
Chapter 2
The Different Paradigms of Cognition

There are many positions on cognition, each taking a significantly different stance
on the nature of cognition, what a cognitive system does, and how a cognitive sys-
tem should be analyzed and synthesized. Among these, however, we can discern two
broad classes (see Figure 2.1): the cognitivist approach based on symbolic informa-
tion processing representational systems, and the emergent systems approach, em-
bracing connectionist systems, dynamical systems, and enactive systems, all based
to a lesser or greater extent on principles of self-organization [228, 39].

Cognitivist approaches correspond to the classical and still common view that
‘cognition is a type of computation’ defined on symbolic representations, and that
cognitive systems ‘instantiate such representations physically as cognitive codes
and ����� their behaviour is a causal consequence of operations carried out on these
codes’ [174]. Connectionist, dynamical, and enactive systems, grouped together un-
der the general heading of emergent systems, argue against the information process-
ing view, a view that sees cognition as ‘symbolic, rational, encapsulated, structured,
and algorithmic’, and argue in favour of a position that treats cognition as emergent,
self-organizing, and dynamical [221, 105].

As we will see, the difference between the cognitivist and emergent positions are
deep and fundamental, and go far beyond a simple distinction based on symbol ma-
nipulation. Without wishing to preempt what is to follow, we can contrast the cog-
nitivist and emergent paradigms on fourteen distinct characteristics:1 computational
operation, representational framework, semantic grounding, temporal constraints,
inter-agent epistemology, embodiment, perception, action, anticipation, adaptation,
motivation, autonomy, cognition, and philosophical foundation. Let us look briefly
at each of these in turn (see Table 2.1 for a synopsis of the key issues).

Computational Operation
Cognitivist systems use rule-based manipulation of symbol tokens, typically but
not necessarily in a sequential manner.

1 These fourteen characteristics are based on the twelve proposed by [232] and augmented here by
adding two more: the role of cognition and the underlying philosophy. The subsequent discussion
is also an extended adaptation of the commentary in [232].
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Fig. 2.1 The cognitivist, emergent, and hybrid paradigms of cognition.

Emergent systems exploit processes of self-organization, self-production, self-
maintenance, and self-development, through the concurrent interaction of a net-
work of distributed interacting components.

Representational Framework
Cognitivist systems use patterns of symbol tokens that refer to events in the ex-
ternal world. These are typically the descriptive2 product of a human designer
and are usually, but not necessarily, punctate rather than distributed.
Emergent systems representations are global system states encoded in the dy-
namic organization of the system’s distributed network of components.

Semantic Grounding
Cognitivist systems symbolic representations are grounded through percept-
symbol identification by either the designer or by learned association. These rep-
resentations are accessible to direct human interpretation.
Emergent systems ground representations by autonomy-preserving anticipatory
and adaptive skill construction. These representations only have meaning insofar
as they contribute to the continued viability of the system and are inaccessible to
direct human interpretation.

Temporal Constraints
Cognitivist systems are atemporal and are not necessarily entrained by the events
in the external world.
Emergent systems are entrained and operate synchronously in real-time with
events in its environment.

Inter-agent Epistemology
For cognitivist systems an absolute shared epistemology between agents is guar-
anteed by virtue of their positivist view of reality; that is, each agent is embedded
in an environment, the structure and semantics of which are independent of the
system’s cognition.
The epistemology of emergent systems is the subjective agent-specific outcome

2 Descriptive in the sense that the designer is a third-party observer of the relationship between a
cognitive system and its environment so that the representational framework is how the designer
sees the relationship.



2 The Different Paradigms of Cognition 11

of a history of shared consensual experiences among phylogentically-compatible
agents.

Embodiment
Cognitivist systems do not need to be embodied, in principle, by virtue of their
roots in functionalism (which holds that cognition is independent of the physical
platform in which it is implemented [60]).
Emergent systems are intrinsically embodied and the physical instantiation plays
a direct constitutive role in the cognitive process [229, 112, 64].

Perception
In cognitivist systems, perception provides an interface between the absolute ex-
ternal world and the symbolic representation of that world. The role of perception
os to abstract faithful spatio-temporal representations of the external world from
sensory data.
In emergent systems, perception is an agent-specific interpretation of perturba-
tions of the system by the environment.

Action
In cognitivist systems, actions are causal consequences of symbolic processing
of internal representations.
In emergent systems, actions are perturbations of the environment by the system,
typically to maintain the viability of the system.

Anticipation
In cognitivist systems, anticipation typically takes the form of planning using
some form of procedural or probabilistic reasoning with some a priori model.
Anticipation in the emergent paradigm requires the system to visit a number of
states in its self-constructed perception-action state space without commiting to
the associated actions.

Adaptation
For cognitivism, adaptation ususally implies the acquisition of new knowledge.
In emergent systems, adaptation entails a structural alteration or re-organization
to effect a new set of dynamics. Adaptation can take the from of either learning
or development.

Motivation
In cognitivist systems, motives provide the criteria which are used to select the
goal to adopt and the associated actions.
In emergent systems, motives encapsulate the implicit value system that modu-
late the system dynamics of self-maintenance and self-development, impinging
on perception (through attention), action (through action selection), and adapta-
tion (through the mechanisms that govern change), such as enlarging the space
of viable interaction.

Autonomy
Autonomy3 The cognitivist paradigm does not necessarily entail autonomy. The

3 There are many possible definitions of autonomy, ranging from the ability of a system to con-
tribute to its own persistence [19] through to the self-maintaining organizational characteristic of
living creatures — dissipative far-from equilibrium systems — that enables them to use their own
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The Cognitivist Paradigm vs. the Emergent Paradigm

Characteristic Cognitivist Emergent

Computational Operation Syntactic manipulation of symbols Concurrent self-organization of a network

Representational Framework Patterns of symbol tokens Global system states

Semantic Grounding Percept-symbol association Skill construction

Temporal Constraints Atemporal Synchronous real-time entrainment

Inter-agent epistemology Agent-independent Agent-dependent

Embodiment No role implied: functionalist Direct constitutive role: non-functionalist

Perception Abstract symbolic representations Perturbation by the environment

Action Causal consequence of symbol manipulation Perturbation by the system

Anticipation Procedural or probabilistic reasoning Traverse of perception-action state space

Adaptation Learn new knowledge Develop new dynamics

Motivation Criteria for goal selection Increase space of interaction

Autonomy Not entailed Cognition entails autonomy

Cognition Rational goal-achievement Self-maintenance adn self-development

Philosophical Foundation Positivism Phenomenology

Table 2.1 A comparison of cognitivist and emergent paradigms of cognition; refer to the text for
a full explanation (adapted from [232] and extended).

emergent paradigm does since cognition is the process whereby an autonomous
system becomes viable and effective.

Cognition
In the cognitivist paradigm, cognition is the rational process by which goals are
achieved by reasoning with symbolic knowledge representations of the world in
which the agent operates.
In the emergent paradigm, cognition is the dynamic process by which the sys-
tem acts to maintain its identity and organizational coherence in the face of en-
vironmental perturbation. Cognition entails system development to improve its
anticipatory capabilities and extend it space of autonomy-preserving actions.

Philosophical Foundations
The cognitivist paradigm is grounded in positivism [60].
The emergent paradigm is grounded in phenomenology [62, 231].

The sections that follow discuss the cognitivist and emergent paradigms, as well
as hybrid approaches, and draw out each of these issues in more depth.

capacities to manage their interactions with the world, and with themselves, in order to remain
viable [36].
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2.1 Cognitivist Models

2.1.1 An Overview of Cognitivist Models

Cognitive science has its origins in cybernetics (1943-53) in the first efforts to for-
malize what had up to that point been metaphysical treatments of cognition [228].
The intention of the early cyberneticians was to create a science of mind, based
on logic. Examples of progenitors include McCulloch and Pitts and their seminal
paper ‘A logical calculus immanent in nervous activity’ [140]. This initial wave
in the development of a science of cognition was followed in 1956 by the devel-
opment of an approach referred to as cognitivism. Cognitivism holds that cogni-
tion involves computations defined over internal representations qua knowledge, in
a process whereby information about the world is abstracted by perception, and
represented using some appropriate symbolic data-structure, reasoned about, and
then used to plan and act in the world. The approach has also been labelled by
many as the information processing (or symbol manipulation) approach to cogni-
tion [129, 161, 84, 172, 107, 228, 221, 105]

Cognitivism has undoubtedly been the predominant approach to cognition to date
and is still prevalent. The discipline of cognitive science is often identified with
this particular approach [105, 60]: However, as we will see, it is by no means the
only paradigm in cognitive science and there are indications that the discipline is
migrating away from its stronger interpretations [39].

