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Determining Optical Flow 

Berthold K.P.  Horn and Brian G. Schunck 
Artificial Intelligence Laboratory, Massachusetts Institute of 
Technology, Cambridge, MA 02139, U.S.A. 

ABSTRACT 
Optical flow cannot be computed locally, since only one independent measurement is available from 
the image sequence at a point, while the flow velocity has two components. A second constraint is 
needed. A method for finding the optical flow pattern is presented which assumes that the apparent 
velocity of the brightness pattern varies smoothly almost everywhere in the image. An iterative 
implementation is shown which successfully computes the optical flow for a number of synthetic image 
sequences. The algorithm is robust in that it can handle image sequences that are quantized rather 
coarsely in space and time. It is also insensitive to quantization of brightness levels and additive noise. 
Examples are included where the assumption of smoothness is violated at singular points or along 
lines in the image. 

1. Introduction 

Optical flow is the distribution of apparent velocities of movement of bright- 
ness patterns in an image. Optical flow can arise from relative motion of 
objects and the viewer [6, 7]. Consequently, optical flow can give important 
information about the spatial arrangement of the objects viewed and the rate 
of change of this arrangement [8]. Discontinuities in the optical flow can help in 
segmenting images into regions that correspond to different objects [27]. 
Attempts have been made to perform such segmentation using differences 
between successive image frames [15, 16,. 17, 20, 25]. Several papers address the 
problem of recovering the motions of objects relative to the viewer from the 
optical flow [10, 18, 19, 21, 29]. Some recent papers provide a clear exposition 
of this enterprise [30, 31]. The mathematics can be made rather difficult, by the 
way, by choosing an inconvenient coordinate system. In some cases in- 
formation about the shape of an object may also be recovered [3, 18, 19]. 

These papers begin by assuming that the optical flow has already been 
determined. Although some reference has been made to schemes for comput- 
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ing the flow from successive views of a scene [5, 10], the specifics of a scheme 
for determining the flow from the image have not been described. Related 
work has been done in an attempt to formulate a model for the short range 
motion detection processes in human vision [2,22]. The pixel recursive 
equations of Netravali and Robbins [28], designed for coding motion in 
television signals, bear some similarity to the iterative equations developed in 
this paper. A recent review [26] of computational techniques for the analysis of 
image sequences contains over 150 references. 

The optical flow cannot be computed at a point in the image independently 
of neighboring points without introducing additional constraints, because the 
velocity field at each image point has two components  while the change in 
image brightness at a point in the image plane due to motion yields only one 
constraint. Consider, for example, a patch of a pattern where brightness I varies 
as a function of one image coordinate but not the other. Movement  of the 
pattern in one direction alters the brightness at a particular point, but motion 
in the other  direction yields no change. Thus components of movement in the 
latter direction cannot be determined locally. 

2. Relationship to Object Motion 

The relationship between the optical flow in the image plane and the velocities 
of objects in the three dimensional world is not necessarily obvious. We 
perceive motion when a changing picture is projected onto  a stationary screen, 
for example. Conversely, a moving object may give rise to a constant bright- 
ness pattern. Consider, for example, a uniform sphere which exhibits shading 
because its surface elements are oriented in many different directions. Yet, 
when it is rotated, the optical flow is zero at all points in the image, since the 
shading does not move with the surface. Also, specular reflections move with a 
velocity characteristic of the virtual image, not the surface in which light is 
reflected. 

For  convenience, we tackle a particularly simple world where the apparent 
velocity of brightness patterns can be directly identified with the movement of 
surfaces in the scene. 

3. The Restricted Problem Domain 

To avoid variations in brightness due to shading effects we initially assume that 
the surface being imaged is flat. We further assume that the incident illumina- 
tion is uniform across the surface. The brightness at a point in the image is then 
proportional to the reflectance of the surface at the corresponding point on the 
object. Also, we assume at first that reflectance varies smoothly and has no 

lln this paper,  the term brightness means  image irradiance. The  brightness pattern is the distribution 
of irradiance in the image. 
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spatial discontinuities. This latter condition assures us that the image brightness 
is differentiable. We exclude situations where objects occlude one another, in 
part, because discontinuities in reflectance are found at object boundaries. In 
two of the experiments discussed later, some of the problems occasioned by 
occluding edges are exposed. 

