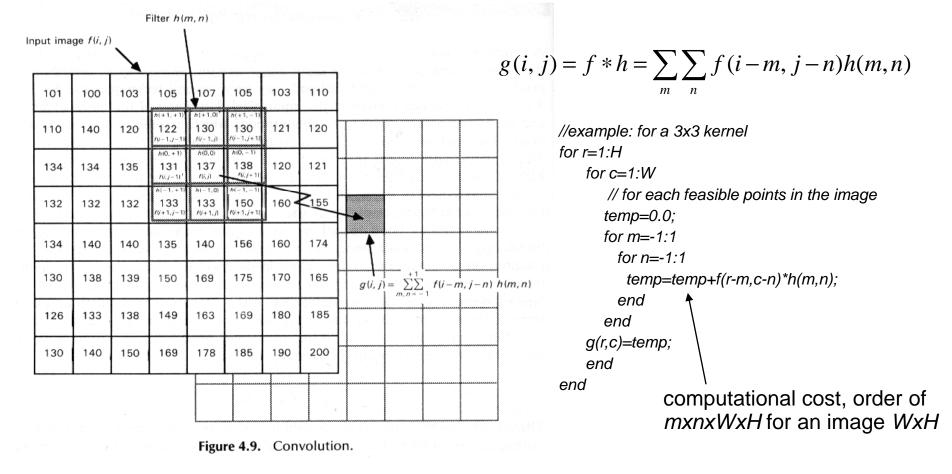
Neighborhood operations

- · Generate an output pixel on the basis of the pixel and its neighbors
- Often involve the *convolution* of an image with a filter *kernel* or *mask*



D. Vernon; Machine Vision : Automated Visual Inspection and Robot Vision, Prentice Hall, 1991 SINA - 07/08

Esample: noise suppression

- Assuming (usually correctly) that the ulletnoise has a high spatial frequency
- Apply a low-pass spatial filter ullet

Of course high-frequencies in the • image will be degraded after filterin

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Figure 4.11 Local average mask.

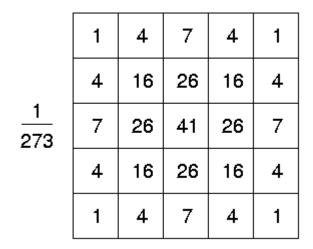
ering	101 * 1/9	100 * 1/9	103 * 1/9	105	107	105	103	110
	110 * 1/9	140 1/9	120 * 1/9	122	130	130	121	120
101*1/9+100*1/9+103*1/9	134 * 1/9	134 * 1/9	135 * 1/9	131	137	138	120	121
+110*1/9+140*1/9+120*1/9 +134*1/9+134*1/9+135*1/9	132	132	132	133	133	150	160	155
	134	140	140	135	140	156	160	174
	130	138	139	150	169	175	170	165
	126	133	138	149	163	169	180	185
	130	140	150	169	178	185	190	200

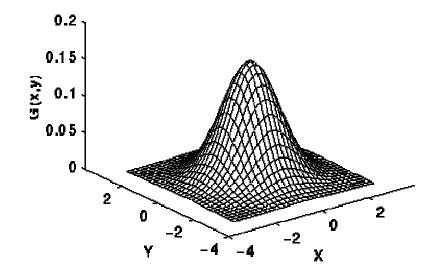
Gaussian smoothing

• The image is convolved with a Gaussian function

$$G(x, y) = \frac{1}{2\pi\sigma^2} e^{-(x^2 + y^2)/2\sigma^2}$$

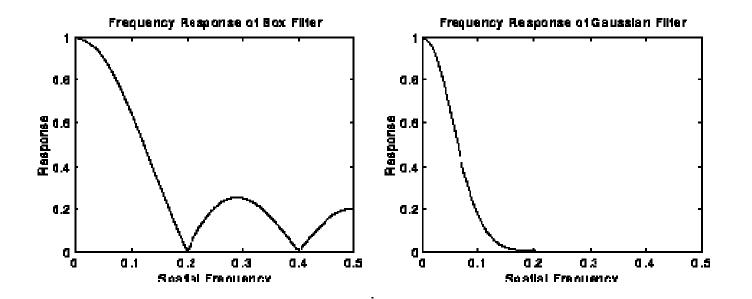
 σ defines the spread of the function small $\sigma \rightarrow$ narrow gaussian large $\sigma \rightarrow$ broad gaussian