For cognitivist systems, cognition is representational in a strong and particular
sense: it entails the manipulation of explicit symbolic representations of the state and
behaviour of the external world to facilitate appropriate, adaptive, anticipatory, and
effective interaction, and the storage of the knowledge gained from this experience
to reason even more effectively in the future [94]. Perception is concerned with the
abstraction of faithful spatio-temporal representations of the external world from
sensory data. Reasoning itself is symbolic: a procedural process whereby explicit
representations of an external world are manipulated to infer likely changes in the
configuration of the world (and attendant perception of that altered configuration)
arising from causal actions.

In most cognitivist approaches concerned with the creation of artificial cognitive
systems, the symbolic representations (or representational frameworks, in the case
of systems that are capable of learning) are the descriptive product of a human de-
signer. This is significant because it means that they can be directly accessed and
understood or interpreted by humans and that semantic knowledge can be embedded
directly into and extracted directly from the system. However, it has been argued that
this is also the key limiting factor of cognitivist vision systems: these programmer-
dependent representations effectively bias the system (or ‘blind’ the system [243])
and constrain it to an idealized description that is dependent on and a consequence
of the cognitive requirements of human activity. This approach works as long as
the system doesn’t have to stray too far from the conditions under which these de-
scriptions were formulated. The further one does stray, the larger the ‘semantic gap’
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[208] between perception and possible interpretation, a gap that is normally plugged
by the embedding of (even more) programmer knowledge or the enforcement of
expectation-driven constraints [166] to render a system practicable in a given space
of problems.

Cognitivism makes the positivist assumption that ‘the world we perceive is iso-
morphic with our perceptions of it as a geometric environment’ [203]. In cogni-
tivism, the goal of cognition is to reason symbolically about these representations
in order to effect the required adaptive, anticipatory, goal-directed, behaviour. Typ-
ically, this approach to cognition will deploy an arsenal of techniques including
machine learning, probabilistic modelling, and other techniques in an attempt to
deal with the inherently uncertain, time-varying, and incomplete nature of the sen-
sory data that is being used to drive this representational framework. However, this
doesn’t alter the fact that the representational structure is still predicated on the de-
scriptions of the designers. The significance of this will become apparent in later
sections.

2.1.2 Cognitivism and Artificial Intelligence

Since cognitivism and artificial intelligence research have very strong links,4 it
is worth spending some time considering the relationship between cognitivist ap-
proaches and classical artificial intelligence, specifically the Newell’s and Simon’s
‘Physical Symbol System’ approach to artificial intelligence [161] which has been
extraordinarily influential in shaping how we think about intelligence, natural as
well as computational.

In Newell’s and Simon’s 1976 paper, two hypotheses are presented:

1. The Physical Symbol System Hypothesis: A physical symbol system has the
necessary and sufficient means for general intelligent action.

2. Heuristic Search Hypothesis. The solutions to problems are represented as sym-
bol structures. A physical-symbol system exercises its intelligence in problem-
solving by search, that is, by generating and progressively modifying symbol
structures until it produces a solution structure.

The first hypothesis implies that any system that exhibits general intelligence is a
physical symbol system and any physical symbol system of sufficient size can be
configured somehow (‘organized further’) to exhibit general intelligence.

The second hypothesis amounts to an assertion that symbol systems solve prob-
lems by heuristic search, i.e. ‘successive generation of potential solution structures’
in an effective and efficient manner. ‘The task of intelligence, then, is is to avert the
ever-present threat of the exponential explosion of search’.

4 Some view AI as the direct descendent of cognitivism: “ ... the positivist and reductionist study of
the mind gained an extraordinary popularity through a relatively recent doctrine called Cognitivism,
a view that shaped the creation of a new field — Cognitive Science — and its most hard core
offspring: Artificial Intelligence” (emphasis in the original). [60]
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Symbol Systems

Symbol Structures /
Expressions /

Patterns

Processes
Produce, destroy, modify

Objects

designate

Processes

designate

comprise comprise

Can be interpreted: 
carry out the designated process

Can affect objects
Can be affected by objects

designate

Fig. 2.2 The essence of a physical symbol system [161].

A physical symbol system is equivalent to an automatic formal system [84]. It
is ‘a machine that produces through time an evolving collection of symbol struc-
tures.’ A symbol is a physical pattern that can occur as a component of another type
of entity called an expression (or symbol structure): expressions/symbol structures
are arrangements of symbols/tokens. As well as the symbol structures, the system
also comprises processes that operate on expressions to produce other expressions:
‘processes of creation, modification, reproduction, and destruction’. An expression
can designate an object and thereby the system can either ‘affect the object itself or
behave in ways depending on the object’, or, if the expression designates a process,
then the system interprets the expression by carrying out the process (see Figure
2.2).

In the words of Newell and Simon,

‘Symbol systems are collections of patterns and processes, the latter being capable of pro-
ducing, destroying, and modifying the former. The most important properties of patterns is
that they can designate objects, processes, or other patterns, and that when they designate
processes, they can be interpreted. Interpretation means carrying out the designated pro-
cess. The two most significant classes of symbol systems with which we are acquainted are
human beings and computers.’

What is important about this explanation of a symbol system is that it is more gen-
eral than the usual portrayal of symbol-manipulation systems in which symbols des-
ignate only objects, in which case we have a system of processes that produces,
destroys, and modifies symbols, and no more. Newell’s and Simon’s original view
is more sophisticated. There are two recursive aspects to it: processes can produce
processes, and patterns can designate patterns (which, of course, can be processes).
These two recursive loops are closely linked. Not only can the system build ever
more abstract representations and reason about those representation, but it can mod-
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ify itself as a function both of its processing, qua current state/structure, and of its
representations.

Symbol systems can be instantiated and the behaviour of these instantiated sys-
tems depend on the the details of the symbol system, its symbols, operations, and
interpretations, and not on the particular form of the instantiation.

The physical symbol system hypothesis asserts that a physical symbol system
has the necessary and sufficient means for general intelligence. From what we have
just said about symbol systems, it follows that intelligent systems, either natural or
artificial ones, are effectively equivalent because the instantiation is actually incon-
sequential, at least in principle.

To a very great extent, cognitivist systems are identically physical symbol sys-
tems.

Later, Allen Newell [160] defines intelligence as the degree to which a system
approximates [the ideal] of a knowledge-level system. A knowledge-level system
is one which can bring to bear all its knowledge onto every problem it attempts to
solve (or, equivalently, every goal it attempts to achieve). Perfect intelligence im-
plies complete utilization of knowledge. It brings this knowledge to bear according
to the principle of maximum rationality which was proposed by Newell in 1982
[159] as follows: ‘If an agent has knowledge that one of its actions will lead to one
of its goals, then the agent will select that action’. Anderson [2] later offered a differ-
ent principle, the principle of rationality, sometimes referred to as rational analysis,
stated as follows: ‘the cognitive system optimizes the adaptation of the behaviour of
the organism’. Note that Anderson’s principle considers optimality to be necessary
for rationality, something that Newell’s principle doesn’t.

The knowledge in such an artificial intelligence system, i.e. in a knowledge-level
system, is represented by symbols. Symbols are abstract entities that may be instan-
tiated and manipulated as ‘tokens’. Newell characterizes a symbol system as follows
[244]. It has:

� Memory to contain the symbolic information;
� Symbols to provide a pattern to match or index other symbolic information;
� Operations to manipulate symbols;
� Interpretations to allow symbols to specify operations;
� Capacities for composability, so that the operators may produce any symbol

structure; for interpretability, so that the symbol structures are able to encode
any meaningful arrangement of operations; and sufficient memory to facilitate
both of the above.

