Neighborhood operations

» Generate an output pixel on the basis of the pixel and its neighbors
« Often involve the convolution of an image with a filter kernel or mask

Filter Aim, n)

Input image ”"-»“\ \ g(|, J) =flh= ZZ f (| —m, J _n)h(m’ n)

101 100 103
110 | 140 | 120 llexample: for a 3x3 kernel
for r=1:H
134 134 1356 for C:].:W
I/ for each feasible points in the image
132 132 132
temp=0.0;
134 | 140 | 140 | 135 | 140 | 156 | 160 | 174 | for m=-1:1
for n=-1:1
130 | 138 | 139 | 150 | 169 | 175 | 170 | 165 g[f'l,l;'#—' 2"‘2‘ Fliem j—m) him. ) temp=temp+f(r-m,c-n)*h(m,n);
e end
126 133 138 149 163 169 180 185 end
130 140 1580 169 178 185 180 200 g(r,C):temp;
end
end .
computational cost, order of

mxnxWxH for an image WxH

Figure 4.9. Convolution.

D. Vernon; Machine Vision : Automated Visual Inspection and Robot Vision, Prentice Hall, 1991
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Esample: noise suppression

1/9 1/9 1/9

Assuming (usually correctly) that the
noise has a high spatial frequency e | e | 1o

Apply a low-pass spatial filter

Of course high-frequencies in the
image will be degraded after

1/9 1/9 1/9

Figure 4.11 Local average mask.

filtering... VL 0s

1/9 1/9 1/9

107 105 103 110

110 | 140 | 120
N . 122 | 130 | 130 | 121 | 120
| 1o—1"19 | 19

101*1/9+100*1/9+103*1/9 /3 L e | vsr | rss | 20 | 1

1/9 1/9 1/9
+110*1/9+140*1/9+120*1/9
+134*1/9+134*1/9+135*1/9

132 132 132 133 133 150 160 155

134 140 140 135 140 156 160 174

130 138 139 150 169 175 170 165

126 133 138 149 163 169 180 185

130 140 150 169 178 185 190 200
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Gaussian smoothing

 The image is convolved with a Gaussian function

e—(x2 +y? )/ 2072

G(x,y) = py—

o definesthespread of thefunction
small o —» narrow gaussian
largeo — broad gaussian

.
(o7
]
o
o
b

G (X.¥)

— | 7| 26| 41| 26| 7

SINA - 08/09 from: http://www.cee.hw.ac.uk/hipr/html/gsmooth.html



Why smooth with a Gaussian? (1)

The Gaussian filter has nice properties in the frequency
domain:

FFEI‘.]IJEHE:" H.ﬁtpﬂl"ltﬁ ol Bax Fllar quu&ﬂﬂj‘ H.EEF]I'.'II"IEE ol Gauszlan Flier
1 . i ; :
1.8 1.4
204 2a0Ar
= =
(=} =]
L (=8
o -]
a 1.4 1 Ta4f
1.2 /_\/ naf
. , . . , . .
il .1 1.2 1.1 .4 1.5 il .1 a2 a1 1.4 1.5
Soadal Franllanry BoAallal Framlia ey
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Why smooth with a Gaussian? (2)

 Convolving a Guassian with a Gaussian, gives a
Gaussian:

G, LG, =G

|t IS possible to obtain heavily smoothed images
by resmoothing smoothed images...
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Why smooth with a Gaussian? (3)

 Filtering with a 2D Gaussian can be separated in two
convolutions with one dimensional Gaussian function:

1 _X+y? 1 X 1 ¥
G — e 20° — 620'2| 9202

7 21o° 2o 2110
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Why smooth with a Gaussian? (3)

 Filtering with a 2D Gaussian can be separated in two
convolutions with one dimensional Gaussian function:

1 Xy’ 1 X 1 ¥
G — e 20° — 620'2| 9202

7 2 J2mo J2no
g, J)=1 Dg:ZZg(m,n)f(i—m,j—n):

m? +n

:Zm:zn:e_wzf(i—m,j—n):