Why smooth with a Gaussian? (1)

• The Gaussian filter has nice properties in the frequency domain:



Why smooth with a Gaussian? (2)

Convolving a Guassian with a Gaussian, gives a Gaussian:

$$G_{\sigma_1} * G_{\sigma_2} = G_{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

• it is possible to obtain heavily smoothed images by resmoothing smoothed images...

Why smooth with a Gaussian? (3)

• Filtering with a 2D Gaussian can be separated in two convolutions with one dimensional Gaussian function:

$$G_{\sigma} = \frac{1}{2\pi\sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}} = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^{2}}{2\sigma^{2}}} \cdot \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{y^{2}}{2\sigma^{2}}}$$

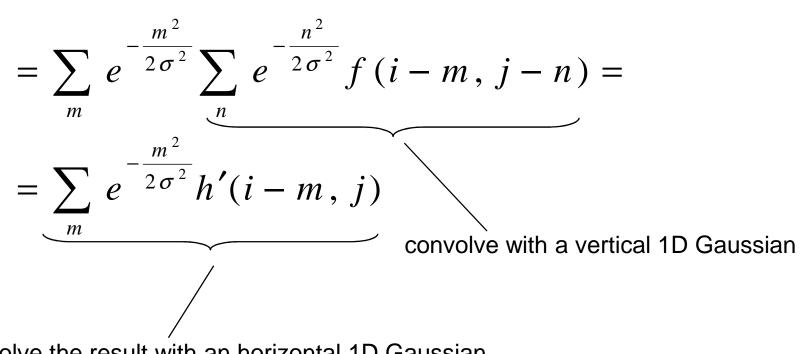
Why smooth with a Gaussian? (3)

• Filtering with a 2D Gaussian can be separated in two convolutions with one dimensional Gaussian function:

$$G_{\sigma} = \frac{1}{2\pi\sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}} = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^{2}}{2\sigma^{2}}} \cdot \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{y^{2}}{2\sigma^{2}}}$$

$$g(i, j) = f * g = \sum_{m} \sum_{n} g(m, n) f(i - m, j - n) =$$

$$= \sum_{m} \sum_{n} e^{-\frac{m^{2}+n^{2}}{2\sigma^{2}}} f(i-m, j-n) =$$



convolve the result with an horizontal 1D Gaussian

 Convolving with a separable filter is the same as convolving with two 1D kernels, but faster:

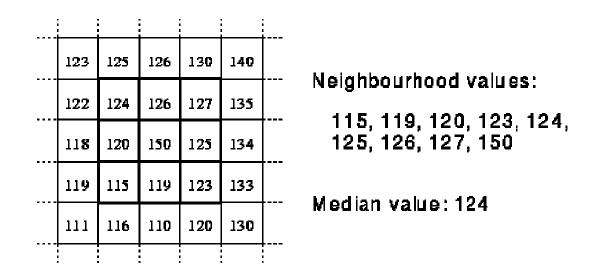
nxHxW + mxHxW operations, instead of nxmxHxW

Example

- Above: images corrupted by normally distributed additive noise (std 5,10,15,20)
- Below: smoothing with a gaussian filter 10x10 std=3