Newell suggests a progression of four bands, from biological, to cognitive, to ra-
tional, to social. These bands are in fact the different levels of Newell’s quintessen-
tial information processing cognitivist approach. According to Newell, each band is
also characterized by a typical execution time:

� Biological: 10
� 4 � 10

� 2 seconds
� Cognitive: 10

� 1 � 101 seconds
� Rational: 102 � 104 seconds
� Social: 105 � 107 seconds
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Note that the restriction of biological processing to the millisecond timeframe in
Newell’s framework is somewhat inappropriate since it is clear that biological pro-
cesses clearly extend over much greater timescales, as one can see from the brain’s
ability to recover from major damage and also its continuous development over the
entire ontogenetic timeframe.

The biological band corresponds to the neurophysiological make-up of the sys-
tem. Newell identifies three layers in this band: the organelle, the neuron, and the
neural circuit. Connectionist systems are often focussed exclusively on this band.

In Newell’s framework, the cognitive band corresponds to the symbol level and
its physical instantiation as a concrete architecture. Newell identifies three layers:

1. deliberate acts such as reaching that take a very short amount of time, typically
100ms,

2. ‘composed operations’ such as shifting gear when driving that take on the order
of a second,

3. actions that take up to ten seconds, such as steering a car through an entrance.

The rational band is concerned with actions that are typically characterized by
tasks and typically require some reasoning. For example, the task navigating your
way home. This is the knowledge level.

The social band extends activity to behaviours that occupy hours, days, or weeks,
often involving interaction with other agents.

All knowledge is represented (symbolically) at the symbol level. All knowledge-
level systems contain a symbol system. This is the strong interpretation of the phys-
ical symbol system hypothesis: not only is a physical symbol system sufficient for
general intelligence, it is also necessary for intelligence.

2.1.3 Some Cognitivist Systems

Although we will survey cognitivist systems from an architectural point of view in
Chapter 6, we mention here a sample of cognitivist systems to provide a preliminary
impression of the approach.

The use of explict symbolic knowledge has been used in many cognitivist sys-
tems, e.g. a cognitive vision system [156] developed for the interpretation of video
sequences of traffic behaviour and the generation of a natural language description
of the observed environment. It proceeds from signal representations to symbolic
representations through several layers of processing, ultimately representing vehicle
behaviour with situation graph trees (SGT). Automatic interpretation of this repre-
sentation of behaviour is effected by translating the SGT into a logic program (based
on fuzzy metric temporal Horn logic). See also [9, 8, 10, 69, 68] for related work.

The cognitivist assumptions are also reflected well in the model-based approach
described in [158, 152] which uses Description Logics, based on First Order Pred-
icate Logic, to represent and reason about high-level concepts such as spatio-
temporal object configurations and events.
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Probabilistic frameworks have been proposed as an alternative (or sometimes an
adjunct [158]) to these types of deterministic reasoning systems. For example, Bux-
ton et al. describe a cognitive vision system for interpreting the activities of expert
human operators. It exploits dynamic decision networks (DDN) — an extension of
Bayesian belief networks to incorporate dynamic dependencies and utility theory
[29] — for recognizing and reasoning about activities, and both time delay radial
basis function networks (TDRBFN) and hidden markov models (HMM) for recog-
nition of gestures. Although this system does incorporate learning to create the ges-
ture models, the overall symbolic reasoning process, albeit a probabilistic one, still
requires the system designer to identify the contextual constraints and their causal
dependencies (for the present at least: on-going research is directed at automatically
learning the task-based context dependent control strategies) [189, 30, 31].5 Recent
progress in autonomously constructing and using symbolic models of behaviour
from sensory input using inductive logic programming is reported in [41].

The dependence of cognitivist approaches on designer-oriented world-representations
is also well exemplified by knowledge-based systems such as those based on ontolo-
gies. For example, Maillot et al. [128] describe a framework for an ontology-based
cognitive vision system which focusses on mapping between domain knowledge and
image processing knowledge using a visual concept ontology incorporating spatio-
temporal, textural, and colour concepts.

Another architecture for a cognitive vision system is described in [34], This sys-
tem comprises a sub-symbolic level, exploiting a viewer-centred 2 1

2 D representa-
tion based on sensory data, an intermediate pre-linguistic conceptual level based on
object-centred 3D superquadric representations, and a linguistic level which uses a
symbolic knowledge base. An attentional process links the conceptual and linguistic
level.

An adaptable system architecture for observation and interpretation of human
activity that dynamically configures its processing to deal with the context in which
it is operating is decribed in [44] while a cognitive vision system for autonomous
control of cars is described in [49].

Town and Sinclair present a cognitive framework that combines low-level pro-
cessing (motion estimation, edge tracking, region classification, face detection,
shape models, perceputal grouping operators) with high-level processing using
a language-based ontology and adaptive Bayesian networks. The system is self-
referential in the sense that it maintains an internal representation of its goals and
current hypotheses. Visual inference can then be performed by processing sentence
structures in this ontological language. It adopts a quintessentially cognitivist sym-
bolic representationalist approach, albeit that it uses probabilistic models, since it
requires that a designer identify the “right structural assumptions” and prior proba-
bility distributions.

5 See [29] for a survey of probabilistic generative models for learning and understanding activities
in dynamic scenes.
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2.2 Emergent Approaches

Emergent approaches take a very different view of cognition. Here, cognition is the
process whereby an autonomous system becomes viable and effective in its envi-
ronment. It does so through a process of self-organization through which the system
is continually re-constituting itself in real-time to maintain its operational identity
through moderation of mutual system-environment interaction and co-determination
[133]. Co-determination implies that the cognitive agent is specified by its environ-
ment and at the same time that the cognitive process determines what is real or
meaningful for the agent. In a sense, co-determination means that the agent con-
structs its reality (its world) as a result of its operation in that world. In this context,
cognitive behaviour is sometimes defined as the automatic induction of an ontol-
ogy: such an ontology will be inherently specific to the embodiment and dependent
on the system’s history of interactions, i.e., its experiences. Thus, for emergent ap-
proaches, perception is concerned with the acquisition of sensory data in order to
enable effective action [133] and is dependent on the richness of the action interface
[78]. It is not a process whereby the structure of an absolute external environment
is abstracted and represented in a more or less isomorphic manner.

Sandini et al. have argued that cognition is also the complement of perception
[191]. Perception deals with the immediate and cognition deals with longer time-
frames. Thus cognition reflects the mechanism by which an agent compensates for
the immediate nature of perception and can therefore adapt to and anticipate en-
vironmental action that occurs over much longer timescales. That is, cognition is
intrinsically linked with the ability of an agent to act prospectively: to operate in the
future and deal with what might be, not just what is.

In contrast to the cognitivist approach, many emergent approaches assert that the
primary model for cognitive learning is anticipative skill construction rather than
knowledge acquisition and that processes which both guide action and improve the
capacity to guide action while doing so are taken to be the root capacity for all intel-
ligent systems [36]. While cognitivism entails a self-contained abstract model that
is disembodied in principle, the physical instantiation of the systems plays no part in
the model of cognition [229, 230]. In contrast, emergent approaches are intrinsically
embodied and the physical instantiation plays a pivotal role in cognition. They are
neither functionalist nor positivist.

2.2.1 Connectionist Systems

Connectionist systems rely on parallel processing of non-symbolic distributed acti-
vation patterns using statistical properties, rather than logical rules, to process infor-
mation and achieve effective behaviour [141]. In this sense, the neural network insta-
tiations of the connectionist model ‘are dynamical systems which compute functions
that best capture the statistical regularities in training data’ [210].
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A comprehensive review of connectionism is beyond the scope of this course.
For an overview of the foundation of the field and a selection of seminal papers on
connectionism, see Anderson’s and Rosenfeld’s Neurocomputing: Foundations of
Research [3] and Neurocomputing 2: Directions of Research [4]. Medler provides
a succinct survey of the development of connectionism in [141], while Smolen-
sky reviews the field from a mathematical perspective, addressing computational,
dynamical, and statistical issues [210, 211, 212, 213]. Arbib’s Handbook of Brain
Theory and Neural Networks provides very accessible summaries of much of the
relevant literature [7].

