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A cognitive system is an autonomous anti-entropy engine
whose function is to preserve the system’s autonomy.
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Chapter 1
What is Cognition?

Cognition ����� the action or faculty of knowing, perceiving, conceiving �����

f. L. cognit- ppl. stem of cognoscere [co- together + (g)noscere to apprehend]

Oxford English Dictionary

Cognition — understanding what’s going on around you and acting in an ap-
propriate way — has fascinated and perplexed people for centuries. It seems to be
a peculiarly human trait, although there is a growing body of evidence that other
species exhibit cognitive skills too. Cognition defies easy definition. It has been
equated with rationality and reasoning, deliberation and abstract thought, and prob-
lem solving. While such concerns are clearly relevant, it is by no means clear that
they necessarily form the essence of cognition. It all comes down to what we mean
when we say we understand something and what we deem to be an appropriate way
to behave. Does a central heating thermostat understand the need for warmth (and
the consequences of not getting it) when it detects that the temperature of a room is
too cold and switches on the heating? Certainly not in any meaningful way.1 It seems
that such a scenario is too trivial to be interesting. Understanding becomes interest-
ing only if there are a lot of factors to be considered in assessing a situation and,
especially, if they are complicated: they might conflict, there may be some essential
information missing, they might be constantly changing, or they might simply be
incorrect.2 These complications mean that it is not sufficient for a cognitive system
just to react to present circumstances, to how things are, to make some best-possible
choice based on some or all of the available information, and then proceed on.

1 The idea that a thermostat could legitimately be viewed as thinking and having beliefs (specifi-
cally, that the room is too hot, too cold, or ok) is due to John McCarthy of Stanford University and
appears in a 1983 paper ‘The Little Thoughts of Thinking Machines’ in Psychology Today [135];
see http://www.cse.msu.edu/ cse841/papers/McCarthy.pdf. McCarthy is often
referred to as the father of Artificial Intelligence.
2 John McCarthy did extend his thermostat scenario to more complex situation where ‘compro-
mise’ would be required. His essential point was that it helps for people to think about machines
as having the capacity to think both when using them and when designing them.

1
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Anticipate

AssimilateAdapt

Action Perception

Fig. 1.1 Breaking the ‘here-and-now barrier’: cognition as a cycle of anticipation, assimilation,
and adaptation, embedded in, contributing to, and benefitting from a continuous process of action
and perception.

Cognition implies an ability to understand how things might possibly be, not
now but at some future time, and take this into consideration. Remembering what
happened at some point in the past helps in anticipating future events, so memory is
important too: using the past the predict the future3 and then assimilating what does
actually happen to adapt and improve the system’s anticipatory ability in a virtuous
cycle that is embedded in an on-going process of action and perception (see Figure
1.1).

Cognition breaks through the ‘here-and-now barrier’ and takes us into the future
with the help of the past, in a way that allows the system to adapt and improve.

But what makes an action the right one to choose? Having broken through the
here-and-now barrier, what type of behaviour does cognition enable? This opens
up another dimension of the problem: what motivates cognition? How is perception
guided? How are actions selected? And what makes cognition possible? Cognitive
skills can improve, but what do you need to get started? What drives the devel-
opmental process? In other words, in addition to autonomous perception, action,
anticipation, assimilation, and adaptation, there are the underlying motivations to
consider. These motivations impact (or drive) perceptual attention, action selection,
and system development, resulting in the long-term robust behaviour we seek from
such systems.

3 Berthoz puts it very succinctly: ‘Memory is used primarily to predict the consequences of future
action by recalling those of past action’ [18].
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Although the study of cognition in humans (and other species) is fascinating in
its own right, this course is about artificial cognitive systems: computer cognition.
We want to be able to build computer-based robotic systems that have this elusive
cognitive capability. It is a course about synthesis: about design and implementation,
about theory and models, and about their realization in working systems. However,
it doesn’t make a lot of sense to take on such an ambitious challenge in a vacuum,
ignoring what we know about cognition in natural systems. On the contrary, we
have a great deal to learn from such systems and we will embrace our knowledge
of natural cognitive systems in psychology and in neuroscience and use it to inform
our models of artificial cognitive systems.

