
Neighborhood operations
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//example: for a 3x3 kernel
for r=1:H

for c=1:W
// for each feasible points in the image

• Generate an output pixel on the basis of the pixel and its neighbors
• Often involve the convolution of an image with a filter kernel or mask
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// for each feasible points in the image
temp=0.0;
for m=-1:1

for n=-1:1            
temp=temp+f(r-m,c-n)*h(m,n);

end
end

g(r,c)=temp;
end

end
computational cost, order of 
mxnxWxH for an image WxH

D. Vernon; Machine Vision : Automated Visual Inspection and Robot Vision, Prentice Hall, 1991



Esample: noise suppression

• Assuming (usually correctly) that the 
noise has a high spatial frequency

• Apply a low-pass spatial filter 
• Of course high-frequencies in the 

image will be degraded after 
filtering…
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Gaussian smoothing
• The image is convolved with a Gaussian function
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SINA - 07/08 from: http://www.cee.hw.ac.uk/hipr/html/gsmooth.html



Why smooth with a Gaussian? (1)

• The Gaussian filter has nice properties in the frequency 
domain:
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Why smooth with a Gaussian? (2)

• Convolving a Guassian with a Gaussian, gives a 
Gaussian:
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• it is possible to obtain heavily smoothed images 
by resmoothing smoothed images…
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Why smooth with a Gaussian? (3)

• Filtering with a 2D Gaussian can be separated in two 
convolutions with one dimensional Gaussian function:

2 2 2 2

2 2 22 2 2
2

1 1 1

2 2 2

x y x y

G e e eσ σ σ
σ πσ πσ πσ

+− − −
= = ⋅

SINA - 07/08

22 2 2
G e e eσ πσ πσ πσ

= = ⋅



Why smooth with a Gaussian? (3)

• Filtering with a 2D Gaussian can be separated in two 
convolutions with one dimensional Gaussian function:

2 2 2 2

2 2 22 2 2
2

1 1 1

2 2 2

x y x y

G e e eσ σ σ
σ πσ πσ πσ

+− − −
= = ⋅

SINA - 07/08

22 2 2
G e e eσ πσ πσ πσ

= = ⋅

2 2

22

( , ) ( , ) ( , )

( , )

m n

m n

m n

g i j f g g m n f i m j n

e f i m j nσ
+−

= ∗ = − − =

= − − =

∑ ∑

∑ ∑



2 2

2 2

2

2

2 2

2

( , )

( , )

m n

m n

m

m

e e f i m j n

e h i m j

σ σ

σ

− −

−

= − − =

′= −

∑ ∑

∑
convolve with a vertical 1D Gaussian
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convolve the result with an horizontal 1D Gaussian

• Convolving with a separable filter is the same as convolving 
with two 1D kernels, but faster:

nxHxW + mxHxW operations, instead of nxmxHxW



Example
• Above: images corrupted by normally distributed additive noise (std 

5,10,15,20)
• Below: smoothing with a gaussian filter 10x10 std=3
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Median Filter
• Non linear technique, useful for noise supression
• In one dimension:

– slide a window of an odd number of pixel
– replace the center pixel with the median within the window

• The median of a discrete sequence of N (odd) elements is the number so 
that (N-1)/2 elements are smaller or equal in value and (N-1)/2 elements 
are larger or equal in value
– In practice: sort the pixels and pick the value in the middle…
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SINA - 07/08 W.K.Pratt, Digital Image Processing



Edge detection
• It is an example of feature extraction
• Edges correspond to abrupt changes of luminous intensity in the image
• They usually correspond to discontinuities in the visual scene, due to 

illumination, object surface or material � object boundaries
• Estimate the gradient of the image:
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• The rate of change of the image is maximum along the direction:

• With magnitude:
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• Simplest way to estimate the derivatives:
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• Another approach (Roberts) compute the derivatives diagonally over a 2x2 
region:
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• First differences are sensitive to noise, a better approach is to combine 
differencing with local averaging. For example Sobel operator:
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differencing with local averaging. For example Sobel operator:
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Edge operators can be represented as 
convolution kernels:

a) Roberts 
b) Prewitt
c) Sobel
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• Once the gradient magnitude has been estimated, decide if an edge 
is present or not based on a threshold:
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original image (rice.tif) Roberts (th=0.13) Prewitt (th=0.09) Sobel (th=0.09)

I = imread('rice.tif');
eRob= edge(I, ‘roberts’);
ePre = edge(I,'prewitt');
eSob = edge(I,‘sobel');
figure(1), imshow(eRob)
figure(2), imshow(ePre)
figure(3), imshow(eSob)



• Alternative method, computes the Laplacian:

• Approximation:
1d: f’(x+1)=f(x+1)-f(x), f’(x)=f(x)-f(x-1)  � f’’(x)=f’(x+1)-f’(x)
2d: convolve with kernels:

Laplacian
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• Zero response to linear ramps (gradual changes in intensity), respond to 
either sides of edges (+/-) � detect edges as zero crossing

• Drawback � strong response to noise
• First convolve with a Gaussian (Marr and Hildreth)
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• The Laplacian operator has some nice properties:

{ } ),(),(),(),( 22 yxIyxGyxGyxI ∗∇=∗∇

),(2 yxG∇ is also called LoG (Laplacian of Gaussian)

http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
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Discrete approximation of a LoG (std=1.4)

• To recap the Laplacian is:
zero distant from the edge
> 0 just before the edge
zero in between the edge
< 0 after the edge

f(x)

f’(x)

f’’(x)



More on the LoG (useful things to know)

• The two dimensional convolution can be separated into four one-
dimensional convolution:

• The LoG can be approximated as:
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Canny Edge Detector (1986)
• Problem of the edge detectors: produce large edges, sometimes edges are not 

connected because of noise
• Smooth with a Gaussian, then apply Sobel
• Thin edges, non-maxima suppression:

Edge is found if
a) response exceeds a given threshold and
b) it is not dominated by responses at neighboring points in a direction normal to the 
candidate edge � the edge must be higher than the edge magnitude of the pixels on 
either side
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Canny Edge (2)

• Extends weak edges: Hysteresis controlled by two thresholds T1 > T2; all pixels 
above T1 are marked as edge; then all pixels connected to these edges whose 
value is above T2 will be selected as edge (avoid ‘dashed edges’)
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original image (rice.tif) Sobel (th=0.09) Canny