The roots of connectionism reach back well before the computational era. Al-
though Feldman and Ballard [54] are normally credited with the introduction of
the term ‘connectionist models’ in 1982, the term connectionism has been used as
early as 1932 in psychology by Thorndike [222, 223] to signal an expanded form
of associationism based, for example, on the connectionist principles clearly evi-
dent in William James’ model of associative memory,6 but also anticipating such
mechanisms as Hebbian learning. In fact, the introduction to Hebb’s book The Or-
ganization of Behaviour [87], in which he presents an unsupervised neural training
algorithm whereby the synaptic strength is increased if both the source and target
neurons are active at the same time, contains one of the first usages of the term
connectionism [3], p. 43.

We have already noted that cognitivism has some of its roots in earlier work
in cognitive science and in McCulloch and Pitts seminal work in particular [140].
McCulloch and Pitts showed that any statement within propositional logic could
be represented by a network of simple processing units and, furthermore, that such
nets have, in principle, the computational power of a Universal Turing Machine.
Depending on how you read this equivalence, McCulloch and Pitts contributed to
the foundation of both cognitivism and connectionism.

The connectionist approach was advanced significantly in the late 1950s with the
introduction of Rosenblatt’s perceptron [183] and Selfridge’s Pandemonium model
of learning [195]. Rosenblatt showed that any pattern classification problem ex-
pressed in binary notation can be solved by a perceptron network. Although net-
work learning advanced in 1960 with the introduction of the Widrow-Hoff rule,
or delta rule, for supervised training in the Adeline neural model [241], the prob-
lem with perceptron networks was that no learning algorithm existed to allow the
adjustment of the weights of the connections between input units and hidden asso-
ciative units. Consequently, perceptron networks were effectively single-layer net-
works since learning algorithms could only adjust the connection strength between
the hidden units and the output units, the weights governing the connection strength
between input and hidden units being fixed by design.

In 1969, Minsky and Papert [151] showed that these perceptrons can only be
trained to solve linearly separable problems and couldn’t be trained to solve more
general problems. As a result, research on neural networks and connectionist models
suffered.

6 Anderson’s and Rosenfeld’s collection of seminal papers on neurocomputing [3] opens with
Chapter XVI ‘Association’ from William James’ 1890 Psychology, Briefer Course [99].
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With the apparent limitations of perceptions clouding work on network learn-
ing, research focussed more on memory and information retrieval and, in particular,
on parallel models of associative memory (e.g. see [88]). Landmark contributions
in this period include McClelland’s Interactive Activation and Competition (IAC)
model [136] which introduced the idea of competitive pools of mutually-inhibitory
neurons and demonstrated the ability of connectionist systems to retrieve specific
and general information from stored knowledge about specific instances.

During this period too alternative connectionist models were being put forward
in, for example, Grossberg’s Adaptive Resonance Theory (ART) [82] and Koho-
nen’s self-organizing maps (SOM) [109], ofter referred to simply as Kohonen net-
works. ART, introduced in 1976, has evolved and expanded considerably in the past
30 years to address real-time supervised and unsupervised category learning, pattern
classification, and prediction (see [33] for a summary). Kohonen networks produce
topological maps in which proximate points in the input space are mapped by an
unsupervised self-organizing learning process to an internal network state which
preserves this topology: that is, input points (points in pattern space) which are
close together are represented in the mapping by points (in weight space) which are
close together. Once the unsupervised self-organization is complete, the Kohonen
network can be used as either an auto-associative memory or a pattern classifier.

Perceptron-like neural networks underwent a resurgence in the mid 1980s with
the development of the parallel distributed processing (PDP) architecture [188] in
general and with the introduction by Rumelhart, Hinton, and Williams of the back-
propagation algorithm [186, 187]. The back-propagation learning algorithm, also
known as the generalized delta rule or GDR as it is an generalization of the Widrow-
Hoff delta rule for training Adaline units, overcame the limitation cited by Minsky
and Papert by allowing the connections weights between the input units and the hid-
den units be modified, thereby enabling multi-layer perceptrons to learn solutions
to problems that are not linearly separable. Although the back-propagation learning
rule made its great impact through the work of Rumelhart et al., it had previously
been derived independently by Werbos [240], among others [141].

In cognitive science, PDP made a significant contribution to the move away
from the sequential view of computational models of mind, towards a view of
concurrently-operating networks of mutually-cooperating and competing units, and
also in raising an awareness of the importance of the structure of the computing
system on the computation.

The standard PDP model represents a static mapping between the input vectors
as a consequence of the feed-forward configuration. On the other hand, recurrent
networks which have connections that loop back to form circuits, i.e. networks in
which either the output or the hidden units’ activations signals are fed back to the
network as inputs, exhibit dynamic behaviour.7 Perhaps the best known type of re-
current network is the Hopfield net [95]. Hopfield nets are fully recurrent networks

7 This recurrent feed-back has nothing to do with the feed-back of error signals by, for example,
back-propagation to effect weight adjustment during learning
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that act as auto-associative memory8 or content-addressable memory that can effect
pattern completion. Other recurrent networks include Elman nets [53] (with recur-
rent connections from the hidden to the input units) and Jordan nets [102] (with
recurrent connections from the output to the input units). Boltzman machines [89]
are variants of Hopfield nets that use stochastic rather than deterministic weight
update procedures to avoid problems with the network becoming trapped in local
minima during learning.

Multi-layer perceptrons and other PDP connectionist networks typically use
monotonic functions, such as hard-limiting threshold functions or sigmoid func-
tions, to activate neurons. The use of non-monotonic activation functions, such as
the Gaussian function, can offer computational advantages, e.g. faster and more re-
liable convergence on problems that are not linearly separable.

Radial basis function (RBF) networks [153] also use Gaussian functions but dif-
fer from multi-layer perceptrons in that the Gaussian function is used only for the
hidden layer, with the input and output layers using linear activation functions.

Connectionist systems continue to have a strong influence on cognitive science,
either in a strictly PDP sense such as McClelland’s and Rogers’ PDP approach to
semantic cognition [138]) or in the guise of hybrid systems such as Smolensky’s and
Legendre’s connectionist/symbolic computational architecture for cognition [214,
209].

One of the original motivations for work on emergent systems was disaffec-
tion with the sequential, atemporal, and localized character of symbol-manipulation
based cognitivism [228]. Emergent systems, on the other hand, depend on parallel,
real-time, and distributed architectures. Of itself, however, this shift in emphasis
isn’t sufficient to constitute a new paradigm and, as we have seen, there are sev-
eral other pivotal characteristics of emergent systems. Indeed, Freeman and Núñez
have argued that more recent systems — what they term neo-cognitivist systems —
exploit parallel and distributed computing in the form of artificial neural networks
and associative memories but, nonetheless, still adhere to the original cognitivist as-
sumptions [60]. A similar point was made by Van Gelder and Port [67]. We discuss
these hybrid systems in Section 2.3.

One of the key features of emergent systems, in general, and connectionism, in
particular, is that ‘the system’s connectivity becomes inseparable from its history of
transformations, and related to the kind of task defined for the system’ [228]. Fur-
thermore, symbols play no role.9 Whereas in the cognitivist approach the symbols
are distinct from what they stand for, in the connectionist approach, “meaning relates
to the global state of the system” [228]. Indeed, meaning is something attributed by
an external third-party observer to the correspondence of a system state with that
of the world in which the emergent system is embedded. Meaning is a description
attributed by an outside agent: it is not something that is intrinsic to the cognitive

8 Hetero-associative memory — or simply associative memory — produces an output vector that
is different from the input vector
9 It would be more accurate to say that symbols should play no role since it has been noted that
connectionist systems often fall back in the cognitivist paradigm by treating neural weights as a
distributed symbolic representation [67].
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system except in the sense that the dynamics of the system reflect the effectiveness
of its ability to interact with the world.