Unfortunately, no one yet knows how to design and build an artificial cognitive
system. There is no shortage of ideas and many alternative approaches have been
proposed, but a complete convincing artificial cognitive system hasn’t yet been de-
veloped. Understanding cognition, and modelling, designing, and building artificial
cognitive systems are challenging long-term research problems.

The goal of this course is to provide you with a comprehensive overview of the
many topics involved in cognition and cognitive systems and to do so from several
perspectives. This presents a challenge for three reasons. First, the area is huge, as
we will soon see. Second, it is not always easy to say where one should draw the
boundary between cognition in natural systems and cognition in artificial computer-
based systems. The boundary between these two fields is complicated. Sometimes,
they form a symbiotic relationship, one learning from the other’s successes and
failures. Other times, they are antagonistic: limitations in our understanding of one
field sometimes act as a brake on developments in the other field. Consequently,
people sometimes decide to ignore these limitations and proceed with their own
agenda in sometimes dangerous isolation. For some, the relationship between the
two is strict and strong (even to the extent of being equivalent). For others, the
relationship is loose, and ideas are borrowed and used at a conceptual level without
concern for the plausibility of their implementation. The third reason why the goal of
the course is challenging is that there is no universal agreement as to what cognition
is, in the first place! Our aim here is to make sense of all this.

Given that cognitive systems research is such a big area, here is a disclaimer. This
course is not a primer on artificial intelligence, psychology, neuroscience, non-linear
dynamical systems theory, synergetics, autonomous systems theory, machine learn-
ing, pattern recognition, computer vision, haptic sensing, aural perception, cyber-
netics, neural networks, epistemology, philosophy, linguistics, semiotics, robotics,
manipulation, or communication. It probably should be. All of these topics, and
many others, impact in some way or other on cognitive systems and we will men-
tion most of them at some point.

So, if the course doesn’t attempting to introduce all of these disciplines in a
substantive manner, even if we know it should, what exactly does it address? The
answer to this question is provided by the diversity of constituent disciplines. We
will try to identify the full scope of cognition and cognitive systems and we will
try to provide a useful working definition, one that strikes a balance between being
broad enough to do service to the many views that people have on cognition and
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deep enough to help in the formulation of theories and models. We will then present
a summary of the many approaches that people adopt in researching and developing
cognitive systems.

Ultimately, this course is intended to give you a clear understanding of the scope
of the domain, its alternative approaches, and their underlying differences. Perhaps
most important of all, it will give you a solid grasp of the issues that need to be
addressed in striving for the goal of creating a true cognitive system. But this course
does more than discuss what cognition is and what cognitive systems do. It also
addresses how one can go about modelling, designing, and implementing cognitive
systems. Finally, it discusses some important attempts that have been made to build
cognitive systems.

1.1 Motivation for the Study of Cognitive Systems

Computer systems pervade many aspects of life today but they are not yet ubiqui-
tous. Why? What stops computer systems being drummed into the service of soci-
ety in every facet of life?4 If we look at the applications in which computer systems
have been most successful, we see that they are almost without exception the ones
where the space of interaction are tightly constrained and unambiguously specified.
In other words, we find computer systems wherever we can stipulate or predict ex-
actly how they will be used, under what conditions, and with what data. Irrespective
of the complexity of the processing they carry out, almost all computer systems,
whether they are computer games, payroll applications, and even satellite naviga-
tion systems, share one common feature: well-defined inputs and outputs, and a
well-specified space of interaction. To deal with circumstances where the space of
interactions is poorly specified, we need to be able to build more robust, resilient,
and adaptable computer systems. The hope is that we can do this by making them
cognitive: by giving them the ability to learn, adapt, improve, and improvise to de-
velop new strategies for interacting.

1.2 A Definition of Cognition

As we noted already, there is no universal consensus on what exactly cognition is.
Nonetheless, to get things started, we will make an initial attempt to define the area
of cognitive systems. We will expand on this later in the course.

A cognitive system exhibits effective — adaptive, anticipatory, and goal-directed
— behaviour through perception, action, deliberation, communication, and through
either individual or social interaction with the environment. The hallmark of a cogni-

4 We don’t take a position here on whether or not computer systems should be incorporated in
every facet of life; we are only concerned about why, from a scientific and technological point of
view, they haven’t been.
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tive system is that it can function effectively in circumstances that were not planned
for explicitly when the system was designed. That is, it should have some degree of
plasticity and be resilient in the face of the unexpected. The characteristic of antici-
pation, i.e. prospective behaviour, is crucial as it allows the system to operate across
a variety of time-scales, in the here-and-now, but extending into the future. Thus,
a cognitive system is capable of more than reactive stimulus-response behaviour,
which might be quite complex in its own right.