In the simple situation described, the motion of the brightness patterns in the 
image is determined directly by the motions of corresponding points on the 
surface of the object. Computing the velocities of points on the object is a 
matter of simple geometry once the optical flow is known. 

4. Constraints 

We will derive an equation that relates the change in image brightness at a 
point to the motion of the brightness pattern. Let the image brightness at the 
point (x, y) in the image plane at time t be denoted by E(x,  y, t). Now consider 
what happens when the pattern moves. The brightness of a particular point in 
the pattern is constant, so that 

dE 
~ 0 ,  
dt 

Using the chain rule for differentiation we see that, 

c~E dx aE d_y_ + OE = O. 
Ox dt + -~y dt St 

(See Appendix A for a more detailed derivation.) If we let 

dx dy 
u = ~ -  7 and V = d t ,  

then it is easy to see that we have a single linear equation in the two unknowns 
u and v, 

Exu + Eyv + E, = O, 

where we have also introduced the additional abbreviations Ex, Ey, and E, for 
the partial derivatives of image brightness with respect to x, y and t, respec- 
tively. The constraint on the local flow velocity expressed by this equation is 
illustrated in Fig. 1. Writing the equation in still another way, 

(Ex, Ey). (u, v) = -Et. 

Thus the component of the movement in the direction of the brightness 
gradient (Ex, Ey) equals 

E, 
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\ 
comrtaint line 

FIG. I. The basic rate of change of image brightness equation constrains the optical flow velocity. 

The velocity (u, u) has to lie along a line perpendicular to the brightness gradient vector (& E,). 

The distance of this line from the origin equals E, divided by the magnitude of (Ex. I?,,). 

We cannot, however, determine the component of the movement in the 
direction of the iso-brightness contours, at right angles to the brightness 

gradient. As a consequence, the flow velocity (u, U) cannot be computed locally 
without introducing additional constraints. 

5. The Smoothness Constraint 

If every point of the brightness pattern can move independently, there is little 
hope of recovering the velocities. More commonly we view opaque objects of 
finite size undergoing rigid motion or deformation. In this case neighboring 
points on the objects have similar velocities and the velocity field of the 
brightness patterns in the image varies smoothly almost everywhere. Dis- 
continuities in flow can be expected where one object occludes another. An 
algorithm based on a smoothness constraint is likely to have difficulties with 
occluding edges as a result. 

One way to express the additional constraint is to minimize the square of the 
magnitude of the gradient of the optical flow velocity: 

Another measure of the smoothness of the optical flow field is the sum of the 

squares of the Laplacians of the X- and y-components of the flow. The 



DETERMINING OPTICAL FLOW 189 

Laplacians of u and v are defined as 

02u + 02---E and V2D 02D-{ - 92/.) 
W u = ~  0y 2 = 0 x  2 0y 2. 

In simple situations, both Laplacians are zero. If the viewer translates parallel 
to a flat object, rotates about a line perpendicular to the surface or travels 
orthogonally to the surface, then the second partial derivatives of both u and v 
vanish (assuming perspective projection in the image formation). 

We will use here the square of the magnitude of the gradient as smoothness 
measure. Note that our approach is in contrast with that of Fennema and 
Thompson [5], who propose an algorithm that incorporates additional assump- 
tions such as constant flow velocities within discrete regions of the image. Their  
method, based on cluster analysis, cannot deal with rotating objects, since these 
give rise to a continuum of flow velocities. 

6. Quantization and Noise 

Images may be sampled at intervals on a fixed grid of points. While tesselations 
other  than the obvious one have certain advantages [9, 23], for convenience we 
will assume that the image is sampled on a square grid at regular intervals. Let 
the measured brightness be Eij.k at the intersection of the ith row and jth 
column in the kth image frame. Ideally, each measurement should be an 
average over the area of a picture cell and over the length of the time interval. 
In the experiments cited here we have taken samples at discrete points in space 
and time instead. 

In addition to being quantized in space and time, the measurements will in 
practice be quantized in brightness as well. Further,  noise will be apparent in 
measurements obtained in any real system. 

7. Estimating the Partial Derivatives 

We must estimate the derivatives of brightness from the discrete set of image 
brightness measurements available. It is important that the estimates of Ex, Ey, 
and 13, be consistent. That  is, they should all refer to the same point in the 
image at the same time. While there are many formulas for approximate 
differentiation [4, 11] we will use a set which gives us an estimate of Ex, Ey, E, 
at a point in the center of a cube formed by eight measurements.  The 
relationship in space and time between these measurements is shown in Fig. 2. 
Each of the estimates is the average of four first differences taken over 
adjacent measurements in the cube. 