Examples of the application of associative learning systems in robotics can be
found in [101, 142] where hand-eye coordination is learned by a Kohonen neural
network from the association of proprioceptive and exteroceptive stimuli. As well
as attempting to model cognitive behaviour, connectionist systems can self-organize
to produce feature-analyzing capabilities similar to those of the first few processing
stages of the mammalian visual system (e.g. centre-surround cells and orientation-
selective cells) [127]. An example of a connectionist system which exploits the co-
dependency of perception and action in a developmental setting can be found in
[146]. This is a biologically-motivated system that learns goal-directed reaching us-
ing colour-segmented images derived from a retina-like log-polar sensor camera.
The system adopts a developmental approach: beginning with innate inbuilt prim-
itive reflexes, it learns sensorimotor coordination. Radial basis function networks
have also been used in cognitive vision systems, for example, to accomplish face
detection [30].

2.2.2 Dynamical Systems

Dynamical systems theory is very general and can be deployed to model many
different types of systems in such diverse areas as biology, astronomy, ecology,
economonics, physics, and many more. It has been used to complement classical
approaches in artificial intelligence [177] and it has also been deployed to model
natural and artificial cognitive systems [105, 221, 67]. Advocates of the dynami-
cal systems approach to cognition argue that motoric and perceptual systems are
both dynamical systems, each of which self-organizes into meta-stable patterns of
behaviour.

A dynamical system defines a particular pattern of behaviour. The system is char-
acterized by a state vector q and its time derivative q̇ is a function of the state vector,
control parameters p and noise n. It is a self-organizing system because the system
dynamics are defined by, and only by, the system state q̇ � N

�
q � p � n � .

In general, a dynamical system is an open dissipative non-linear non-equilibrium
system: a system in the sense of a large number of interacting components with
large number of degrees of freedom, dissipative in the sense that it diffuses energy
(its phase space decreases in volume with time implying preferential sub-spaces),
non-equilibrium in the sense that it is unable to maintain structure or function with-
out external sources of energy, material, information (and, hence, open). The non-
linearity is crucial: as well as providing for complex behaviour, it means that the
dissipation is not uniform and that only a small number of the system’s degrees of
freedom contribute to its behaviour. These are termed order parameters (or collec-
tive variables). Each order parameter defines the evolution of the system, leading
to meta-stable states in a multi-stable state space (or phase space). It is this ability
to characterize the behaviour of a high-dimensional system with a low-dimensional
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model that is one of the features that distinguishes dynamical systems from connec-
tionist systems [105].

Certain conditions must prevail before a system qualifies as a cognitive dynam-
ical system. The components of the system must be related and interact with one
another: any change in one component or aspect of the system must be dependent
on and only on the states of the other components: ‘they must be interactive and self
contained’ [67]. As we will see shortly, this is very reminiscent of the requirement
for operational closure in enactive systems, the topic of the next section.

Proponents of dynamical systems point to the fact that they provide one directly
with many of the characteristics inherent in natural cognitive systems such as multi-
stability, adaptability, pattern formation and recognition, intentionality, and learn-
ing. These are achieved purely as a function of dynamical laws and consequent
self-organization. They require no recourse to symbolic representations, especially
those that are the result of human design.

However, Clark [39] has pointed out that the antipathy which proponents of dy-
namical systems approaches display toward cognitivist approaches rests on rather
weak ground insofar as the scenarios they use to support their own case are not
ones that require higher level reasoning: they are not ‘representation hungry’ and,
therefore, are not well suited to be used in a general anti-representationalist (or
anti-cognitivist) argument. At the same time, Clark also notes that this antipathy is
actually less focussed on representations per se (dynamical systems readily admit
internal states that can be construed as representations) but more on objectivist rep-
resentations which form an isomorphic symbolic surrogate of an absolute external
reality.

It has been argued that dynamical systems allow for the development of higher
order cognitive functions, such as intentionality and learning, in a straight-forward
manner, at least in principle. For example, intentionality — purposive or goal-
directed behaviour — is achieved by the superposition of an intentional potential
function on the intrinsic potential function [105]. Similarly, learning is viewed as
the modification of already-existing behavioural patterns that take place in a histori-
cal context whereby the entire attractor layout (the phase-space configuration) of the
dynamical system is modified. Thus, learning changes the whole system as a new
attractor is developed.

Although dynamical models can account for several non-trivial behaviours that
require the integration of visual stimuli and motoric control, including the percep-
tion of affordances, perception of time to contact, and figure-ground bi-stability
[71, 73, 105, 108, 233], the principled feasibility of higher-order cognitive faculties
has yet to be validated.

The implications of dynamical models are many: as noted in [221], ‘cognition is
non-symbolic, nonrepresentational and all mental activity is emergent, situated, his-
torical, and embodied’. It is also socially constructed, meaning that certain levels of
cognition emerge from the dynamical interaction between cognitive agents. Further-
more, dynamical cognitive systems are, of necessity, embodied. This requirement
arises directly from the fact that the dynamics depend on self-organizing processes



2.2 Emergent Approaches 25

whereby the system differentiates itself as a distinct entity through it dynamical
configuration and its interactive exploration of the environment.

With emergent systems in general, and dynamical systems in particular, one of
the key issues is that cognitive processes are temporal processes that ‘unfold’ in
real-time and synchronously with events in their environment. This strong require-
ment for synchronous development in the context of its environment again echoes
the enactive systems approach set out in the next section. It is significant for two
reasons. First, it places a strong limitation on the rate at which the ontogenetic10

learning of the cognitive system can proceed: it is constrained by the speed of cou-
pling (i.e. the interaction) and not by the speed at which internal changes can occur
[243]. Natural cognitive systems have a learning cycle measured in weeks, months,
and years and, while it might be possible to collapse it into minutes and hours for an
artificial system because of increases in the rate of internal adaptation and change,
it cannot be reduced below the time-scale of the interaction (or structural coupling;
see next section). If the system has to develop a cognitive ability that, e.g., allows
it to anticipate or predict action and events that occur over an extended time-scale
(e.g. hours), it will take at least that length of time to learn. Second, taken together
with the requirement for embodiment, we see that the consequent historical and
situated nature of the systems means that one cannot short-circuit the ontogenetic
development. Specifically, you can’t bootstrap an emergent dynamical system into
an advanced state of learned behaviour. With that said, recall from the Introduction
that an important characteristic of cognitive systems is their anticipatory capabil-
ity: their ability to break free of the present. There appears to be a contradiction
here. On the one hand, we are saying that emergent cognitive systems are entrained
by events in the environment and that their development must proceed in real-time
synchronously with the environment, but at the same time that they can break free
from this entrainment. In fact, as we will see in Chapter 6, there isn’t a contradic-
tion. The synchronous entrainment is associated with the system’s interaction with
the environment, but the anticipatory capability arises from the internal dynamics
of the cognitive system: its capacity for self-organization and self-development in-
volving processes for mirroring and simulating events based on prior experience
(brought about historically by the synchronous interaction) but operating internally
by self-perturbation and free from the synchronous environmental perturbations of
perception and action.

