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ABSTRACT
The structure-from-motion problem is traditionally ad-
dressed by establishing point correspondences and then ap-
plying classic geometry techniques. However, depending on
the application, perhaps only partial scene reconstruction is
necessary. In such cases, computing the first-order differ-
ential invariants of image motion, namely divergence, curl,
and deformation, can directly provide information about
scene structure, while avoiding complex projective geome-
try. Even though divergence, curl, and deformation have
been shown to be useful for partial scene reconstruction,
little work has been done to extract these quantities from
image sequences. In this paper we propose a way to extract
the differential invariants of image motion from an optical
flow field using a bank of filters. The output of these filters
can later be used for the recovery of surface normals and
time-to-contact.

Keywords: Optical flow, motion fields, differential invari-
ants, structure-from-motion.

1. INTRODUCTION
Computer vision is concerned with inferring three-
dimensional (3D) scene information from two-dimensional
(2D) images. The human visual system is adept at dis-
cerning quantities such as depth and motion, allowing us
to interact with our environment without needing to come
directly in contact with it [12]. Of particular interest is
the role that visual motion plays in gathering information
about our surroundings. Even in the absence of stereo, a
monocular observer is still able to determine scene structure
through deliberate camera movements, known as active vi-
sion [6]. The focus of this paper is on the analysis of image
motion or optical flow, and in particular the extraction of
the first-order differential invariants of image velocity using
correlative filtering.

Optical flow is the approximation of a scene’s 2D motion
field and is typically derived from an image sequence. Two-
dimensional image motion fields comprise the projections of
3D object velocities onto a 2D image plane. These velocities
may be due to viewer movement (ego-motion), movement of
individual scene objects, or a combination of both. Opti-
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cal flow is only an approximation of the image motion field
since assumptions need to be made about the lighting and
texturing of surfaces. Assumptions of static light sources
and adequate scene texture can result in the presence of
optical flow in places of zero motion and vice versa [12].

1.1 Determining Optical Flow
There has been much work done in the area of optical flow
computation [3]. However, most of the recently published
literature in this field focuses on improving the speed, ro-
bustness, and accuracy of existing optical flow algorithms
rather than developing new approaches [4, 7, 2, 18]. Below
is a brief outline of the main techniques used in optical flow
determination.

1.1.1 Gradient based methods
Gradient methods such as that by Sobey and Srinivasan [16,
17] compute image velocities by calculating the spatial and
temporal derivatives of image intensities. Typically they
involve finding the solution of an overdetermined system of
linear equations where one constraint is the optical flow con-
straint as defined in Equation 1.

Ixu+ Iyv + It = 0 (1)

I is image intensity where subscripts denote partial deriva-
tives, and u and v are the x and y components of the optical
flow. The optical flow constraint equation is derived from
the assumption that for a point on a 3D surface, the image
intensity in a small neighbourhood around that point does
not vary with time. Energy-based methods can be shown to
use similar constraints as gradient (or differential) methods
but transformed into the Fourier domain [3].

1.1.2 Point or Region Correspondence methods
Correspondence or matching methods require regions or fea-
tures to be tracked through a sequence of images. Such
methods are useful when accurate differentiation of the im-
age intensities is impractical due to noise. The recovery of
the motion field is therefore similar to solving the corre-
spondence problem where point trajectories are interpreted
as instantaneous velocity vectors. From this information,
scene reconstruction can be treated as a classical projective
geometry problem. Like many other optical flow methods,
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matching methods need to assume rigid body motion, and
encounter problems when the scene contains several moving
objects or occlusions [5].

1.1.3 Phase based methods
A further approach to optical flow computation is to use a
phase representation as done by Fleet [11]. Most algorithms,
by assuming that image intensity is not time varying, ap-
proximate image motion as pure image translation. Fleet
argues that the dynamics of image phase contours are bet-
ter approximations to the motion field. It is proposed that a
phase based approach need not assume pure image transla-
tion and performs well under image contrast variations and
geometric deformation due to perspective.

1.2 Differential Invariants of Image Motion
Koenderink and Van Doorn [13, 14] have shown how the
distortion of an object’s 2D image can be decomposed into
components of divergence, curl, and deformation. A geomet-
ric summary of these is provided in Fig 1. These quantities
are known as first-order differential invariants of image mo-
tion fields because their values are independent of both the
choice of coordinate system and any viewer rotations about
the projection centre.