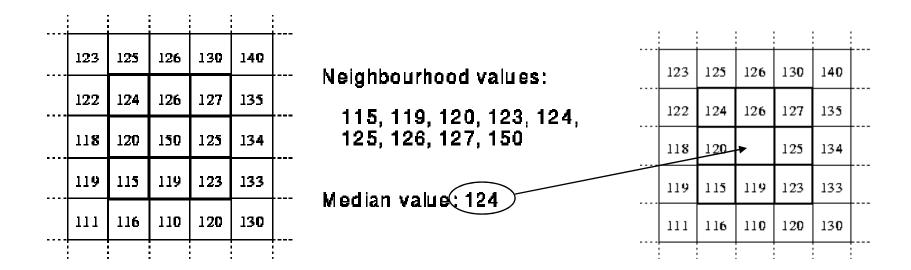
Median Filter

- Non linear technique, useful for noise supression
- In one dimension:
 - slide a window of an odd number of pixel
 - replace the center pixel with the median within the window
- The median of a discrete sequence of N (odd) elements is the number so that (N-1)/2 elements are smaller or equal in value and (N-1)/2 elements are larger or equal in value
 - In practice: sort the pixels and pick the value in the middle...



Median Filter

- Non linear technique, useful for noise supression
- In one dimension:
 - slide a window of an odd number of pixel
 - replace the center pixel with the median within the window
- The median of a discrete sequence of N (odd) elements is the number so that (N-1)/2 elements are smaller or equal in value and (N-1)/2 elements are larger or equal in value
 - In practice: sort the pixels and pick the value in the middle...



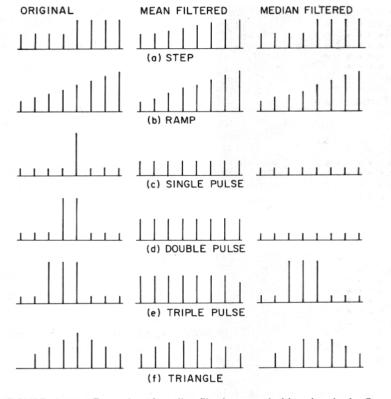


FIGURE 12.6-1. Examples of median filtering on primitive signals, L = 5.

FIGURE 12.6-3. Examples of one-dimensional median filtering for images corrupted by impulse noise. (a) Image with impulse noise, 15 errors per line. (b) Median filtering of (a) with L = 3. (c) Median filtering of (a) with L = 5. (d) Median filtering of (a) with L = 7.

Edge detection

- It is an example of *feature extraction*
- Edges correspond to abrupt changes of luminous intensity in the image
- They usually correspond to discontinuities in the visual scene, due to illumination, object surface or material → object boundaries
- Estimate the gradient of the image:

$$\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

• The *rate of change* of the image is maximum along the direction:

$$\vartheta = \arctan\left(\frac{\partial f}{\partial y} \middle/ \frac{\partial f}{\partial x}\right)$$

• With magnitude:

$$|\nabla f| = g(x, y) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

SINA - 07/08

• Simplest way to estimate the derivatives:

 $or: g(x, y) = |S_x| + |S_y|$

$$\frac{\partial f}{\partial x} = f(x+1, y) - f(x, y), \quad \frac{\partial f}{\partial y} = f(x, y+1) - f(x, y)$$

• Another approach (*Roberts*) compute the derivatives diagonally over a 2x2 region:

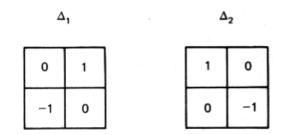
$$g(x, y) \approx R(x, y) = \sqrt{\left[f(x+1, y+1) - f(x, y)\right]^2 + \left[f(x+1, y) - f(x, y+1)\right]^2}$$

• First differences are sensitive to noise, a better approach is to combine differencing with local averaging. For example *Sobel* operator:

$$S_{y} = [f(x-1, y+1)+2f(x, y+1)+f(x+1, y+1)] -[f(x-1, y-1)+2f(x, y-1)+f(x+1, y+1)]$$

$$S_{x} = [f(x+1, y-1)+2f(x+1, y)+f(x+1, y+1)] -[f(x-1, y-1)+2f(x-1, y)+f(x-1, y+1)]$$

$$g(x, y) \approx \sqrt{S_{x}^{2}+S_{y}^{2}}$$
Takes the difference of a weighted average of the image intensity of either sides of $f(x, y)$



(a)

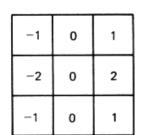
Edge operators can be represented as convolution kernels:

- a) Roberts
- b) Prewitt

c) Sobel

-1	0	1	1	1
 -1	0	1	0	0
-1	0	1	-1	-1

(b)