Ex "~ l { E i j + l , k  -- E i j , k  + Ei+l , j+l ,k  -- E i + l j , k  

+ E i d + l , k + l  -- E id ,  k+l + E i + l j + l , k + l  -- E i + l j ,  k+l}, 
1 

E y  ~ ~{E i+l j . k  -- E i j . k  + E i + l j + l . k  -- E i j + l . k  

+ E i + l j . k + l -  E i j ,  k+ 1 I+ E i + l j + l . k + l  --  Eid+l./+l}, 
E, -~ ~{Eij.k+l - Eij.i + Ei+I.j.k+l - E i + l j ,  k 

+ E i j + l , k + I  -- E i j + l , k  + E i + l j + l , k + l  -- E i + l j + l . k } .  
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i ÷ 1 - - - - - - . - - - ~  

1 

J j!l k 
FIG. 2. The three partial derivatives of images brightness at the center of the cube are each 
estimated from the average of first differences along four parallel edges of the cube. Here the 
column index j corresponds to the x direction in the image, the row index i to the y direction, 
while k lies in the time direction. 

Here the unit of length is the grid spacing interval in each image frame and the 
unit of time is the image frame sampling period. We avoid estimation formulae 
with larger support, since these typically are equivalent to formulae of small 
support applied to smoothed images [14]. 

8. Estimating the Laplaeian of the Flow Velocities 

W e  also need  to approximate the Laplacians of u and v. O n e  conven ien t  
approximation takes the following form 

V2U "~" I((fii,j, k -- lgij,k ) a n d  VEu ~- K(Oi,], k - 1)i.j,k) , 

where the local averages t~ and i] are defined as follows 

~lij.k -~- 16{Ui_lj, k + Ui,j+l, k + Ui+l,j,k + Ui,j-l,k } 

+ ~2{~i - l , j  1,k + Ui- l j+l ,k  + Ui+I.j+I,k + /'/i+LJ 1,k}, 

~i,j,k = i6{Ui-l,j,k + Ui,j+l,k + Ui+1,j,k + Ui,j-l,k} 
1 

+ ~{1-)i-l,j 1,k "~- l.)i-l,j+l,k + 1.)i+l,j+l,k "~- l-)i+l,j 1,k}. 

T h e  proportionality factor r equals 3 if the average is computed as shown and 
we again assume that the unit of length equals the grid spacing interval. Fig. 3 
illustrates the assignment of weights to neighboring points. 
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i 
FIG. 3. The Laplacian is estimated by subtracting the value at a point from a weighted average of 
the values at neighboring points. Shown here are suitable weights by which values can be 
multiplied. 

9. Minimization 

The  prob lem then is to minimize the sum of the errors  in the equat ion  for the 
rate of  change of  image brightness,  

~b = Exu + E,,v + E,, 

and the measure  of the depar tu re  f rom smoothness  in the velocity flow, 

~2 = \-b--X-X / + + 

What  should be the relative weight  of  these two factors? In practice the image 
brightness measuremen t s  will be cor rup ted  by quant iza t ion e r ror  and noise so 
that  we cannot  expect  ~gb to be identically zero.  This quant i ty  will tend to  have 
an e r ror  magni tude  that  is p ropor t iona l  to the noise in the measurement .  This 
fact guides us in choosing a suitable weighting factor,  deno ted  by a 2, as will be 
seen later. 

Let  the total e r ror  to  be minimized be 

~2 = f f (a2~g2 + ~2) dx dy. 

The  minimizat ion is to be accompl ished by finding suitable values for  the 
optical flow velocity (u, v). Using the calculus of  variat ion we obtain 

E2u + E,,Eyv = ot2V2u - E,,E,, 

E,,Eyu + E2v = a2V2v - EyE,. 

Using the approximat ion  to the Laplacian in t roduced  in the  previous  section, 

(Of 2 "q- E2)u ~- ExEyv = (a2a - ExEt), 
E,,Eyu + (ct2+ E2)v = (a2~ - EyEt). 
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The determinant of the coefficient matrix equals a2(a 2 + Ex 2 + E2). Solving for u 
and v we find that 

(a2 + E~ + 2 E2y)a - E~Ey~ - E~Et, E y ) u  = +(a  2 + 

(a 2 + E~ + E~)v = -E~Eya  + (a 2 + E~)O - EYE,. 