For example, consider a stationary scene being viewed by a
moving camera and ~v(x, y) is the image motion field with
(u, v) being a motion vector associated with every (x, y) in
the image. For a small field of view we can approximate the
motion field with an affine transformation:

[

u
v

]

≈

[

u0

v0

]

+

[

ux uy

vx vy

] [

x
y

]

(2)

where (u0, v0) defines the translation of the centroid of the
object’s image. The velocity gradient tensor (ux, uy, vx, vy),
comprising first order partial derivatives, can be decomposed
as follows [9]:

[

ux uy

vx vy

]

=
div ~v

2

[

1 0
0 1

]

+
curl ~v

2

[

0 −1
1 0

]

(3)

+
def ~v

2

[

cos 2µ sin 2µ
sin 2µ − cos 2µ

]

Thus we can see how the image velocity field can be decon-
structed in divergence, curl, and deformation components.

1.2.1 Scene structure from divergence, curl, and de-
formation

The above-mentioned properties are directly related to 3D
scene structure and ego-motion, and can be deduced from
their affect on scene geometry. In particular, divergence re-
lates to isotropic expansion or dilatation; curl relates to rota-
tion or vorticity; and deformation relates to symmetric and
anti-symmetric shearing. Through these relationships, these

three quantities can be used to derive information about sur-
face orientations and time-to-contact. More specifically, the
slant, σ, and tilt, τ , of the surfaces in our image can be
found [9].

curl ~v = −|~σ||~Vang| sin τ +Ωrad (4)

div ~v = |~σ||~Vang| cos τ −
2|~Vrad|

|~R|
(5)

def+ ~v = −|~σ||~Vang| cos τ (6)

def− ~v = −|~σ||~Vang| sin τ (7)

where

~R is the 3D object position relative to viewing point.
~Vang is the object’s velocity perpendicular to the view-

ing direction divided by its distance from viewer.
~Vrad is the object’s velocity along the viewing direction.
~v is the angular velocity of the image point.
Ω is the angular velocity of the object about an axis

through the viewing point.
Ωrad is the component of Ω about the viewing direction

~R.
~σ is the slant of the surface defined as the vector

∆~R/~R.
τ is the tilt of the surface.

1.2.2 Dilatation
Dilatation is interpreted geometrically as isotropic expan-
sion about a focus of divergence, or conversely, isotropic
contraction about a focus of convergence. It is typically due
to the relative motion of objects toward or away from the
camera. The relationship between the divergence at a point
in the vector field and the orientation of the tangent plane at
that point in 3D space is given by Equation 5. Notice that
two terms constitute this equation. The first is proportional
to the magnitude of the deformation at that point and the
second term is related to the time-to-impact of the surface.

Time-to-contact, tc, is a useful quantity for obstacle
avoidance problems and can be easily calculated for
scenes containing pure divergence or convergence since
the first term of Equation 5 is zero.

tc =
|~R|

|~Vrad|
= −

2

div ~v
(8)

Equation 8 can be used to calculate depth maps of a scene
except that distances will be measured in temporal units
rather than spatial units.

1.2.3 Vorticity
Vorticity corresponds with 2D rotation of the object’s im-
age as shown by the top left illustration in Figure 1. It is
expressed as a curl component in the motion field. Similar
to divergence, the relationship between curl and scene struc-
ture comprises two terms. The first term in Equation 4 is
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Figure 1: Koenderink and van Doorn showed that
an image velocity field can be decomposed into com-
ponents of curl, divergence, and deformation. From
left to right, top to bottom: curl (vorticity), diver-
gence (dilatation), and deformation (shearing about
two different axes). The first two and the magnitude
of the last are independent of coordinate system.
The choice of axis for the deformation components
means only its magnitude is a differential invariant,
but any deformation can be expressed as a combi-
nation of these two components.

dependent on the apparent deformation of the object and
the second term is the angular velocity about the viewing
direction. It is important to note that the curl component
of a vector field is orthogonal to its divergence response.

1.2.4 Shearing
Deformation or shearing, while affecting edge orientations,
does not change the apparent area of a closed contour. De-
formation fields are characterised by an axis of maximum
extension and another perpendicular axis that describes the
direction of maximum contraction. Therefore two compo-
nents, a symmetric component and an anti-symmetric com-
ponent, are needed to sufficiently define the shear distortion
of an image shape. The two components of deformation are
illustrated in the bottom two diagrams of Figure 1. Equa-
tions 6 and 7 show that the tilt of a surface can be found
by the arctangent of the ratio of the symmetric and anti-
symmetric deformation components. Note that only the
magnitude of the deformation is a differential invariant of
motion.