1	2	1
0	0	0
-1	-2	-1

1

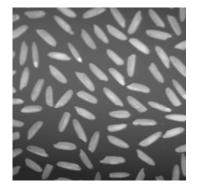
0

-1

(c)

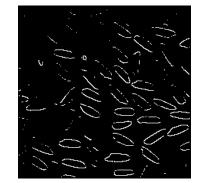
• Once the gradient magnitude has been estimated, decide if an edge is present or not based on a threshold:

$$edge(x, y) = \begin{cases} 0 & \text{if } g(x, y) < t \\ 1 & \text{otherwise} \end{cases}$$

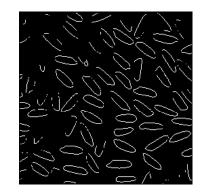


original image (rice.tif)

I = imread('rice.tif'); eRob= edge(I, 'roberts'); ePre = edge(I, 'prewitt'); eSob = edge(I, 'sobel'); figure(1), imshow(eRob) figure(2), imshow(ePre) figure(3), imshow(eSob)



Roberts (th=0.13)



Prewitt (th=0.09)

Sobel (th=0.09)

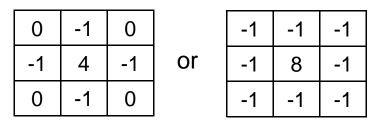
Laplacian

• Alternative method, computes the Laplacian:

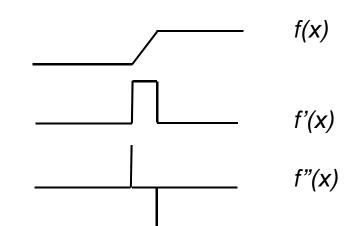
$$\nabla^2 f(x, y) = \left(\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}\right)$$

• Approximation:

1d: f'(x+1)=f(x+1)-f(x), $f'(x)=f(x)-f(x-1) \rightarrow f''(x)=f'(x+1)-f'(x)$ 2d: convolve with kernels:



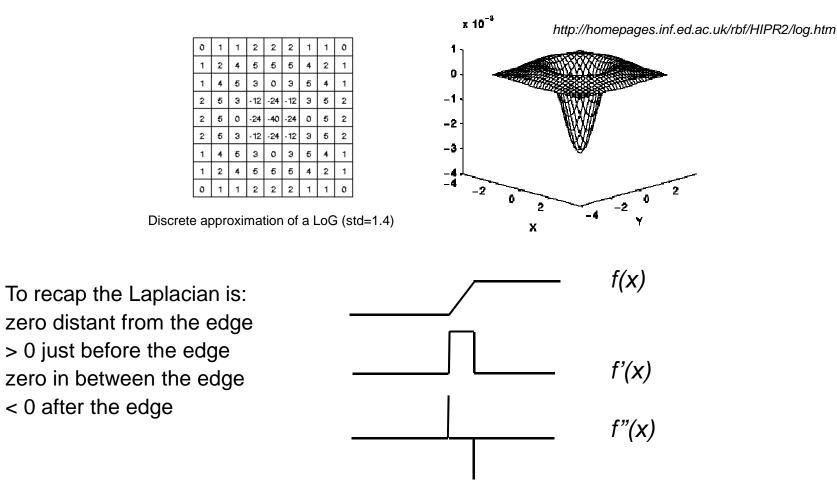
- Zero response to linear ramps (gradual changes in intensity), respond to either sides of edges (+/-) → detect edges as zero crossing
- Drawback \rightarrow strong response to noise
- First convolve with a Gaussian (Marr and Hildreth)



• The Laplacian operator has some nice properties:

$$\nabla^2 \{ I(x, y) * G(x, y) \} = \nabla^2 G(x, y) * I(x, y)$$

 $\nabla^2 G(x, y)$ is also called LoG (Laplacian of Gaussian)



