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The Laplacian Pyramid as a Compact Image Code
PETER J. BURT, MEMBER, IEEE, AND EDWARD H. ADELSON

Abstract—We describe a technique for image encoding in which     
local operators of many scales but identical shape serve as the basis
functions. The representation differs from established techniques in
that the code elements are localized in spatial frequency as well as in
space.

Pixel-to-pixel correlations are first removed by subtracting a low-
pass filtered copy of the image from the image itself. The result is a net
data compression since the difference, or error, image has low
variance and entropy, and the low-pass filtered image may represented
at reduced sample density. Further data compression is achieved by
quantizing the difference image. These steps are then repeated to
compress the low-pass image. Iteration of the process at appropriately
expanded scales generates a pyramid data structure.

The encoding process is equivalent to sampling the image with
Laplacian operators of many scales. Thus, the code tends to enhance
salient image features. A further advantage of the present code is that
it is well suited for many image analysis tasks as well as for image
compression. Fast algorithms are described for coding and decoding.

INTRODUCTION

COMMON characteristic of images is that neighboring   
pixels are highly correlated. To represent the image

directly in terms of the pixel values is therefore inefficient:  
most of the encoded information is redundant. The first           
task in designing an efficient, compressed code is to find a
representation which, in effect, decorrelates the image pixels.
This has been achieved through predictive and through trans-
form techniques (cf. [9], [10] for recent reviews).

In predictive coding, pixels are encoded sequentially in a
raster format. However, prior to encoding each pixel, its value
is predicted from previously coded pixels in the same and
preceding raster lines. The predicted pixel value, which repre-
sents redundant information, is subtracted from the actual    
pixel value, and only the difference, or prediction error, is
encoded. Since only previously encoded pixels are used in
predicting each pixel's value, this process is said to be causal.
Restriction to causal prediction facilitates decoding: to decode    
a given pixel, its predicted value is recomputed from already
decoded neighboring pixels, and added to the stored predic-   
tion error.

Noncausal prediction, based on a symmetric neighborhood
centered at each pixel, should yield more accurate prediction
and,  hence, greater  data compression.  However,  this  approach
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does not permit simple sequential coding. Noncausal ap-
proaches to image coding typically involve image transforms,
or the solution to large sets of simultaneous equations. Rather
than encoding pixels sequentially, such techniques encode   
them all at once, or by blocks.

Both predictive and transform techniques have advantages.
The former is relatively simple to implement and is readily
adapted to local image characteristics. The latter generally
provides greater data compression, but at the expense of
considerably greater computation.

Here we shall describe a new technique for removing image
correlation which combines features of predictive and trans-
form methods. The technique is noncausal, yet computations  
are relatively simple and local.

The predicted value for each pixel is computed as a local
weighted average, using a unimodal Gaussian-like (or related
trimodal) weighting function centered on the pixel itself. The
predicted values for all pixels are first obtained by convolving
this weighting function with the image. The result is a low-  
pass filtered image which is then subtracted from the original.

Let g0(ij)  be the original image, and g1(ij ) be the result of
applying an appropriate low-pass filter to g0. The prediction
error L0(ij) is then given by

L0(ij ) = g0(ij ) — g1(ij )

Rather than encode g0, we encode L0 and g1. This results          
in a net data compression because a) L0 is largly decorrelated,  
and so may be represented pixel by pixel with many fewer bits
than g0, and b) g1 is low-pass filtered, and so may be encoded     
at a reduced sample rate.

Further data compression is achieved by iterating this pro-
cess. The reduced image g1 is itself low-pass filtered to yield     
g2 and a second error image is obtained:  L2(ij )=g1(ij )—g2(ij ).   
By repeating these steps several times we obtain a sequence of
two-dimensional arrays L0, L1, L2, …, Ln.  In our implemen-
tation each is smaller than its predecessor by a scale factor of
1/2 due to reduced sample density. If we now imagine these
arrays stacked one above another, the result is a tapering
pyramid data structure. The value at each node in the pyramid
represents the difference between two Gaussian-like or related
functions convolved with the original image. The difference
between these two functions is similar to the "Laplacian"
operators commonly used in image enhancement [13]. Thus,     
we refer to the proposed compressed image representation as     
the Laplacian-pyramid code.

