Gaussian-like window or a raised-cosine window.
In our implementation, we use the raised-cosine (or Han-
ning) window to reduce the boundary effect [16]. The 2D
Hanning window w(n1, n2) of size M × N can be easily
computed as an outer product of the two 1D Hanning win-
dows w(n1)wT (n2) where 0 ≤ n1 ≤M , 0 ≤ n2 ≤ N and
wT is the transpose of w [17]. The 1D Hanning window of
size N is defined as

w(n) = 0.5
{

1− cos

(
2πn
N − 1

)}
(18)

where 0 ≤ n ≤ N [17].
Spectral leakage: The impulse will degenerate into a peak
if the displacement vector does not correspond to an inte-
ger multiple of frequency [20]. Thus, we need to search not
only the highest peak but also the surrounding peaks for the



optimal match.
Range of displacement: Due to the periodicity of the 2D
Discrete Fourier Transform with the block size M × N ,
only displacements (x0, y0) satisfy −N

2 ≤ x0 ≤ N
2 and

−M
2 ≤ y0 ≤ M

2 can be detected [20].
Block size: It is one of the most important parameters in this
algorithm as well as in any other phase correlation or block
matching based motion estimation method. The block size
should be large enough to capture large displacement vec-
tors and small enough so that these vectors remain constant
within the block. In our experiments, we see that a block
size of 32 × 32 provides the best results for an image size
of around 300 × 500. More generally, this problem can be
addressed by using hierarchical methods [1].

6. Experiments and Discussion

The proposed method was tested on a broad range of
image sequences including both synthetic and real scenes.
The images were taken from publicly available data sets
[4, 5, 15] in order to guarantee the objectiveness of our eval-
uations. Many optical flow methods have been proposed in
the literature. It would be beyond the scope of this paper to
compare our FMT method to all of them. We compared our
approach with the well-known algorithm of Lucas-Kanade
[14]. The Matlab implementation of this algorithm was
obtained from ”Piotr’s Image and Video Processing Tool-
box” (http://vision.ucsd.edu/˜pdollar/toolbox/doc/). The
multi-scale version of the anisotropic diffusion method
of Proesmans et al. [18], which produced the best
overall results in the evaluation by McCane et al. [15],
was also used in the comparison. The C implementa-
tion of this algorithm was downloaded from the web-
site http://www.cs.otago.ac.nz/gpxpriv/vision optflow.html.
The parameters of these algorithms were not changed. In
addition, we also include the results from our implementa-
tion of the 2D Combined Local Global (2D-CLG) method
proposed by Bruhn et al. [7]. The experimental results show
that our approach performs better than this highly regarded
algorithm in most of the cases.

6.1. Error Metrics

The first measure of performance that we use in the com-
parison is the average angular error (AAE) [5]. This is the
most common measure of performance for optical flow [4].
Let v0 = (u0, v0) be the correct velocity and v1 = (u1, v1)
be the estimated velocity. The angular error (AE) between
these two vectors is

ψAE = arccos(−→v0 · −→v1) (19)

where −→v0, −→v1 are the 3D normalized representations of v0,
v1, respectively and defined as

−→v0 =
1√

u2
0 + v2

0 + 1
(u0, v0, 1) (20)

−→v1 =
1√

u2
1 + v2

1 + 1
(u1, v1, 1) (21)

The AAE is then obtained by calculating the average of
all the angular errors between correct and estimated veloc-
ities in the optical flow. However, it can be seen from (19)
that errors in regions of large flows are penalized less in
AE than errors in regions of small flows [4]. However, one
also needs to be cautious when using the AAE metric as
estimates with the same error magnitude may result in sig-
nificantly different angular error values [22].

Another error metric is the normalized magnitude of the
vector difference between the correct and estimated flow
vectors [15]. The magnitude of the correct velocity is used
as the normalization factor. The magnitude of difference
error is defined as

EM =


‖v0−v1‖
‖v0‖ if ‖v0‖ ≥ T∣∣∣‖v1‖−T

T

∣∣∣ if ‖v0‖ < T and ‖v1‖ ≥ T

0 if ‖v0‖ < T and ‖v1‖ < T

(22)

where T is a significant threshold. The algorithm is not
expected to reliably produce accurate flow vectors in areas
where the actual flow magnitude is less than T [15]. We
used T = 0.5 in all of our experiments. The average mag-
nitude of difference error (AME) is then calculated as the
average of the normalized magnitude of difference errors.

The percentage of computed flow vectors within a given
error tolerance is also shown in the form of a cumulative
error histogram. For better comparison with the McCane et
al. [15] study, we also divided the average angular error into
bins of 18◦ wide and the average magnitude of difference
error into bins of 0.2 wide similar to their study. The best
algorithm is at the top of the graph as the ideal curve follows
the left and top sides of the histogram.