10. Difference of Flow at a Point from Local Average 

These equations can be written in the alternate form 

(a 2 + E~ + E2y)(u - ~) = -Ex[EI(~ + Eyb + Ell, 

(a 2 + E 2 + E~)(v  - ~) = -Ey[Ex~  + Ey~ + E,I. 

This shows that the value of the flow velocity (u, v) which minimizes the error 
4 2 lies in the direction towards the constraint line along a line that intersects 
the constraint line at right angles. This relationship is illustrated geometrically 
in Fig. 4. The distance from the local average is proportional to the error  in the 
basic formula for rate of change of brightness when ~, ~ are substituted for u 
and v. Finally we can see that a2 plays a significant role only for areas where 
the brightness gradient is small, preventing haphazard adjustments to the 
estimated flow velocity occasioned by noise in the estimated derivatives. This 
parameter  should be roughly equal to the expected noise in the estimate of 
E~ + E~. 

V 

- U 

o n s t  r a l n t  l i n e  

FIG. 4. The value of the flow velocity which minimizes the error lies on a line drawn from the local 
average of the flow velocity perpendicular to the constraint line. 
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11. Constrained Minimization 

When we allow a2 to tend to zero we obtain the solution to a constrained 
minimization problem. Applying the method of Lagrange multipliers [33, 34] to 
the problem of minimizing g,2 while maintaining ~b = 0 leads to 

E~V2u = ExV%, Exu + E~v + E, = 0 

Approximating the Laplacian by the difference of the velocity at a point and 
the average of its neighbors then gives us 

(E~ + E~)(u - r,) = -E~[EX~ + E ~  + E,], 

(E~ + E~)(v - ~) = - E y [ E , a  + Ey~ + E,]. 

Referring again to Fig. 4, we note that the point computed here lies at the 
intersection of the constraint line and the line at right angles through the point 
(~, ~). We will not use these equations since we do expect errors in the 
estimation of the partial derivatives. 

12. Iterative Solution 

We now have a pair of equations for each point in the image. It would be very 
costly to solve these equations simultaneously by one of the standard methods, 
such as Gauss-Jordan elimination [11, 13]. The corresponding matrix is sparse 
and very large since the number of rows and columns equals twice the number 
of picture cells in the image. Iterative methods, such as the Gauss-Seidel 
method [11, 13], suggest themselves. We can compute a new set of velocity 
estimates (u "+~, v "÷~) from the estimated derivatives and the average of the 
previous velocity estimates (u", v n) by 

u "+' = ~" - E,[Ex~" + Eyf;" + E,]I(o~ 2 + E 2 + E~), 

v "+' = ~" - Ey[Exa" + EyF" + E,]/(a 2 + E 2 + E2). 

(It is interesting to note that the new estimates at a particular point do not 
depend directly on the previous estimates at the same point.) 

The natural boundary conditions for the variational problem turns out to be 
a zero normal derivative. At the edge of the image, some of the points needed 
to compute the local average of velocity lie outside the image. Here we simply 
copy velocities from adjacent points further in. 

13. Filling In Uniform Regions 

In parts of the image where the brightness gradient is zero, the velocity 
estimates will simply be averages of the neighboring velocity estimates. There 
is no local information to constrain the apparent velocity of motion of the 
brightness pattern in these areas. Eventually the values around such a region 
will propagate inwards. If the velocities on the border of the region are all 
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equal to the same value, then points in the region will be assigned that value 
too, after a sufficient number of iterations. Velocity information is thus filled in 
from the boundary of a region of constant brightness. 

If the values on the border  are not all the same, it is a little more difficult to 
predict what will happen. In all cases, the values filled in will correspond to the 
solution of the Laplace equation for the given boundary condition [1, 24, 32]. 

The progress of this filling-in phenomena is similar to the propagation effects 
in the solution of the heat equation for a uniform fiat plate, where the time rate 
of change of temperature is proportional to the Laplacian. This gives us a means 
of understanding the iterative method in physical terms and of estimating the 
number of steps required. The number of iterations should be larger than the 
number of picture cells across the largest region that must be filled in. If the size of 
such regions is not known in advance one may use the cross-section of the whole 
image as a conservative estimate. 