The coding scheme outlined above will be practical only if
required filtering computations can be performed with an ef-
ficient algorithm. A suitable fast algorithm has recently been
developed [2] and will be described in the next section.

A
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THE GAUSSIAN PYRAMID

The first step in Laplacian pyramid coding is to low-pass
filter the original image g0 to obtain image g1. We say that g1   
is a "reduced" version of g0 in that both resolution and sample
density are decreased. In a similar way we form g2 as a re-      
duced version of g1, and so on. Filtering is performed by a
procedure equivalent to convolution with one of a family of
local, symmetric weighting functions. An important member     
of this family resembles the Gaussian probability distribution,
so the sequence of images g0, g1, …, gn is called the Gaussian
pyramid.1

A fast algorithm for generating the Gaussian pyramid is
given in the next subsection. In the following subsection we
show how the same algorithm can be used to "expand" an     
image array by interpolating values between sample points.
This device is used here to help visualize the contents of levels
in the Gaussian pyramid, and in the next section to define the
Laplacian  pyramid.

Gaussian Pyramid Generation

Suppose the image is represented initially by the array g0

which contains C columns and R rows of pixels. Each pixel
represents the light intensity at the corresponding image point
by an integer I between 0 and K — 1. This image becomes the
bottom or zero level of the Gaussian pyramid. Pyramid level 1
contains image g1, which is a reduced or low-pass filtered ver-
sion of g0. Each value within level 1 is computed as a weighted
average of values in level 0 within a 5-by-5 window. Each value
within level 2, representing g2, is then obtained from values
within level 1 by applying the same pattern of weights. A
graphical representation of this process in one dimension is
given in Fig. 1. The size of the weighting function is not critical
[2]. We have selected the 5-by-5 pattern because it provides
adequate filtering at low computational cost.

The level-to-level averaging process is performed by the
function REDUCE.

gk  = REDUCE (gk — 1)                                                                       (1)

which means, for levels 0 < l < N and nodes i , j , 0      <     i  <  Cl,        
0     <     j < Rl,

gl(i, j)= 
m=−
∑

2

2

    
n=−
∑

2

2

   w(m, n)gl - 1 (2i + m, 2j + n).

Here N refers to the number of levels in the pyramid, while    
C/ and Rl are the dimensions of the l th level: Note in Fig. 1       
that the density of nodes is reduced by half in one dimension,           
or by a fourth in two dimensions from level to level. The di-
mensions of the original image are appropriate for pyramid
construction if integers MC, MR, and N exist such that C =        
MC2

N + 1 and R = MR 2N + 1. (For example, if MC and MR              
are both 3 and N is 5, then images measure 97 by 97 pixels.)  
The dimensions of gl  are Cl = MC 2

N - l + 1 and Rl  = MR 2N - l +           
1 .

1 We will refer to this set of low-pass filtered images as the Gaussian
pyramid, even though in some cases it will be generated with a trimodal
rather than unimodal weighting function.

    GAUSSIAN PYRAMID    

g0 = IMAGE

gL = REDUCE [gL-1]

Fig 1. A one-dimensional graphic representation of the process which
generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero  
level is just the gray level of a corresponding image pixel. The value
of each node in a high level is the weighted average of node values   
in the next lower level. Note that node spacing doubles from level       
to level, while the same weighting pattern or “generating kernel" is
used to generate all levels.

The Generating Kernel

Note that the same 5-by-5 pattern of weights w is used to
generate each pyramid array from its predecessor. This weight-
ing pattern, called the generating kernel, is chosen subject to
certain constraints [2]. For simpticity we make w  separable:

w(m, n) = ŵ(m) ŵ(n).

The one-dimensional, length 5, function ŵ is normalized
  

m=−
∑

2

2

  ŵ (m) = 1

and symmetric

ŵ(i) = ŵ(–i) for i = 0, 1, 2.