Although dynamical systems theory approaches often differ from connectionist
systems on several fronts [105, 221, 67], it is better perhaps to consider them com-
plementary ways of describing cognitive systems, dynamical systems addressing
macroscopic behaviour at an emergent level and connectionist systems addressing
microscopic behaviour at a mechanistic level [139]. Connectionist systems them-
selves are, after all, dynamical systems with temporal properties and structures such
as attractors, instabilities, and transitions [242]. Typically, however, connectionist
systems describe the dynamics in a very high dimensional space of activation poten-
tials and connection strengths whereas dynamical systems theory models describe

10 Ontogeny is concerned with the development of the system over its lifetime.
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the dynamics in a low dimensional space where a small number of state variables
capture the behaviour of the system as a whole. Schöner argues that this is possible
because the macroscopic states of high-dimensional dynamics and their long-term
evolution are captured by the dynamics in that part of the space where instabilities
occur: the low-dimensional Center-Manifold [193]. Much of the power of dynam-
ical perspectives comes from this higher-level abstraction of the dynamics [212].
The complementary nature of dynamical systems and connectionist descriptions is
emphasized by Schöner and by Kelso [105, 194] who argue that non-linear dynam-
ical systems should be modelled simultaneously at three distinct levels: a boundary
constraint level that determines the task or goals (initial conditions, non-specific
conditions), a collective variables level which characterize coordinated states, and
a component level which forms the realized system (e.g. nonlinearly coupled os-
cillators or neural networks). This is significant because it contrasts strongly with
the cognitivist approach, best epitomized by David Marr’s advocacy of a three-level
hierarchy of abstraction (computational theory, representations and algorithms, and
hardware implementation), with modelling at the computational theory level be-
ing effected without strong reference to the lower and less abstract levels [130].
This complementary perspective of dynamical systems theory and connectionism
enables the investigation of the emergent dynamical properties of connectionist sys-
tems in terms of attractors, meta-stability, and state transition, all of which arise
from the underlying mechanistic dynamics, and, vice versa, it offers the possibility
of implementing dynamical systems theory models with connectionist architectures.

As already noted, the benefit of the dynamical systems formulation of system
dynamics is that it collapses a very high dimensionality system defined by the com-
plete set of system variables onto a low dimensional space defined by the collective
variables. The collective variables are the subset of the system variables that govern
the system behaviour.

This formulation of dynamical systems theory effectively describes an emergent
spatio-temporal pattern generator that can be perturbed by environmental conditions
(the control variables). It is significant that these variables do not define the dynam-
ics: they just act as a perturbing influence, knocking the system ideally from one
meta-stable basin of attraction to another. Therefore, as presented, this is essentially
a reactive system (i.e. a level one autopoietic system; see next section). Two points
are significant about such a system:

1. There is no latitude for development;
2. There is no indication of how the required configuration is achieved in the first

place and, therefore, the phylogenetic configuration must be identified a priori.
This problem is tied closely to the decomposition issue mentioned above.

If we wish to have a co-development and co-determination (and therfore a capacity
to learn) so that the system can develop a new state space attractors over time, we
require a new set of dynamics. This implies that the system must be self-modifying.
This is equivalent to the introduction of a nervous system in an autopoietic system,
which forms the core of enactive systems models, the topic of the next section.
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2.2.3 Enactive Systems

Enactive systems take the emergent paradigm even further. In contradistinction to
cognitivism, which involves a view of cognition that requires the representation of a
given objective pre-determined world [67, 228], enaction [131, 132, 134, 133, 227,
228, 243] asserts that cognition is a process whereby the issues that are important for
the continued existence of a cognitive entity brought out or enacted: co-determined
by the entity as it interacts with the environment in which it is embedded. Thus,
nothing is ‘pre-given’, and hence there is no need for symbolic representations.
Instead there is an enactive interpretation: a real-time context-based choosing of
relevance.

In this sense, the philosophical ground of enaction is Husserlian phenomenology,
in contradistinction to the objectivist realism of the cognitivist approach. Whilst
this might sound out of place here, and indeed irrelevant for those interested in
engineering cognitive systems, it has very practical implications. It comes down to
a simple choice of axioms upon which to build a cognitive system.

For cognitivism, the role of cognition is to abstract objective structure and mean-
ing through perception and reasoning. For enactive systems, the purpose of cog-
nition is to uncover unspecified regularity and order that can then be construed as
meaningful because they facilitate the continuing operation and development of the
cognitive system. In adopting this stance, the enactive position challenges the con-
ventional assumption that the world as the system experiences it is independent of
the cognitive system (‘the knower’). Instead, knower and known ‘stand in relation
to each other as mutual specification: they arise together’ [228].

This type of statement is normally anathema to scientists as it seems to be posit-
ing a position of extreme subjectivism, the very antithesis of modern science. How-
ever, this is not what is intended at all. On the contrary, the enactive approach is
an attempt to avoid the problems of both the realist (representationalist) and the
solipsist (ungrounded subjectivism) positions.

The only condition that is required of an enactive system is effective action: that it
permit the continued integrity of the system involved. It is essentially a very neutral
position, assuming only that there is the basis of order in the environment in which
the cognitive system is embedded. From this point of view, cognition is exactly the
process by which that order or some aspect of it is uncovered (or constructed) by
the system. This immediately allows that there are different forms of reality (or
relevance) that are dependent directly on the nature of the dynamics making up the
cognitive system. This is not a solipsist position of ungrounded subjectivism, but
neither is it the commonly-held position of unique — representable — realism. It is
fundamentally a phenomenological position.

The enactive systems research agenda stretches back to the early 1970s in the
work of computational biologists Maturana and Varela and has been taken up by
others, including some in the main-stream of classical AI [131, 132, 134, 227, 228,
243, 133].

The goal of enactive systems research is the complete treatment of the nature and
emergence of autonomous, cognitive, social systems. It is founded on the concept
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of autopoiesis – literally self-production – whereby a system emerges as a coherent
systemic entity, distinct from its environment, as a consequence of processes of self-
organization. However, enaction involves different degrees of autopoeisis and three
orders of system can be distinguished.

First-order autopoietic systems correspond to cellular entities that achieve a phys-
ical identity through structural coupling with their environment. As the system cou-
ples with its environment, it interacts with it in the sense that the environmental
perturbations trigger structural changes ‘that permit it to continue operating’.

Second-order systems are meta-cellular systems that engage in structural cou-
pling with their environment, this time through a nervous system that enables the
association of many internal states with the different interactions in which the or-
ganism is involved. In addition to processes of self-production, these systems also
have processes of self-development. Maturana and Varela use the term operational
closure for second-order systems instead of autopoiesis to reflect this increased level
of flexibility [133].

Third-order systems exhibit coupling between second-order (i.e. cognitive) sys-
tems, i.e. between distinct cognitive agents. It is significant that second- and third-
order systems possess the ability to perturb their own organizational processes and
attendant structures. Third-order couplings allow a recurrent (common) ontogenetic
drift in which the systems are reciprocally-coupled. The resultant structural adapta-
tion – mutually shared by the coupled systems – gives rise to new phenomonolog-
ical domains: language and a shared epistemology that reflects (but not abstracts)
the common medium in which they are coupled. Such systems are capable of three
types of behaviour: (i) the instinctive behaviours that derive from the organizational
principles that define it as an autopoietic system (and that emerge from the phy-
logenetic evolution of the system), (ii) ontogenetic behaviours that derive from the
development of the system over its lifetime, and (iii) communicative behaviours that
are a result of the third-order structural coupling between members of the society of
entities.

Linguistic behaviours are the intersection of ontogenetic and communication be-
haviours and they facilitate the creation of a common understanding of the shared
world that is the environment of the coupled systems. That is, language is the emer-
gent consequence of the third-order structural coupling of a socially-cohesive group
of cognitive entities.

Consciousness and the concept of mind emerges when language and linguis-
tic behaviour are applied recursively to the entity engaged in that linguistic be-
haviour. Issues of consciousness, thought, and mind, then, belong to the domain
of social coupling. They don’t have any independent existence and as such can’t
be modelled but are emergent properties of self-referential linguistic behaviours be-
tween structurally-coupled and socially-coupled cogitive entities having a shared
mutually-constructed emergent epistemology.

The core of the enactive approach is that cognition is a process whereby a sys-
tem identifies regularities as a consequence of co-determination of the cognitive
activities themselves, such that the integrity of the system is preserved. In this ap-
proach, the nervous system (and a cognitive agent) does not abstract or ‘pick up
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information’ from the environment and therefore the metaphor of calling the brain
an information processing device is ‘not only ambiguous but patently wrong’ [133].
On the contrary, ‘all knowing is doing as sensory-effector correlations in the realm
of structural coupling in which the nervous system exists’. Knowledge is particular
to the system’s history of interaction. If that knowledge is shared among a soci-
ety of cognitive agents, it is not because of any intrinsic abstract universality, but
because of the consensual history of experiences shared between cognitive agents
with similar phylogeny and compatible ontogeny.