2. EXTRACTION OF DIFFERENTIAL IN-
VARIANTS

Cipolla and Blake [8, 10] have done work on how to derive
surface orientation and time-to-contact from divergence and
deformation information. They use B-spline snakes to track
the change in the apparent area of scene objects to approx-
imate the divergence and deformation of the motion field.

However, this method proves problematic in the absence of
trackable features. Work has also been done by Nelson and
Aloimonos [15] on the use of divergence for obstacle avoid-
ance, deriving it mathematically but needing to use many
images over time to produce good results. The time-to-crash
detector implemented by Ancona [1] utilizes optical flow di-
rectly rather than post-processing for divergence.

The remainder of this paper discusses the possibility of using
a correlative filtering method to extract divergence, curl,
and deformation from dense motion fields. It is assumed
that existing optical flow algorithms are suitably accurate
and robust to provide good input fields for filtering.

2.1 Filter Design
Similar to how image features can be detected by using
tuned filters, it is proposed that a vector field can be pro-
cessed for dilatation, vorticity, and shearing. Below we
present a preliminary design of a bank of filters for recov-
ering divergence, curl, and deformation from optical flow
fields. Examples of such filters are shown in Figures 2 to 5.

Each filter is a simple vector field depicting divergence, curl,
or deformation as appropriate. The magnitude of the indi-
vidual vectors is proportional to its distance from the centre
of the filter. The vector magnitudes are then modulated by
a 2D Gaussian envelope to reduce the effect that a sharp dis-
continuity at the mask boundaries might have on the filter
response. The suitability of other shapes for this envelope
are yet to be investigated, although intuitively it seems that
Gaussian smoothing is appropriate.

The direction of the vectors in the mask depends on the
mask type. Divergence masks have vectors which point radi-
ally outward from the centre as seen in Figure 2, curl masks
have tangential vectors as depicted in Figure 3, and the vec-
tors in the deformation masks lie between the axes of max-
imal expansion and contraction. For deformation, the two
cases necessary to capture distortion in all directions are dis-
tinguished by the tilt of their axis of maximum extension, µ,
as illustrated in Figures 4 and 5. Expressions for the vector
field can be derived from Equations 2 and 3 by assuming
that image centroid translation, (u0, v0) is zero.

Figure 2: An example divergence detector mask of
size 21× 21 pixels, and radius of 9 pixels.
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Figure 3: An example curl detector mask of size
21× 21 pixels, and radius of 9 pixels.

Figure 4: An example deformation detector mask
of size 21 × 21 pixels, radius of 9 pixels, and axis of
maximum extension tilted at µ = 0◦.

Figure 5: An example deformation detector mask
of size 21 × 21 pixels, radius of 9 pixels, and axis of
maximum extension tilted at µ = 45◦.

Figure 6: The synthetic scene viewed from a camera
at (0, 0, 0) in 3D space. It consists of an open ended
cube with a patterned internal surface. The 2D im-
age has dimensions 400 × 300 pixels, with the cube
centred at (0, 0,−100)

3. EXPERIMENTAL RESULTS
This section outlines some of the results of our filtering tech-
nique when used on synthetic motion fields. The purpose of
these experiments is to verify that the filter designs perform
as expected over synthetic data. This should be done before
applying the filters to real images that might contain only
partial information or are noisy.

The environment in this case comprises a hollow textured
cube with one of its sides removed revealing its internal
surfaces, and a textureless background at ‘infinity’. The
cube has dimensions of 50 × 50 × 50 pixels and its centre
at (0, 0,−100) in the 3D space. Figure 6 shows a view of
the cube from the initial camera position. The camera is
centred at (0, 0, 0), has a field of view (FOV) of 60◦, and an
orientation of (0,−180, 0) corresponding to pitch, yaw, and
roll respectively. The texture on the inside of the cube was
intended for optical flow determination, but for the following
examples the ground truth motion field is used. Note that all
the filter outputs in the following sections are in grey-scale:
white areas denote maximally positive values and black ar-
eas denote maximally negative ones.

