Hough Transform

- It is a technique used to isolate curves of a given shape in an image
- In its classical formulation it requires the curve to be specified in some parametric form (usually lines, circles or ellipses)
- also... it can be generalized to arbitrary curved shapes
- Advantage: robust to "gaps" in the object
- Disadvantages:
 - parametric description of the shape
 - depending on the number of parameters might become slow

Hough Transform for lines

- We want to detect points lying on a straight line
- Start with the equation of a straight line in parametric form:

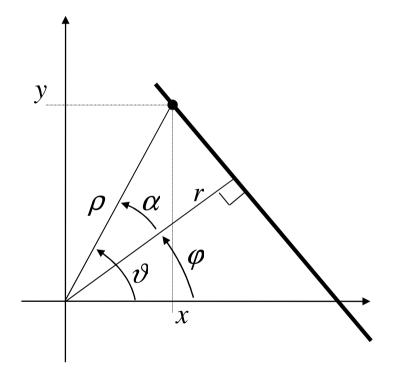
 $x\cos\varphi + y\sin\varphi = r$

where *r* is the length of a normal to the line from the origin and φ is its angle with the x-axis

 $x \cos \phi + y \sin \phi = r$

The Hough transform

In case you don't trust the equation...



$$r = \rho \cos(\alpha) = \rho \cos(\vartheta - \varphi)$$
$$r = \rho \cos \vartheta \cos \varphi + \rho \sin \vartheta \sin \varphi$$

 $r = x\cos\varphi + y\sin\varphi$

• Given a point $x_i y_i$ on this line we have:

 $x_i \cos \varphi + y_i \sin \varphi = r$

where r and φ are constant

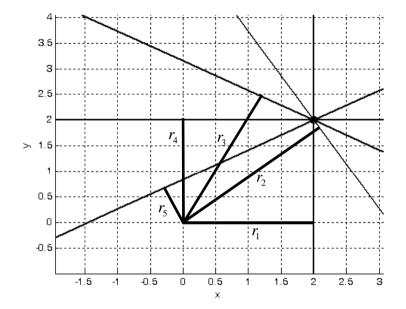
Consider now *r* and φ variable (*r_i*, φ_i) and *x_i* y_i constant (*x*, y), the equation describes all possible lines passing through the point, these lines are described by:

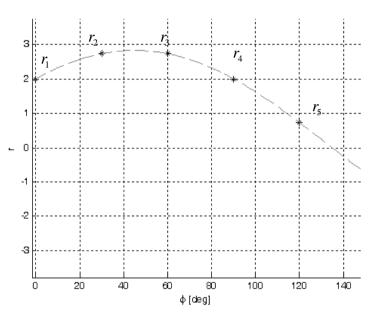
$$r_i = x \cos \varphi_i + y \sin \varphi_i \qquad \varphi \in [0, 2\pi]$$

• The Hough Transform of the point is the plot of this equation on the (r_i, φ_i) space (Hough Space)

we get a sinusoidal curve SINA 10/11 $\int_{1}^{1} \int_{1}^{1} \int_{1}^{$

Hough Transform of one point





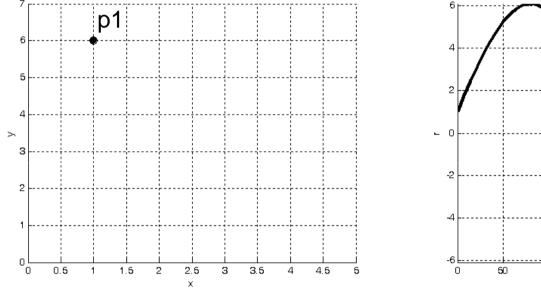
Hough Transform

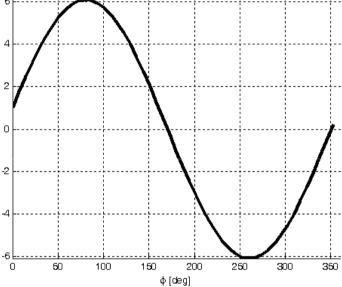
- Define the Hough Space: range for *r* (example: 0-255) and the angular resolution of the sampling of φ (example: 6 degrees)
- This gives a Hough Space (HS) of 256x60 points
- Each point in the image "vote" for a set of lines passing through it; all these votes are accumulated in the HS
- For each (x,y) increment all accumulator cells (r,φ) which satisfy the equation:

 $r = x\cos\varphi + y\sin\varphi$

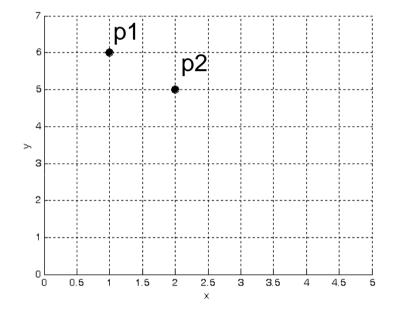
• At the end we scan the accumulator searching for cells which have high count: they correspond to lines for which there are many points in the image plane