An additional constraint is called equal contribution. This
stipulates that all nodes at a given level must contribute the
same total weight (=1/4) to nodes at the next higher level. Let
ŵ(0) = a, ŵ (–1) = ŵ (1) = b, and ŵ(–2) = ŵ(2) = c in this
case equal contribution requires that a + 2c = 2b. These three
constraints are satisfied when

ŵ(0) = a

ŵ( -1) = ŵ(1)= 1/4

ŵ(-2) = ŵ(2) = 1/4 – a/2.

Equivalent Weighting Functions

Iterative pyramid generation is equivalent to convolving the
image g0 with a set of “equivalent weighting functions” hl:

gl = hl   ⊕   g0

 
or

gl(i,j) =   
m M

M

l

l

=−
∑

n M

M

l

l

=−
∑  hl(m,n)g0(i2

l + m • j2l  + n).
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gL = hL ⊗ g0

Fig. 2. The equivalent weighting functions hl(x) for nodes in levels 1, 2, 3,
and infinity of the Gaussian pyramid. Note that axis scales have been
adjusted by factors of 2 to aid comparison Here the parameter a of the
generating kernel is 0.4, and the resulting equivalent weighting
functions closely resemble the Gaussian probability density functions.

The size Ml of the equivalent weighting function doubles
from one level to the next, as does the distance between
samples.

Equivalent weighting functions for Gaussian-pyramid levels
1, 2, and 3 are shown in Fig. 2. In this case a = 0.4. The shape  
of the equivalent function converges rapidly to a characteristic
form with successively higher levels of the pyramid, so that
only its scale changes. However, this shape does depend on the
choice of a in the generating kernel. Characteristic shapes       
for four choices of a are shown in Fig. 3. Note that the equiv-    
alent weighting functions are particularly Gaussian-like when      
a = 0.4 When a = 0.5 the shape is triangular; when a = 0.3 i t        
is flatter and broader than a Gaussian. With a = 0.6 the central
positive mode is sharply peaked, and is flanked by small nega-
tive  lobes.

Fast Filter

The effect of convolving an image with one of the equiv-
alent weighting functions hl is to blur, or low-pass filter, the im-
age. The pyramid algorithm reduces the filter band limit by an
octave from level to level, and reduces the sample interval by the
same factor. This is a very fast algorithm, requiring fewer com-
putational steps to compute a set of filtered images than are requ-
ired by the fast Fourier transform to compute a single filtered
image [2].

Example: Fig. 4 illustrates the contents of a Gaussian
pyramid generated with a = 0.4. The original image, on the far
left, measures 257 by 257. This becomes level 0 on the pyra-
mid. Each higher level array is roughly half as large in           
each dimension as its predecessor, due to reduced sample density.

EQUIVALENT WEIGHTING FUNCTIONS

Fig. 3. The shape of the equivalent weighting function depends on the
choice of parameter a. For a = 0.5, the function is triangular; for a =
0.4 it is Gaussian-like, and for a = 0.3 it is broader than Gaussian. For
a = 0.6 the function is trimodal.

Gaussian Pyramid Interpolation

We now define a function EXPAND as the reverse of REDUCE.
Its effect is to expand an (M + 1)-by-(N + 1) array into a           
(2M + 1)-by-(2N + 1) array by interpolating new node values
between the given values. Thus, EXPAND applied to array gl of
the Gaussian pyramid would yield an array gl,1 which is the      
same size as gl–1.

Let gl,n be the result of expanding gl  n times. Then

gl,0  = gl

and

gl,n = EXPAND (gl, n—1 )

By EXPAND we mean, for levels 0 < l     <     N and 0     <     n and          
nodes i, j, 0     <     i < Cl – n, 0     <    j < Rl – n,

gl,n(ij ) =   4    
m=−
∑

2

2

    
n=−
∑

2

2

w(m,n)

• g
i m j n

l n, ,−
− −



1 2 2

.                                                   (2)

Only terms for which (i—m)/2 and (j—n)/2 are integers are
included in this sum.