A key postulate of enactive systems is that reasoning, as we commonly con-
ceive it, is the consequence of reflexive11 use of the linguistic descriptive abili-
ties to the cognitive agent itself [133]. Linguistic capability is in turn developed
as a consequence of the consensual co-development of an epistemology in a soci-
ety of phylogenetically-identical cognitive agents. This is significant: reasoning in
this sense is a descriptive phenomenon and is quite distinct from the self-organizing
mechanism (i.e. structural coupling and operational closure [133]) by which the sys-
tem/agent develops its cognitive and linguistic behaviours. Since language (and all
inter-agent communication) is a manifestation of high-order cognition, specifically
co-determination of consensual understanding amongst phylogenetically-identical
and ontogenetically-compatible agents, symbolic or linguistic reasoning is actually
the product of higher-order social cognitive systems rather than a generative process
of the cognition of an individual agent.

As with dynamical systems, enactive systems operate in synchronous real-time:
cognitive processes must proceed synchronously with events in the systems envi-
ronment as a direct consequence of the structural coupling and co-determination
between system and environment. However, exactly the same point we made about
the complementary process of anticipation in dynamical systems applies equally
here. And, again, enactive systems are necessarily embodied systems. This is a
direct consequence of the requirement of structural coupling of enactive systems.
There is no semantic gap in emergent systems (connectionist, dynamical, or enac-
tive): the system builds its own understanding as it develops and cognitive under-
standing emerges by co-determined exploratory learning. Overall, enactive systems
offer a framework by which successively-richer orders of cognitive capability can
be achieved, from autonomy of a system throught to the emergence of linguistic and
communicative behaviours in societies of cognitive agents.

While the enactive systems agenda is very compelling, and is frequently referred
to by researchers in, for example, developmental psychology, it hasn’t achieved
great acceptance in main-stream computatational cognitive science and artificial in-
tellegence. The main reason for this is that it is more a meta-theory than a theory per
se: it is a philosophy of science but it hasn’t offered any formal models by which
cognitive systems can be either analysed or synthesized. However, it does have a
great deal in common with the research agenda in dynamical systems which is a
scientific theory but is perhaps lacking it ability to prescribe how higher-order cog-
nitive functions can be realized. It has been noted that dynamical systems theory so

11 Reflexive in the sense of self-referential, not in the sense of a reflex action.
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far has been employed more as an analysis tool and less as a tool for the design and
synthesis of cognitive systems [148, 37]. The coalescence of the tenets of enactive
systems into dynamical systems approaches may well provide the way forward for
both communities, and for emergent approaches in general.

The emergent position in general and the enactive position in particular are sup-
ported by recent results which have shown that a biological organism’s perception of
its body and the dimensionality and geometry of the space in which it is embedded
can be deduced (learned or discovered) by the organism from an analysis of the de-
pendencies between motoric commands and consequent sensory data, without any
knowledge or reference to an external model of the world or the physical structure
of the organism [169, 170]. Thus, the perceived structure of reality could therefore
be a consequence of an effort on the part of brains to account for the dependency
between their inputs and their outputs in terms of a small number of parameters.
Thus, there is in fact no need to rely on the classical idea of an a priori model of the
external world that is mapped by the sensory apparatus to ‘some kind of objective
archetype’. The conceptions of space, geometry, and the world that the body distin-
guishes itself from arises from the sensorimotor interaction of the system, exactly
the position advocated in developmental psychology [221]. Furthermore, it is the
analysis of the sensory consequences of motor commands that gives rise to these
concepts. Significantly, the motor commands are not derived as a function of the
sensory data. The primary issue is that sensory and motor information are treated
simultaneously, and not from either a stimulus perspective or a motor control point
of view. As we will see in Section 2.3 and 4.4, this perception-action co-dependency
forms the basis of many artificial cognitive systems.

The enactive approach is mirrored in the work of others. For example, Bickhard
[19] introduces the ideas of self-maintenant system and recursive self-maintenant
systems. He asserts that

‘The grounds of cognition are adaptive far-from-equilibrium autonomy — recursively self-
maintenant autonomy — not symbol processing nor connectionist input processing. The
foundations of cognition are not akin to the computer foundations of program execution,
nor to passive connectionist activation vectors.’

Bickhard defines autonomy as the property of a system to contribute to its own per-
sistence. Since there are different grades of contribution, there are therefore different
levels of autonomy.

Bickhard introduces a distinction between two types of self-organizing au-
tonomous system:

1. Self-Maintenant Systems that make active contributions to their own persistence
but do now contribute to the maintenance of the conditions for persistence. Bick-
hard uses a lighted candle as an example. The flame vapourizes the wax which
in turn combusts to form the flame.

2. Recursive Self-Maintenant Systems that do contribute actively to the condi-
tions for persistence. These systems can deploy different processes of self-
maintenance depending on environmental conditions: “they shift their self-maintenant
processes so as to maintain self-maintenance as the environment shifts”.
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He also distinguishes between two types of stability: (a) energy well stability
which is equivalent to the stability of systems in thermodynamic equilibrium —
no interaction with its environment is required to maintain this equilibrium — and
(b) far from equilibrium stability which is equivalent to non-thermodynamic equilib-
rium. Persistence of this state of equilibrium requires that the process or system does
not go to thermodynamic equilibrium. These systems are completely dependent
for their continued existence on continued contributions of external factors: they
do required environmental interaction and are necessarily open processes (which
nonetheless exhibit closed self-organization).

Self-maintenant and recursive self-maintenant systems are both example of far-
from-equilibrium stability systems.

On the issue of representations in emergent systems, he notes that recursive
self-maintenant systems do in fact yield the emergence of representation. Function
emerges in self-maintenant systems and representation emerges as a particular type
of function (‘indications of potential interactions’) in recursively self-maintenant
systems.

2.3 Hybrid Approaches

Considerable effort has also gone into developing approaches which combine as-
pects of the emergent systems and cognitivist systems [78, 79, 80]. Typically, hybrid
systems exploit symbolic knowledge to represent the agent’s world and logical rule-
based systems to reason about this knowledge in order to achieve goals and select
actions while at the same time using emergent models of perception and action to ex-
plore the world and build these representations. These hybrid approaches have their
roots in arguments against the use of explicit programmer-based knowledge in the
creation of artificially-intelligent systems [52] and in the development of active ‘an-
imate’ perceptual systems [15] in which perception-action behaviours become the
focus, rather than the perceptual abstraction of representations. Such systems still
use representations and representational invariances but it has been argued that these
representations should only be constructed by the system itself as it interacts with
and explores the world rather than through a priori specification or programming
so that objects should be represented as ‘invariant combinations of percepts and
responses where the invariances (which are not restricted to geometric properties)
need to be learned through interaction rather than specified or programmed a priori’
[78]. Thus, a system’s ability to interpret objects and the external world is dependent
on its ability to flexibly interact with it and interaction is an organizing mechanism
that drives a coherence of association between perception and action. There are two
important consequences of this approach of action-dependent perception. First, one
cannot have any meaningful direct access to the internal semantic representations,
and second cognitive systems must be embodied (at least during the learning phase)
[79]. According to Granlund, for instance, action precedes perception and ‘cogni-
tive systems need to acquire information about the external world through learning
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or association’ ����� ‘Ultimately, a key issue is to achieve behavioural plasticity, i.e.,
the ability of an embodied system to learn to do a task it was not explicitly designed
for.’ Thus, hybrid systems are in many ways consistent with emergent systems while
still exploiting programmer-centred representational frameworks (for example, see
[163]).

Recent results in building a cognitive vision system on these principles can be
found in [75, 76, 77]. This system architecture combines a neural-network based
perception-action component (in which percepts are mediated by actions through
exploratory learning) and a symbolic component (based on concepts — invariant
descriptions stripped of unnecessary spatial context — can be used in more prospec-
tive processing such as planning or communication).