14. Tightness of Constraint 

When brightness in a region is a linear function of the image coordinates we 
can only obtain the component  of optical flow in the direction of the gradient. 
The component  at right angles is filled in from the boundary of the region as 
described before. In general the solution is most accurately determined in 
regions where the brightness gradient is not too small and varies in direction 
from point to point. Information which constrains both components of the 
optical flow velocity is then available in a relatively small neighborhood. Too 
violent fluctuations in brightness on the other  hand are not desirable since the 
estimates of the derivatives will be corrupted as the result of undersampling and 
aliasing. 

15. Choice of Iterative Scheme 

As a practical matter  one has a choice of how to interlace the iterations with 
the time steps. On the one hand, one could iterate until the solution has 
stabilized before advancing to the next image frame. On the other  hand, given 
a good initial guess one may need only one iteration per time-step. A good 
initial guess for the optical flow velocities is usually available from the previous 
time-step. 

The advantages of the latter approach include an ability to deal with more 
images per unit time and better  estimates of optical flow velocities in certain 
regions. Areas in which the brightness gradient is small lead to uncertain, noisy 
estimates obtained partly by filling in from the surround. These estimates are 
improved by considering further images. The noise in measurements of the 
images will be independent and tend to cancel out. Perhaps more importantly, 
different parts of the pattern will drift by a given point in the image. The 
direction of the brightness gradient will vary with time, providing information 
about both components  of the optical flow velocity. 
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A practical implementation would most likely employ one iteration per time 
step for these reasons. We illustrate both approaches in the experiments. 

16. Experiments 

The iterative scheme has been implemented and applied to image sequences 
corresponding to a number of simple flow patterns. The results shown here are 
for a relatively low resolution image of 32 by 32 picture cells. The brightness 
measurements were intentionally corrupted by approximately 1% noise and 

A la 

D 

FIG. 5. Four frames out of a sequence of images of a sphere rotating about an axis inclined towards 
the viewer. The sphere is covered with a pattern which varies smoothly from place to place. The 
sphere is portrayed against a fixed, lightly textured background. Image sequences like these are 
processed by the optical flow algorithm. 
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then quantized into 256 levels to simulate a real imaging situation. The 
underlying surface reflectance pattern was a linear combination of spatially 
orthogonal sinusoids. Their  wavelength was chosen to give reasonably strong 
brightness gradients without leading to undersampling problems. Discon- 
tinuities were avoided to ensure that the required derivatives exist everywhere. 

Shown in Fig. 5, for example, are four frames of a sequence of images 
depicting a sphere rotating about an axis inclined towards the viewer. A 
smoothly varying reflectance pattern is painted on the surface of the sphere. 
The sphere is illuminated uniformly from all directions so that there is no 
shading. We chose to work with synthetic image sequences so that we can 
compare the results of the optical flow computation with the exact values 
calculated using the transformation equations relating image coordinates to 
coordinates on the underlying surface reflectance pattern. 

17. Results 

"l]ae first flow to be investigated was a simple linear translation of the entire 
brightness pattern. The resulting computed flow is shown as a needle diagram 
in Fig. 6 for 1, 4, 16, and 64 iterations. The estimated flow velocities are 
depicted as short lines, showing the apparent displacement during one time 
step. In this example a single time step was taken so that the computations are 
based on just two images. Initially the estimates of flow velocity are zero. 
Consequently the first iteration shows vectors in the direction of the brightness 
gradient. Later, the estimates approach the correct values in all parts of the 
image. Few changes occur after 32 iterations when the velocity vectors have 
errors of about 10%. The estimates tend to be two small, rather than too 
large, perhaps because of a tendency to underestimate the derivatives. The 
worst errors occur, as one might expect, where the brightness gradient is small. 

In the second experiment one iteration was used per time step on the same 
linear translation image sequence. The resulting computed flow is shown in Fig. 
7 for 1, 4, 16, and 64 time steps. The estimates approach the correct values 
more rapidly and do not have a tendency to be too small, as in the previous 
experiment. Few changes occur after 16 iterations when the velocity vectors 
have errors of about 7%. The worst errors occur, as one might expect, where 
the noise in recent measurements of brightness was worst. While individual 
estimates of velocity may not be very accurate, the average over the whole 
image was within 1% of the correct value. 

Next, the method was applied to simple rotation and simple contraction of 
the brightness pattern. The results after 32 time steps are shown in Fig. 8. Note 
that the magnitude of the velocity is proportional to the distance from the 
origin of the flow in both of these cases. (By origin we mean the point in the 
image where the velocity is zero.) 