If we apply EXPAND l times to image gl, we obtain gl , l, which
is the same size as the original image g0, Although full
expansion will not be used in image coding, we will use it to
help visualize the contents of various arrays within pyramid
structures. The top row of Fig. 5 shows image g0, 0, g1, 1, g2, 2, …
obtained by expanding levels of the pyramid in Fig. 4. The low-
pass filter effect of the Gaussian pyramid is now shown clearly.
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Fig. 4.  First six levels of the Gaussian pyramid for the "Lady" image The original image, level 0, meusures 257 by 257 pixels and each
higher level array is roughly half the dimensdons of its predecessor. Thus, level 5 measures just 9 by 9 pixels.

THE LAPLACIAN PYRAMID

Recall that our purpose for constructing the reduced image g1

is that it may serve as a prediction for pixel values in the
original image g0. To obtain a compressed representation, we
encode the error image which remains when an expanded g1  is
subtracted from g0. This image becomes the bottom level of the
Laplacian pyramid. The next level is generated by encoding g1

in the same way. We now give a formal definition for the
Laplacian pyramid, and examine its properties.

Laplacian Pyramid Generation

The Laplacian pyramid is a sequence of error images L0, L1,

…, LN.  Each is the difference between two levels of the Gaussian
pyramid. Thus, for 0     <     1 < N,

Ll  = gl – EXPAND (gl + 1)

= gl — gl + 1. 1.

Since there is no image gN + 1 to serve as the prediction image for
gN, we say LN = gN.

Equivalent Weighting Functions

The value at each node in the Laplacian pyramid is the
difference between the convolutions of two equivalent weight-
ing functions hl, hl + 1 with the original image. Again, this is
similar to convolving an appropriately scaled Laplacian
weighting function with the image. The node value could have
been obtained directly by applying this operator, although at
considerably greater computational cost.

Just as we may view the Gaussian pyramid as a set of low-
pass filtered copies of the original image, we may view the
Laplacian pyramid as a set of bandpass filtered copies of the
image. The scale of the Laplacian operator doubles from level to
level of the pyramid, while the center frequency of the passband
is reduced by an octave.

In order to illustrate the contents of the Laplacian pyramid,
it is helpful to interpolate between sample points. This may be
done  within the  pyramid   structure  by  Gaussian  interpolation.

Let Ll,n  be the result of expanding Ll n times using (2). Then, Ll,l

is the size of the original image.
The expanded Laplacian pyramid levels for the “Lady” image

of Fig. 4 are shown in the bottom row of Fig. 5. Note that image
features such as edges and bars appear enhanced in the Laplacian
pyramid. Enhanced features are segregated by size: fine details
are prominent in L0, 0, while progressively coarser features are
prominent in the higher level images.

Decoding

It can be shown that the original image can be recovered
exactly by expanding, then summing all the levels of the
Laplacian pyramid:

g0 = 
l

N

=
∑

0

Ll, l.                                         (4)

A more efficient procedure is to expand LN once and add it to
LN – 1 , then expand this image once and add it to LN – 2, and so on
until level 0 is reached and g0  is recovered. This procedure
simply reverses the steps in Laplacian pyramid generation.
From (3) we see that

gN  = LN

and for l = N – 1, N – 2, …, 0,

gl = Ll  + EXPAND (gl + 1 ).

Entropy

If we assume that the pixel values of an image representation
are statistically independent, then the minimum number of bits
per pixel required to exactly encode the image is given by the en-
tropy of the pixel value distribution. This optimum may be ap-
proached in practice through techniques such as variable length
coding.