To achieve this robust behaviour, cognitive systems anticipate, assimilate, and
adapt. In doing so, they learn and develop [232]. That is, cgnitive systems anticipate
future events when selecting actions, they subsequently learn from what actually
happens when they do act, and thereby they modify subsequent expectations and,
in the process, they change how the world is perceived and what actions are possi-
ble. Cognitive systems do all of this autonomously. The adaptive, anticipatory, au-
tonomous viewpoint reflects the position of Freeman and Núñez who, in their book
Reclaiming Cognition [60], assert the primacy of action, intention, and emotion in
cognition. In the past, however, cognition was viewed in a very different light as
a symbol-processing module of mind concerned with rational planning and reason-
ing. Today, however, this is changing and even proponents of these early approaches
now see a much tighter relationship between perception, action, and cognition (e.g.
see [6, 120]).

So, if cognitive systems anticipate, assimilate, and adapt, if they develop and
learn, the question we must ask is why do they do this? There is a subsequent ques-
tion – how do they do it? — but we leave this for later on. For the moment, the
question why cognition is necessary provides a way of defining what cognition is.

The view of cognition taken in this course is that cognition is the process whereby
an autonomous self-governing system acts effectively in the world in which it is
embedded [133]. However, in natural systems, the latencies inherent in the neu-
ral processing of sense data are too great to allow effective action. This is one of
the primary reasons a cognitive agent must anticipate future events: so that it can
prepare the actions it may need to take. In addition, there are also limitations im-
posed by the environment and the cognitive system’s body. To perform an action,
one needs to have the relevant body part in a certain place at a certain time. In a
dynamic environment that is constantly changing and with a body that takes time to
move, this requires preparation and prediction. Furthermore, the world in which the
agent is embedded is unconstrained and the sensory data which is available to the
cognitive system is not only ‘out-of-date’ but it is also uncertain and incomplete.
Consequently, it is not possible to encapsulate a priori all the knowledge required
to deal successfully with the circumstances it will experience so that it must also
be able to adapt, progressively increasing its space of possible actions as well as
the time horizon of its prospective capabilities. It must do this, not as a reaction to
external stimuli but as a self-generated process of proactive understanding. 5 This
process is what we mean by development.

5 As we will see later on, this is sometimes referred to as a process of ‘sense-making’.
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In summary, we define cognition as the process by which an autonomous self-
governing agent acts effectively in the world in which it is embedded and that cogni-
tion has two functions: (1) to increase the agent’s repertoire of effective actions, and
(2) to extend the time-horizon of its ability to anticipate the need for and outcome
of future actions.

Before concluding, it is worth noting that some authors in discussing the devel-
opment of cognitive systems go even further than what we have discussed so far.
For example, Brachman [22] defines a cognitive computer system as one which —
in addition to being able to reason, to learn from experience, to improve its perfor-
mance with time, and to respond intelligently to things it’s never encountered before
— would also be able to explain what it is doing and why it is doing it. This would
enable it to identify potential problems in following a current approach to carrying
out a task or to know when it needed new information in order to complete it. Holl-
nagel [94] suggests that a cognitive system is able to view a problem in more than
one way and to use knowledge about itself and the environment so that it is able to
plan and modify its actions on the basis of that knowledge. Thus, for some, cogni-
tion also entails a sense of self-reflection in addition to self-development. We see
here cognition straying into the domain of consciousness. We won’t say anything
further in this course on the consciousness apart from remarking that computation
modelling of consciousness is an active area of research.