3.1 Zooming Camera
Figure 7 shows the motion field caused by forward cam-
era translation, or zoom, superimposed onto the new object
image. In this case, the orientation of the camera does not
change with the camera axis remaining perpendicular to the
back wall of the cube.

3.1.1 Divergence
The 400 × 300 vector field of Figure 7 is convolved with
a filter mask similar to that of Figure 2, but with radius
= 40, to produce the response depicted in Figure 8. It is
clear that the divergence caused by the approaching cube
is detected by the filtering. Of particular interest is the
different magnitudes of divergence detected on the inner side
walls of the cube compared with the back wall. The bright
white of the side walls indicates there is greater divergence
there than on the back wall. This result is expected since the
side walls are closer to the camera and hence have greater
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Figure 7: The camera has zoomed in toward the
original cube depicted in Figure 6. There has only
been forward motion from (0, 0, 0) to (0, 0,−14). That
is, no camera rotation or lateral translation.

Figure 8: The output of correlating the zooming
camera motion field depicted in Figure 7, with a di-
vergence detector similar to that of Figure 2 except
with a radius of 40 pixels. Notice that the verti-
cal and horizontal walls of the cube responded more
strongly than the back wall.

apparent velocity.

3.1.2 Curl
The response of the curl filter, as depicted in Figure 9, is
mostly devoid of any features. This is expected since the
pure dilatation in this particular motion field contains no
rotational component; divergence and curl are orthogonal
to one another. However, there are some responses near
the corners of our cube image. These are false positives
and investigation needs to be done into differentiating useful
responses from extraneous ones.

3.1.3 Deformation
The motion of the camera results in a shear distortion of
the apparent shape of the cube’s side walls in addition to its
isotropic dilatation. The projections of the 3D points close
to the camera experience more shearing effect than those
far away. We observe this distortion being detected by the
deformation masks in Figures 10 and 11. The stretching
of the horizontal sides upward and downward is detected

Figure 9: In contrast to Figure 8, there is little de-
tection of curl in the zooming camera motion field.
There are some edge effects but no obvious features.
This is as expected since the curl and divergence
masks are orthogonal to one another.

Figure 10: The output of the deformation detector
on the diverging vector field with an axis of maximal
expansion at 0◦. Notice that the walls of the cube,
except the back wall, return some correlation to the
deformation mask reflecting the slight deformation
on those faces.

by the symmetric mask, while the stretching of the corners
is picked up by the anti-symmetric mask. The response
of the deformation filtering provides us information about
the surface orientations in the 3D scene since vertical and
horizontal shearing will be detected by a deformation mask
with corresponding axes of expansion and contraction.

3.2 Rolling Camera
To test the curl detector a rolling camera motion was in-
troduced to the scene of Figure 6. The camera, from an
initial orientation of (0,−180, 0) was rotated by 10◦, to
(0,−180, 10). The resultant object image and motion vector
field is shown in Figure 12. Notice that the rotation is in a
clockwise direction, the same as the curl basis vector field
shown in Figure 3.
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Figure 11: The output of the deformation detector
on the diverging vector field with an axis of maximal
expansion at 45◦.

Figure 12: The motion field as a result of the change
in camera orientation by 10◦ clockwise from Fig-
ure 6.

3.2.1 Divergence
Similar to the response of the curl mask over the diverging
motion field, there is little correlation between the diver-
gence mask and the rotating vector field of Figure 12. The
subsequent filter output in Figure 13 shows few features,
although there are still false responses similar to those in
Figure 9.

3.2.2 Curl
The rotation of the camera affects all parts of the cube im-
age equally and is illustrated by the uniform response of the
curl filter over the entire cube’s image pixels (Figure 14).
The dark negative band surrounding the bright white re-
sponse is a consequence of the correlation procedure where
the convolution mask is only partially over the region of in-
terest. Removal of these dark bands is desirable and might
be achieved by pre-processing or segmentation of the motion
field.

3.2.3 Deformation
As stated earlier, deformation describes the distortion of
image shape along an axis of expansion and an axis of con-
traction perpendicular to the first axis. However, the ap-
parent area of the object surface remains unchanged. For

Figure 13: Similar to the output in Figure 9, there
is no significant correlation between the divergence
mask and the rolling camera motion field.