The histogram of pixel values for the "Lady" image is shown
in Fig. 6(a). if we let the observed frequency of occurrence  f(i)  
of each gray level i be an estimate of its probability of
occurrence  in  this and  other  similar  images, then  the  entropy
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Fig 5.  First four levels of the Gaussian and Laplacian pyramid. Gaussian images, upper row, were obtainedby expanding pyramid arrays (Fig. 4) 
through Gaussian interpolation. Each level of the Laplacian pyramid is the difference between the corresponding and next higher levels of the 
Gaussian pyramid.
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FIG 6.  The distribution of pixel gray level values at various stages of the encoding process. The histogram of the original image is given in (a).
(b)-(e) give histograms for levels 0-3 of the Laplacian pyramid with generating parameter a=0.6. Histograms following quantization at each
level are shown in (f)-(i). Note that pixel values in the Laplacian pyramid are concentrateed near zero, permitting data compression
through shortened and varable length code words. Substantial further reduction is realized through quantization (particularly at low pyramid
levels) and reduced sample density (particularly at high pyramid levels).

is given by

H  =   – 
i=
∑

0

255

f(i) log2 f(i)

         
The maximum entropy would be 8 in this case since the

image is initially  represented at 256 gray levels, and would be
obtained when all gray levels were equally likely. The actual
entropy estimate for "Lady" is slightly less than this, at 7.57.

The technique of subtracting a predicted value from each
image pixel, as in the Laplacian pyramid, removes much of the
pixel-to-pixel correlation. Decorrelation also results in a
concentration of pixel values around zero, and, therefore, in
reduced variance and entropy. The degree to which these
measures are reduced depends on the value of the parameter       
"a" used in pyramid generation (see Fig. 7). We found              
that the greatest reduction was obtained for a = 0.6 in our exam-
ples. Levels of  the  Gaussian  pyramid  appeared  "crisper"  when

generated with this value of a than when generated with a smaller
value such as 0.4, which yields more Guassian-like equivalent
weighting functions. Thus, the selection a = 0.6 had perceptual
as well as computational advantages. The first four levels of the
corresponding Laplacian pyramid and their histograms are
shown in Fig. 6(b)-(e). Variance (σ2) and entropy (H) are also
shown for each level. These quantities generally are found to
increase from level to level, as in this example.

QUANTlZATION

Entropy can be substantially reduced by quantizing the pixel
values in each level of the Laplacian pyramid. This introduces
quantization errors, but through the proper choice of the  
number and distribution of quantization levels. the degra-  
dation may be made almost imperceptible to human observers.
We illustrate this procedure with uniform quantization. The
range of pixel values is divided into bins of size n, and             
the  quantized  value  Cl (i, j)  for pixel  Ll (i, j)  is  just  the  middle
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Fig 7. Entropy and variance of pixel values in Laplacian pyramid level 0 as a function of the parameter “a” for the “Lady” image. Greatest
reduction is obtained for a  ≅ 0.6 This estimate of the optimal “a”  was also obtained at other pyramid levels and for other images.

Fig 8. Examples of image data compression using the Laplacian Pyramid code. (a) and (c) give the original "Lady" and "Walter" images,
while (b) and (d) give their encoded versions of the data rates are 1.58 and 0.73 bits/pixel for "Lady'' and "Walter," respectively. The
corresponding mean square errors were 0.88 percent and 0.43 percent, respectively.

value of the bin which contains Ll(i, j)

Cl(i, j) = mn  if (m —1/2)n < Ll(i, j) ≤ (m  + 1/2)n.                 (5)

The quantized image is reconstructed through the expand and
sum procedure (4) using C values in the place of L values.

Results of quantizing the "Lady" image are shown in Fig.
6(f)-(i). The bin size for each level was chosen by increasing     
n until degradation was just perceptible when viewed from           
a distance of approximately five times the image width       
(pixel-pixel separation ≅ 3 min arc). Note that bin size becomes
smaller at higher levels (lower spatial frequencies). Bin size at      
a given pyramid level reflects the sensitivity of the human
observer to contrast errors within the spatial frequency bands
represented at that level. Humans are fairly sensitive to          
contrast perturbations at low and medium spatial frequencies, but

relatively insensitive to such perturbations at high spatial
frequencies [3] , [4] , [7] .

This increased observer sensitivity along with the increased
data variance noted above means that more quantization levels
must be used at high pyramid levels than at low levels.
Fortunately, these pixels contribute little to the overall bit rate
for the image, due to their low sample density. The low-level
(high-frequency) pixels, which are densely sampled, can be
coarsely quantized (cf. [6], [11], [12]).