1.3 Emulation or Simulation?

Before going any further, we need to be clear exactly what we are trying to do in
attempting to develop an artificial cognitive system. Are we trying to develop an
artifact that emulates the cognitive behaviour and capabilities of human beings, or
are we trying to simulate the actual process by which a human being effects such
behaviour and capabilities. The distinction, which is really the re-appearance of the
complicated boundary between biological and computer cognition, is important be-
cause in the case of emulation it is only the end product — the system behaviour
— that is crucial. On the other hand, in the case of simulation, it is necessary to be
as faithful as possible to the human or biological process which underpin cognition.
This doesn’t mean that in the case of emulation we should ignore completely the
biological systems. On the contrary, we need to look somewhere for inspiration in
trying to deal with this very complex topic and biological systems are the only ex-
emplars of cognition we have. Clearly, we should draw as much inspiration as pos-
sible from them and from what is known about biological cognition. In this course,
though, we assume that our task is to emulate cognitive capability. That is, we want
to create artificial cognitive systems — systems with all the desirable attributes set
out above — but we don’t necessarily want to make any strong claims that the re-
sultant models are either biologically plausible or that they are viable models of
human cognition. That said, we do look to the constraints of biological plausibility
to provide some guidance in our search for a model of artificial cognition.
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Fig. 1.2 The three levels at which a system should be modelled: the computational theory that for-
malizes the problem, the representational and algorithmic level that addresses the implementation
of the theory, and the hardware level that phyically realizes the system (after [130]). The computa-
tional theory is primary and the system should be modelled at this level of abstration, although the
representational and algorithmic level is often more intuitively accessible.

With that established, we need to decide at what level of abstraction we wish to
draw on for our inspiration. That is, we need to find out the best level of abstrac-
tion of biological system models to use in developing the emulation (i.e. synthetic)
model? There is some dissension in the scientific community about this.

For example, consider the classic work of David Marr [130] who advocated a
three-level hierarchy of abstraction (see Figure 1.2). At the top level you have the
computational theory. Below this there is the level of representation and algorithm.
At the bottom there is the hardware implementation. The computational theory asks
“what is the goal of the computation, why is it appropriate, and what is the logic of
the strategy by which it is carried out?”. The representation and algorithm level asks
“how can this computational theory be implemented? In particular, what is the repre-
sentation for the input and output, and what is the algorithm for the transformation?”
The hardware implementation asks “how can the representation and algorithm be
realized physically?” Marr emphasized that these three levels are only loosely cou-
pled. This dissociation is significant as it echoes the very strong assumptions made
by proponents of a particular form of cognition (the cognitivist approach; see Chap-
ter 2, Section 2.1). Marr states that, although the algorithm and representation levels
are more accessible, it is the computational level that is critically important from an
information processing perspective. In essence, he states that the problem can and
should be modelled at the level of the computational theory without strong refer-
ence to the lower and less abstract levels. Marr illustrated this by pointing out that
to understand bird flight, you need to address the theory of aerodynamics rather than
the structure of feathers:

“Trying to understand perception by studying only neurons is like trying to understand bird
flight by studying only feathers: it just cannot be done. In order to understand bird flight, we
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Boundary
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Fig. 1.3 The three levels at which a system should be modelled: a boundary constraint level that
determines the task or goal, a collective variable level that characterizes coordinated states, and a
component level which forms the realized system (after [105]). All three levels are equally impor-
tant and should be considered together.

have to understand aerodynamics; only then do the structure of feathers and the different
shapes of birds’ wings make sense”

Of course, you then have to decide how to realize the resulting computational model.
Again, the point he was making is that you should decouple the different levels of
abstraction, and begin your analysis at the highest level, allowing this subsequently
to drive the decisions that need to be taken at the lower level when realizing the
physical system.

In strong contrast, Kelso [105] argues that a system, specifically a non-linear
dynamical systems of the type that may provide the basis for cognition, should be
modelled simultaneously at three distinct levels. These are as follows (see Figure
1.3).

1. A boundary constraint level that determines the task or goals;
2. A collective variable level that characterizes coordinated states;
3. A component level which forms the realized system.

Kelso argues that the “boundary constraints, at least in complex biological systems,
necessarily mean that the coordination dynamics are context or task dependent”.
Take away the context and you take away the basis for the model. Furthermore, the
instantiation of the system has a direct role to play in the model itself (which is
another way of saying that the system morphology matters and cannot be abstracted
away). This is the essence of the perspective of an approach to modelling cognitive
systems that has recently come to the fore. One cannot model the system in isolation
from either the environmental context or its own physical instantiation. This issue
will arise again later in the course when we look at the issue of embodiment in
Chapter 3. We will also see these two different philosophies being reflected in the
disparate positions on cognition to which we turn now in Chapter 2.