A biologically-motivated system, modelled on brain function and cortical path-
ways and exploiting optical flow as its primary visual stimulus, has demonstrated
the development of object segmentation, recognition, and localization capabilities
without any prior knowledge of visual appearance though exploratory reaching and
simple manipulation [145]. This hybrid extension of the connectionist system [146]
also exhibits the ability to learn a simple object affordance and use it to mimic the
actions of another (human) agent.

An alternative hybrid approach, based on subspace learning, is used in [100] to
build an embodied robotic system that can achieve appearance-based self-localization
using a catadioptric panoramic camera and an incrementally-constructed robust
eigenspace model of the environment.

2.4 Who is Right?

To summarize, Table 2.2 contrasts the four approaches (the cognitivist and the three
emergent approaches) under three broad questions: What is cognition? How does it
work? and What does a good cognitive system do? You will see that the perspectives
of each approach on these questions are quite different.

The foregoing paradigms have their own strengths and weaknesses, their propo-
nents and critics, and they stand at different stages of scientific maturity. The argu-
ments in favour of connectionist, dynamical, and enactive systems are compelling
but the current capabilities of cognitivist systems are actually more advanced.

Several authors have provided detailed critiques of the various approaches. These
include, for example, Clark [39], Christensen and Hooker [37], and Crutchfield
[45].12

Christiansen and Hooker argued [37] that cognitivist systems suffer from three
problems: the symbol grounding problem, the frame problem (the need to differen-
tiate the significant in a very large data-set and then generalize to accommodate new

12 The following is abstracted from [232].
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Approaches to Cognition

What is cognition?
Cognitivist: Symbolic computation: rule-based manipulation of symbols

Connectionist: The emergence of global states in a network of simple components

Dynamical: A history of activity that brings forth change and activity

Enactive: Effective action: history of structural coupling that enacts (brings forth) a world

How does it work?
Cognitivist: Through any device that can manipulate symbols

Connectionist: Through local rules and changes in the connectivity of the elements

Dynamical: Through the self-organizing processes of interconnected sensorimotor subnetworks

Enactive: Through a network of interconnected elements capable of structural changes

What does a good cognitive system do?
Cognitivist: Represents the stable truths of the real world

Connectionist: Develops emergent properties that yield stable solutions to tasks

Dynamical: Becomes an active and adaptive part of an ongoing and continually changing world

Enactive: Becomes a viable part of an existing world of meaning (ontogeny) or shapes a new one (phylogeny)

Table 2.2 Attributes of different approaches to cognition (from [229] and adapted from [221] and
[228]).

data),13 and the combinatorial problem. These problems are one of the reasons why
cognitivist models have difficulties in creating systems that exhibit robust sensori-
motor interactions in complex, noisy, dynamic environments. They also have dif-
ficulties modelling the higher-order cognitive abilities such as generalization, cre-
ativity, and learning [37]. According to the Christensen and Hooker, and as we have
remarked on several occasions, cognitivist systems are poor at functioning effec-
tively outside narrow, well-defined problem domains.

Enactive and dynamical systems should in theory be much less brittle because
they emerge — and develop — through mutual specification and co-determination
with the environment, but our ability to build artificial cognitive systems based on
these principles is actually very limited at present. To date, dynamical systems the-
ory has provided more of a general modelling framework rather than a model of
cognition [37] and has so far been employed more as an analysis tool than as a tool
for the design and synthesis of cognitive systems [148, 37]. The extent to which
this will change, and the speed with which it will do so, is uncertain. Hybrid ap-
proaches appear, to some at least, to offer the best of both worlds: the adaptability of
emergent systems (because they populate their representational frameworks through
learning and experience) but the advanced starting point of cognitivist systems (be-
cause the representational invariances and representational frameworks don’t have
to be learned but are designed in). However, it is unclear how well one can combine
what are ultimately highly antagonistic underlying philosophies. Opinion is divided,
with arguments both for (e.g. [39, 45, 76]) and against (e.g. [37]).

13 In the cognitivist paradigm, the frame problem has been expressed in slightly different but essen-
tially equivalent terms: how can one build a program capable of inferring the effects of an action
without reasoning explicitly about all its perhaps very many non-effects? [201]



34 2 The Different Paradigms of Cognition

Clark suggests that one way forward is the development of a form of ‘dy-
namic computationalism’ in which dynamical elements form part of an information-
processing system [39]. This idea is echoed by Crutchfield [45] who, whilst agree-
ing that dynamics are certainly involved in cognition, argues that dynamics per se
are “not a substitute for information processing and computation in cognitive pro-
cesses” but neither are the two approaches incompatible. He holds that a synthesis
of the two can be developed to provide an approach that does allow dynamical state
space structures to support computation. He proposes ‘computational mechanics’
as the way to tackle this synthesis of dynamics and computation. However, this
development requires that dynamics itself needs to be extended significantly from
one which is deterministic, low-dimensional, and time asymptotic, to one which is
stochastic, distributed and high dimensional, and reacts over transient rather than
asymptotic time scales. In addition, the identification of computation with digital or
discrete computation has to be relaxed to allow for other interpretations of what it is
to compute.

It might be opportune to remark at this point on the dichotomy between cog-
nitivist and emergent systems. As we have seen, there are some fundamental dif-
ferences these two general paradigms — the principled disembodiment of physical
symbol systems vs. the mandatory embodiment of emergent developmental systems
[230], and the manner in which cognitivist systems often preempt development by
embedding externally-derived domain knowledge and processing structures, for ex-
ample — but the gap between the two shows some signs of narrowing. This is mainly
due (i) to a fairly recent movement on the part of proponents of the cognitivist
paradigm to assert the fundamentally important role played by action and percep-
tion in the realization of a cognitive system; (ii) to the move away from the view
that internal symbolic representations are the only valid form of respresentation
[39]; and (iii) to the weakening of the dependence on embedded a priori knowledge
and the attendant increased reliance on machine learning and statistical frameworks
both for tuning system parameters and the acquisition of new knowledge both for
the representation of objects and the formation of new representations. However,
cognitivist systems still have some way to go to address the issue of true ontoge-
netic development with all that it entails for autonomy, embodiment, architecture
plasticity, and system-centred construction of knowledge mediated by exploratory
and social motivations and innate value systems.

2.5 Caveat

Cognition can no longer be equated with symbolic reasoning and it is now viewed
by most people — even those drawn from very disparate viewpoints — as being in-
trinsically related to the issues of perception and action. For example, consider An-
derson et al. [6]: ‘There is reason to suppose that the nature of cognition is strongly
determined by the perceptual-motor systems, as the proponents of embodied and sit-
uated cognition have argued’ and Langley [120] ‘mental states are always grounded
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in real or imagined physical states, and problem-space operators always expand to
primitive skills with executable actions’. Anderson and Langley are prominent ex-
ponents of the cognitivist approach, with a deep background in traditional AI. Ob-
viously, AI has shifted its position since the days when the physical symbol systems
hypothesis held sway, even if there is much more to be done.

Let us close this chapter with a reminder that, to date, no one has actually de-
signed a complete cognitive system. Futhermore, notwithstanding the attractiveness
of some paradigms vis-à-vis others, there is still considerable disagreement about
the right approach to take. The following advice on how to engage (properly) in a
scientific controversy [38] is very relevant.

� Beware an either-or mentality
� Try both narrow and broad interpretations of terms
� Given a dichotomy, ask what both assume
� Beware imposing spatial metaphors
� Beware locating relations
� Try viewing “independent” levels as co-determined
� Don’t equate a descriptive model with the causal process being described
� Recognize that first approximations are often overstatements
� Beware that words can sometimes mean their opposites
� Enduring dilemmas are possibly important clues
� Periodically revisit what you have chosen to ignore
� Beware of building your theory into the data
� Locate your work within historical debates and trends
� “It’s not new” does not refute a hypothesis
� Beware errors of logical typing
� Recognize conceptual barriers to change
� To understand an incomprehensible position, start with what the person is against
� Recognize that the “born again” mentality conceives sharp contrasts
� Recognize how different disciplines study and use as tools different aspects of

intelligence
� Recognize the different mental styles of your colleagues