RESULTS

The final result of encoding, quantization, and recon-
struction are shown in Fig. 8. The original "Lady" image is
shown in Fig. 8(a); the encoded version, at 1.58 bits/pixel, is
shown in Fig. 8(b). We assume that variable-length code words
are  used  to  take  advantage  of  the   nonuniform  distribution  of
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node values, so the bit rate for a given pyramid level is its
estimated entropy times its sample density, and the bit rate for
the image is the sum of that for all levels. The same procedure
was performed on the “Walter”  image; the original is shown in
Fig. 8(c). while the version encoded at 0.73 bits/pixel is shown
in Fig. 8(d). In both cases, the encoded images are almost
indistinguishable from the originals under viewing conditions
as stated above.

PROGRESSIVE TRANSMISSION

It should also be observed that the Laplacian pyramid code is
particularly well suited for progressive image transmission. In
this type of transmission a coarse rendition of the image is sent
first to give the receiver an early impression of image content,
then subsequent transmission provides image detail of
progressively finer resolution [5]. The observer may terminate
transmission of an image as soon as its contents are recognized,
or as soon as it becomes evident that the image will not be of
interest. To achieve progressive transmission, the topmost
level of the pyramid code is sent first, and expanded in the
receiving pyramid to form an initial, very coarse image. The
next lower level is then transmitted, expanded, and added to the
first, and so on. At the receiving end, the initial image appears
very blurry, but then comes steadily into “focus.”  This
progression is illustrated in Fig. 9, from left to right. Note that
while 1.58 bits are required for each pixel of the full
transmission (rightmost image), about half of these, or 0.81
bits, are needed for each pixel for the previous image (second
from right, Fig. 9), and 0.31 for the image previous to that (third
from right).

SUMMARY AND CONCLUSION

The Laplacian pyramid is a versatile data structure with many
attractive features for image processing. It represents an image
as a series of quasi-bandpassed images, each sampled at
successively sparser densities. The resulting code elements,
which form a self-similar structure, are localized in both space
and spatial frequency. By appropriately choosing the parameters
of the encoding and quantizing scheme, one can substantially
reduce the entropy in the representation, and simultaneously
stay within the distortion limits imposed by the sensitivity of
the human visual system.

Fig. 10 summarizes the steps in Laplacian pyramid coding.
The first step, shown on the far left, is bottom-up construction
of the Gaussian pyramid images g0 , g1 , …, gN [see (1)]. The
Laplacian pyramid images L0, L1, …, LN  are then obtained as the
difference between successive Gaussian levels [see (3)]. These
are quantized to yield the compressed code represented by the
pyramid of values Cl(ij ) [see (5)]. Finally, image reconstruction
follows an expand-and-sum procedure [see (4)] using C values in
the place of L values. Here we designate the reconstructed image
by r0 .

It should also be observed that the Laplacian pyra-              
mid encoding scheme requires relatively simple computations.
The computations are local and may be performed in parallel, and
the same computations are iterated to build each pyramid       
level from its predecessors. We may envision performing  Lapla-
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Fig. 10.  A summary of the steps in Laplacian pyramid coding and decoding.  First, the original image g0 (lower left) is used to generate
Gaussian pyramid levels g1, g2, … through repeated local averaging.  Levels of the Laplacian pyramid L0, L1, … are then computed as
the differences between adjacent Gaussian levels.  Laplacian pyramid elements are quantized to yield the Laplacian pyramid code C0,
C1, C2, ….  Finally, a reconstructed image r0 is generated by summing levels of the code pyramid.

cian coding and decoding in real time using array processors and
a pipeline architecture.

An additional benefit, previously noted, is that in computing
the Laplacian pyramid, one automatically has access to
quasi-bandpass copies of the image. In this representation,
image features of various sizes are enhanced and are directly
available for various image processing (e.g., [1]) and pattern
recognition tasks.
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