6.2. Synthetic Data

The synthetic Street sequence [15] is used for both
qualitative and quantitative evaluation. The sequence and
its ground truth flow are both available from the web
site http://www.cs.otago.ac.nz/research/vision/. Figure 2a
shows frame 14 of the Street sequence. This is a complex
sequence given the movement of the camera from left to
right and the movements of the two cars in opposite di-
rections with different velocities. Thus, the sequence is a
good example to test and compare our approach with other
methods. The ground truth flow and our result are shown



in Figures 2b and 2c, respectively. The optical flow results
obtained from the Bruhn et al., Lucas-Kanade, and Proes-
mans et al. methods are also shown in Figures 2d, 2e, 2f,
respectively. Note that the optical flows have been resized
and scaled in order to view them more easily. It can be seen
clearly from the figures that our approach coincides well
with the ground truth flow field.

The quantitative comparison in Table 1 confirms the
qualitative results. The proposed approach outperforms the
Bruhn et al., Lucas-Kanade, and Proesmans et al. methods
in both the AAE and AME error metrics.

6.3. Real Data

Results on real image sequences from the Middlebury
data sets [4] (http://vision.middlebury.edu/flow/data/) are
also reported in order to show that the proposed approach
also works well on real-world data. According to Baker et
al. [4], these sequences are much more complex than the
data sets used in [5]. They are claimed to contain all the
components that make the optical flow ambiguous and dif-
ficult including the aperture problem, textureless regions,
motion discontinuities, occlusions, large motions, small ob-
jects, non-rigid motion, mixed pixels, changes in illumina-
tion, motion blur, non-Lambertian reflectance, and camera
noise [4]. Thus, these sequences provide more meaningful
comparisons between different optical flow algorithms.

Figures 3 and 5 show the ground truth optical flows and
the results of different techniques including the proposed
FMT approach on the two real sequences Venus and Rub-
berWhale, respectively. In both cases, the optical flows ob-
tained using the FMT method are the closest to the ground
truth. The superior performance of our method is confirmed
by the quantitative results in Table 1 and the cumulative his-
tograms in Figures 4 and 6, where it clearly outperformed
the other methods both in terms of average angular error and
magnitude of difference error. In Table 1, we also include
the results of all four algorithms on two other sequences
from the Middlebury database [4] including the Dimetrodon
and Hydrangea sequences. In these two sequences, our ap-
proach still provides the bests results compared to all other
algorithms. Furthermore, the AAEs of the proposed FMT
method on the Venus and Dimetrodon sequences (5.51◦ and
7.33◦, respectively) are lower than for the Black-Anandan
method [6] (7.64◦ and 9.26◦, respectively) and the Zit-
nick method [23] (11.42◦ and 30.10◦, respectively). The
AAEs of these state-of-the-art algorithms are quoted from
the Middlebury vision web site [4].

Figures 4 and 6 show the cumulative histograms of the
angular error and magnitude of difference error for all four
algorithms in the two sequences Venus and RubberWhale
respectively. It can be seen from the graphs that our ap-
proach performs significantly better than the other three
methods. In the FMT results for the Venus sequence, more

than 90% of the angular errors are less than 18◦ and nearly
90% of the magnitude of difference errors are less than 0.2.
The methods of Proesmans et al. and Bruhn et al. have
quite similar performance in both the angular and mag-
nitude of difference error metrics in these two above se-
quences. However, their results are still not comparable
to our approach. The method of Lucas-Kanade failed to
provide good results in the Venus sequence. There, only
35% of the angular errors are less than 18◦ and only 10%
of the magnitude of difference errors are less than 0.2 in the
Lucas-Kanade. However, its performance is quite similar
to the performance of the methods of Proesmans et al. and
Bruhn et al. in the RubberWhale sequence.

7. Conclusion
We presented a novel method of estimating the optical

flow of an image sequence using the Fourier Mellin Trans-
form. Our approach overcomes the limitations of previ-
ous phase correlation techniques by converting the Fourier
transforms of image patches into log polar coordinates and,
thus, being able to estimate not only the translation but also
the scale and rotation motion of the patches, i.e. full simi-
larity transforms. Furthermore, the optical flow is estimated
to sub-pixel accuracy using a recently proposed algorithm
that fits an esinc function to the correlation surface. The
estimated flow is further smoothed by a vector weighted av-
erage filter based on the phase correlation scores of the FMT
in order to reject outliers and further improve the accuracy.
Results comparing this approach to other optical flow algo-
rithms show its effectiveness. In the future, we plan to in-
vestigate the integration of a search for local keypoints, such
as the keypoints of the Scale Invariant Feature Transform
(SIFT) [13], into our framework as a pre-processing step to
limit the computationally more expensive optical flow cal-
culations to distinctive features of the image sequence. This
is expected to help reducing the computational cost and fur-
ther improving the accuracy of the algorithm.
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