Figure 14: The vorticity caused by the change in
camera orientation is detected strongly by our fil-
ters. Notice that due to the absence of texture in
the background, there is no motion field outside the
image dimensions of the cube.

the motion field produced by rotational ego-motion, the de-
formation masks have produced outputs similar to those for
the zooming camera. A comparison of Figure 10 and 16,
and Figure 11 and 15 suggests that there is a relationship
between the magnitude of deformation and the other two
differential invariants of motion. This relationship perhaps
comes from the similarity of terms in Equations 5 to 7.

3.3 Translation and Noise
Given that optical flow data is rarely noise free and that ob-
jects are rarely moving directly along the camera axis, the
promising results of the previous two sections are exagger-
ated outcomes. The motion field we analyse in this section
includes some Gaussian noise and lateral camera translation.

This new optical flow field is generated by adding filter
masks similar to those in Figures 2 to 5 to an otherwise
featureless field and introducing normally distributed noise
and tangential translation. The resultant field is depicted in
Figure 18. The original uncorrupted vector field, shown in
Figure 17, has four synthetic features, a focus of expansion,
a centre of rotation, and two deformation fields all with ra-
dius = 40. The convolution masks used for the filtering are
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Figure 15: Using the same deformation mask as in
Figure 10, and ignoring edge effects, there is little
useful correlation with the rotating motion field.

Figure 16: Using the same deformation mask as in
Figure 11, the filter response is very similar to that
of Figure 10. Further investigation needs to be done
into why this is so.

Figure 17: The above 400 × 300 vector field con-
tains four synthetic features: a focus of expansion
at (160, 150), a centre of rotation at (240, 150), and
two regions of deformation located at (200, 110) and
(200, 190).

Figure 18: The above is the same vector field as in
Figure 17 but corrupted by Gaussian noise and su-
perposed with a global translation component (top
right to bottom left). An astute observer can still
resolve the four features.

of similar size.

The filter responses in Figures 19 to 22 demonstrate that
the superimposed noise and global translation had only a
limited effect on the feature extraction. Possibly, the effect
of global translation is transparent to the filtering process
since the heavy correlation of the filter mask in some regions
is offset by the heavy negative correlation in other regions.
The robustness in the face of a noisy vector field as in Fig-
ure 18, is a promising result given that existing optical flow
algorithms do not return perfect motion fields. Further in-
vestigation needs to be done into quantifying the robustness
of this filtering method for invariants extraction in general.

4. CONCLUSION
Although there has been much work done in optical flow
determination, as well as research into the usefulness of the
geometrical properties of optical flow (such as divergence,
curl, and deformation), there is little work done on how to
link the two together. Apart from Cipolla’s closed-curved
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Figure 19: The high response (white shading) of the
divergence mask at (160, 150), reveals the location the
focus of expansion quite clearly.

Figure 20: The response of the curl mask reveals
the centre of rotation at (240, 150).

Figure 21: The deformation detector shows the de-
formation field at (200, 110).

Figure 22: The anti-symmetric deformation detec-
tor shows the deformation field at (200, 190).

tracking method [10], there are no other well-documented
methods for deriving the differential invariants of image ve-
locity. Presented in this paper is a new way to determine
the differential invariants of optical flow fields which uses
input optical flow data from existing algorithms. It is hy-
pothesized that a simple filter correlation technique similar
to that of signal deconstruction can be used for this purpose.
The preliminary experimentation presented here using small
images and filters has produced promising results, particu-
larly with respect to noise robustness, but many extensions
remain to be investigated.

Ultimately, rather than using the traditional methodology
of deducing optical flow, reconstructing the entire 3D scene,
and interpreting this resultant scene for useful information;
intensive image processing is saved by deriving useful in-
formation directly from the image motion field through the
extraction of differential invariants.

5. FURTHER CONSIDERATIONS
As mentioned throughout this paper, there are several ex-
tensions that can be made to our method. In particular, it
is desirable to design a bank of filters such that each filter
type (divergence, curl, or deformation) is orthogonal to ev-
ery other type. This would allow a vector field to be truly
broken down into its constituent components.

Further investigation needs to be done into the effects of
noise on the filter responses. Perhaps a different envelope
shape or image segmentation will be necessary to improve
the accuracy of filter outputs.

The main goal is to extract quantitatively accurate values
for divergence, curl, and deformation such that slant and
tilt values for scene points can be calculated and used for
partial 3D scene reconstruction.
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