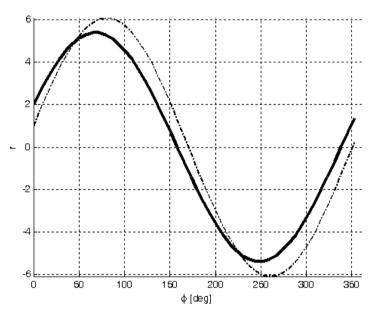
Example: start with one point (pixel)



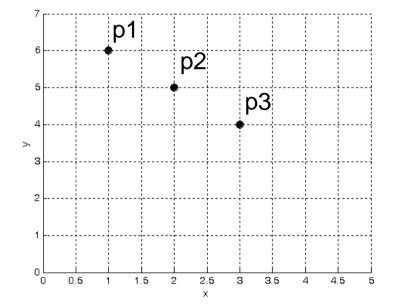


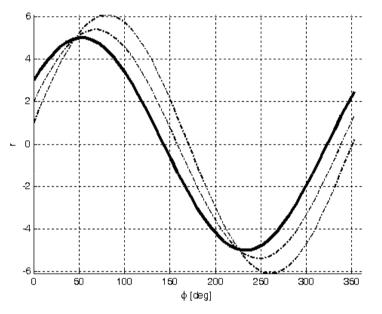
Example: add another pixel



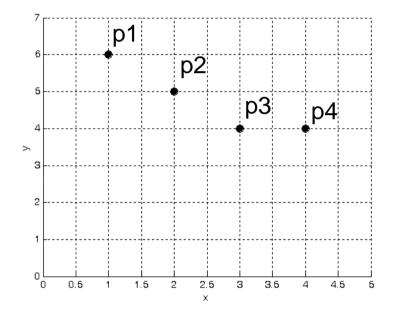


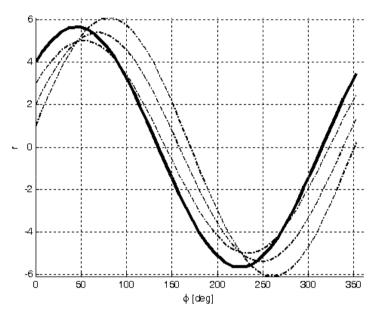
Example: now we have three pixels



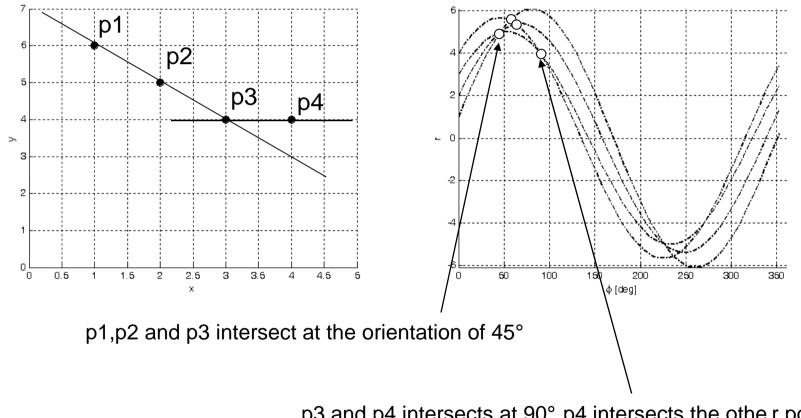


Example: the last one...





Finally: search intersections in the HT

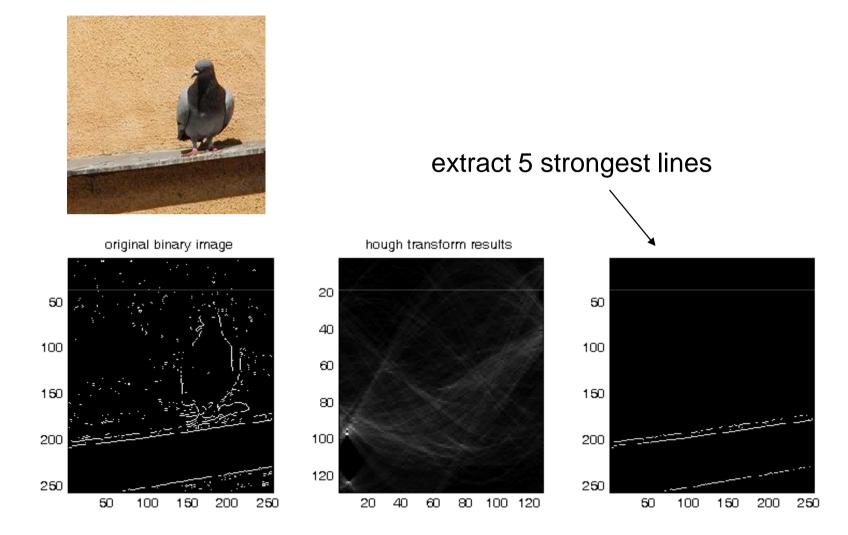


p3 and p4 intersects at 90°, p4 intersects the othe r points around 60°

Improvements:

- Usually start with the output of an edge detector, to reduce the number of points in the image
- Search along directions perpendicular to the image gradient

Hough Example



houghdemo.m from http://homepages.cae.wisc.edu/~ece533/matlab/index.html

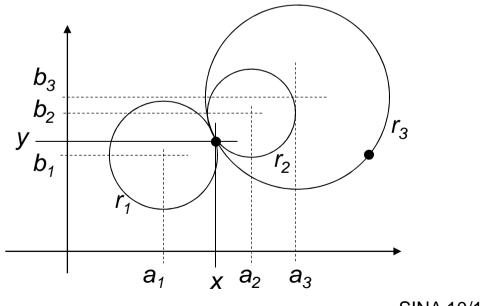
Circular Hough Transform

- Detect circles in the image
- Parametric equation of a circle:

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

where (a,b) are the coordinate s of the center of the circle and r its radius

• *a,b* and *r* define the parameter space, the accumulator is three-dimensional



$$a_1, b_1, r_1$$

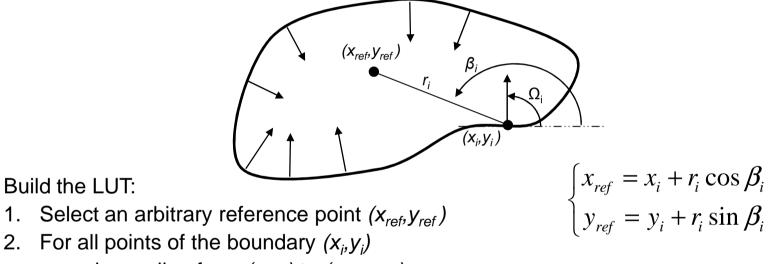
 a_2, b_2, r_2
 a_3, b_3, r_3

. . .

SINA 10/11

Generalized Hough Transform

- Suppose we don't have a simple analytical equation for the object •
- Instead we use a LUT defining the relationship between the coordinates of • the point, its orientation (the orientation of the local gradient) and the Hough parameters

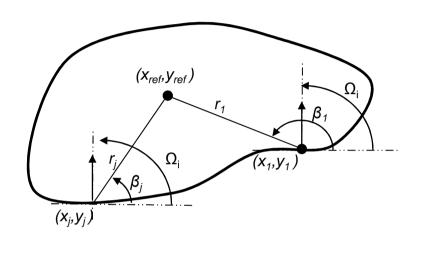


- 2. draw a line from (x_i, y_i) to (x_{ref}, y_{ref}) ۲
 - Measure (β_i, r_i) ۲

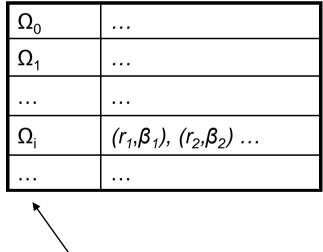
1.

- Compute the orientation of the boundary Ω_i ٠
- Add (β_i, r_i) to a table indexed by Ω_i •

• Probably there will be more than one occurrence of a particular orientation...



$$\begin{cases} x_{ref} = x_i + r_i \cos \beta_i \\ y_{ref} = y_i + r_i \sin \beta_i \end{cases}$$



R-table

- Once we have the R-table for the object, we can perform the Hough Transform of the image
- For each point in the image (x_i,y_i), we compute the point (x_{ref},y_{ref}) from:

$$\begin{cases} x_{ref} = x_i + r_i \cos \beta_i \\ y_{ref} = y_i + r_i \sin \beta_i \end{cases}$$

- where (r_i,β_i) are derived from the R-table, starting from the orientation of the point Ω_i
- We accumulate the Hough Space in (x_{ref},y_{ref}):

$$A(x_{ref}, y_{ref}) + +$$

Finally search for local maxima in A to identify the center(s) of the object(s)

 It is easy to extend the search for different object orientations φ and scales S:

 $\begin{cases} x_{ref} = x_i + S \cdot r_i \cos(\beta_i + \varphi) \\ y_{ref} = y_i + S \cdot r_i \sin(\beta_i + \varphi) \end{cases}$

• In this case we explore and accumulate a four-dimensional space:

$$A(x_{ref}, y_{ref}, \varphi, S) + +$$