In the examples so far the Laplacian of both flow velocity components is zero 
everywhere. We also studied more difficult cases where this was not the case. 
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FIG. 8. Flow patterns computed for simple rotat ionand simple contraction of a brightness pattern. 
In the first case, the pattern is rotated about 2.8 degrees per time step, while it is contracted about 
5% per time step in the second case. The estimates after 32 times steps are shown. 
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FIG. 9. Flow patterns computed for flow around a line vortex and two dimensional flow into a sink. 
In each case the estimates after 32 iterations are shown. 

boundaries constitute a one dimensional subset of the plane and so one can 
expect that the relative number of points at which the estimated flow is 
seriously in error will decrease as the resolution of the image is made finer. 

In Appendix B it is shown that there is a direct relationship between the 
Laplacian of the flow velocity components  and the Laplacian of the surface 
height. This can be used to see how our smoothemess constraint will fare for 
different objects. For example, a rotating polyhedron will give rise to flow 
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provides only one constraint. Smoothness of the flow was introduced as a 
second constraint. An iterative method for solving the resulting equation was 
then developed. A simple implementation provided visual confirmation of 
convergence of the solution in the form of needle diagrams. Examples of 
several ditterent types of optical flow patterns were studied. These included 
cases where the Laplacian of the flow was zero as well as cases where it became 
infinite at singular points or along bounding curves. 

The computed optical flow is somewhat inaccurate since it is based on noisy, 
quantized measurements. Proposed methods for obtaining information about 
the shapes of objects using derivatives (divergence and curl) of the optical flow 
field may turn out to be impractical since the inaccuracies will be amplified. 

ACKNOWLEDGMENT 

This research was conducted at the Artificial Intelligence Laboratory of the 
Massachusetts Institute of Technology. Support for the laboratory's research is 
provided in part by the Advanced Research Projects Agency of the Depart- 
ment of Defense under Office of Naval Research contract number N00014-75- 
C0643. One of the authors (Horn) would like to thank Professor H.-H. Nagel 
for his hospitality. The basic equations were conceived during a visit to the 
University of Hamburg, stimulated by Professor Nagel's long-standing interest 
in motion vision. The other author (Schunck) would like to thank W.E.L. 
Grimson and E. Hildreth for many interesting discussions and much knowledg- 
able criticism. W.E.L. Grimson and Katsushi Ikeuchi helped to illuminate a 
conceptual bug in an earlier version of this paper. We should also like to thank 
J. Jones for preparing the drawings. 

Appendix A. Rate of Change of Image Brightness 

Consider a patch of the brightness pattern that is displaced a distance 8x in the 
x-direction and 8y in the y-direction in time St. The brightness of the patch is 
assumed to remain constant so that 

E(x, y, t) = E(x + 8x, y + By, t + 80. 

Expanding the right-hand side about the point (x, y, t) we get, 

c~E + c~E + 8E 
E ( x , y , t ) = E ( x , y , t ) + S X ~ x  8y-~y 8I--~-+~. 

Where ~ contains second and higher order terms in 8x, By, and St. After 
subtracting E(x, y, t) from both sides and dividing through by 8t we have 

8x OE ~ OE OE + cT(St)= O, 
8t ax ~ 8t -~y + -d? 

where ~(St) is a term of order 8t (we assume that 8x and 8y vary as 80. In the 
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limit as 6t--> 0 this becomes 

dEdx  tgEd~.  ,gE 
Ox a-7 + d t + = ° .  

Appendix B. Smoothness of Flow for Rigid Body Motions 

Let a rigid body rotate about an axis (wx, toy, o)z), where the magnitude of the 
vector equals the angular velocity of the motion. If this axis passes through the 
origin, then the velocity of a point (x, y, z) equals the cross product of 
(cox, toy, toz), and (x, y, z). There is a direct relationship between the image 
coordinates and the x and y coordinates here if we assume that the image is 
generated by orthographic projection. The x and y components of the velocity 
can be written, 

U = toyZ -- tozY, I) = tOzX -- toxZ. 

Consequently, 

V2u = +toyV2z, V2v = -toxV2Z. 

This illustrates that the smoothness of the optical flow is related directly to the 
smoothness of the rotating body and that the Laplacian of the flow velocity will 
become infinite on the occluding bound, since the partial derivatives of z with 
respect to x and y become infinite there. 
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