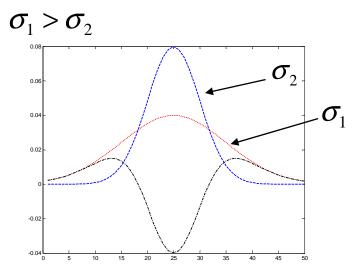
More on the LoG (useful things to know)

• The two dimensional convolution can be separated into four onedimensional convolution:

$$\nabla^2 \left\{ I(x, y) * G(x, y) \right\} = G(x) * \left\{ I(x, y) * \frac{\partial^2}{\partial^2 y} G(y) \right\} + G(y) * \left\{ I(x, y) * \frac{\partial^2}{\partial^2 x} G(x) \right\}$$

• The LoG can be approximated as:

 $g_1(x, y) - g_2(x, y) = G_{\sigma_1} * f(x, y) - G_{\sigma_2} * f(x, y) = (G_{\sigma_1} - G_{\sigma_2}) * f(x, y) = DoG * f(x, y)$



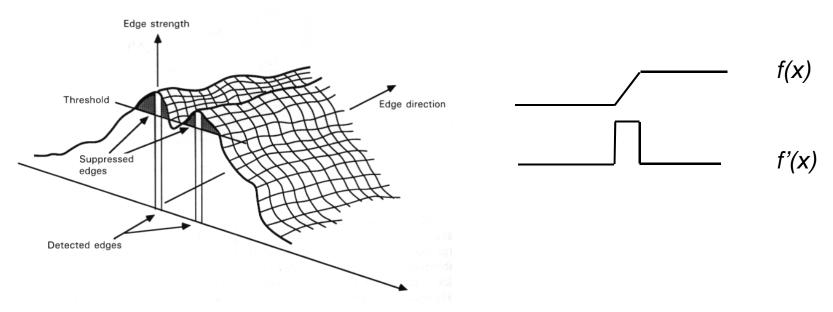
Canny Edge Detector (1986)

- Problem of the edge detectors: produce large edges, sometimes edges are not connected because of noise
- Smooth with a Gaussian, then apply Sobel
- Thin edges, *non-maxima suppression*:

Edge is found if

a) response exceeds a given threshold and

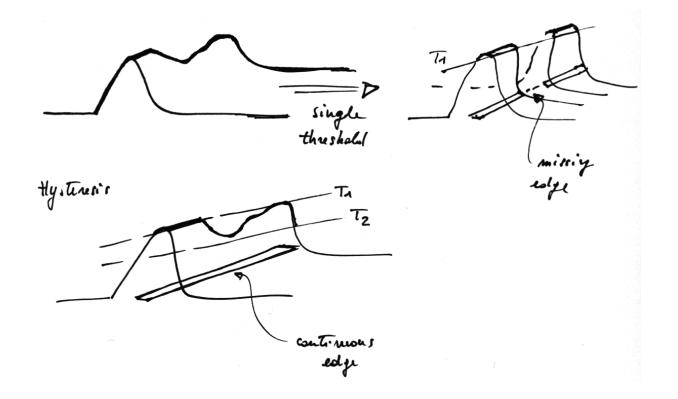
b) it is not dominated by responses at neighboring points in a direction normal to the candidate edge \rightarrow the edge must be higher than the edge magnitude of the pixels on either side

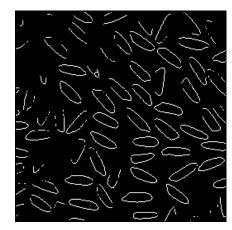


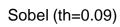
SINA - 07/08

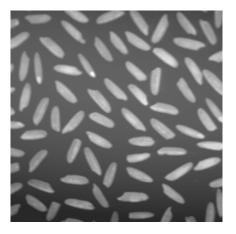
Canny Edge (2)

 Extends weak edges: Hysteresis controlled by two thresholds T1 > T2; all pixels above T1 are marked as edge; then all pixels connected to these edges whose value is above T2 will be selected as edge (avoid 'dashed edges')

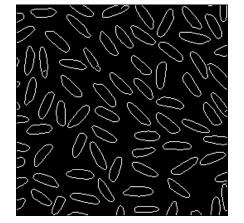








original image (rice.tif)



Canny