2
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—Ze”ZeZU f (i —m, J—n)—

Z 2f’h(l—m j)\

—  convolve with a vertical 1D Gaussian

convolve the result with an horizontal 1D Gaussian

« Convolving with a separable filter is the same as convolving
with two 1D kernels, but faster:

nXHXW + mxHxW operations, instead of nxmxHxW
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Example

Above: images corrupted by normally distributed additive noise (std
5,10,15,20)

Below: smoothing with a gaussian filter 10x10 std=3
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Median Filter

* Non linear technique, useful for noise supression
* In one dimension:
— slide a window of an odd number of pixel
— replace the center pixel with the median within the window

 The median of a discrete sequence of N (odd) elements is the number so
that (N-1)/2 elements are smaller or equal in value and (N-1)/2 elements
are larger or equal in value

— In practice: sort the pixels and pick the value in the middle...

123 125 | 126 | 130 | 140

Neighboarhoad valies:
1221124 | 126 | 127 | 135

115, 119,120,123, 124,
118|120 | 150 | 125 | 134 125,126,127, 150

1191115 119 | 123 | 133

Median value: 124

111 (116 | 110 (120 | 130
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Median Filter

* Non linear technique, useful for noise supression
* In one dimension:
— slide a window of an odd number of pixel
— replace the center pixel with the median within the window

 The median of a discrete sequence of N (odd) elements is the number so
that (N-1)/2 elements are smaller or equal in value and (N-1)/2 elements
are larger or equal in value

— In practice: sort the pixels and pick the value in the middle...

123 125 | 126 | 130 | 140

Neighboirhoad valies: e e el
1221124 | 126 | 12T | 135
115= 119,12[]’123’ 124’ 1221124 | 126 | 127 | 135
118|120 | 150 | 125 | 134 125,126,127, 150

118 | 120 » 125 | 134

1191115 119 | 123 | 133 119 115 | 119 | 123 | 133

Median value( 124
111 | 11e | 110 | 120 | 130 111 116 1110 | 120 | 130
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ORIGINAL MEAN FILTERED MEDIAN FILTERED

1|||| HEN |||||

(a) STEP

aa L 1I|||

(b) RAMP

lllllllil[llll_]_lll[llll

{c) SINGLE PULSE

ooy LT

(d) DOUBLE PULSE

L L

(e) TRIPLE PULSE

LD et

(f) TRIANGLE

(a) (b)

-
=
-

11 III|

FIGURE 12.6-1. Examples of median filtering on primitive signals, L =5.

(c) ' (d)
FIGURE 12.6-3. Examples of one-dimensional median filtering for images corrupted
by impulse noise. (a) Image with impulse noise, 15 errors per line. (b) Median filtering
of (a) with L =3. (c) Median filtering of (a) with L =5. (d) Median filtering of (a) with
L=7.

SINA - 08/09 W.K.Pratt, Digital Image Processing



Edge detection

* Itis an example of feature extraction
 Edges correspond to abrupt changes of luminous intensity in the image

 They usually correspond to discontinuities in the visual scene, due to
illumination, object surface or material - object boundaries

« Estimate the gradient of the image:

of of

* The rate of change of the image is maximum along the direction:

ﬂ:arctan[af/afj
dy/ ox

B N CASERA
Df—g(X,Y)—\/(an +(6_yj

SINA - 08/09

* With magnitude:




Simplest way to estimate the derivatives:

i: f(X+:Ly)— f(X,y), i: f(X,y+1)‘ f(X’y)
) oy

Another approach (Roberts) compute the derivatives diagonally over a 2x2
region:

g%, Y) = RO, Y) = [ F(+Ly+) = O W) +[ F(x+1y) = F (x, y+D)

First differences are sensitive to noise, a better approach is to combine
differencing with local averaging. For example Sobel operator:

S =S[FO-Ly+D+2f (o y+D + f(x+1y+1)] Takes the difference of a
-[f(x-Ly-n+2f(xy-D+f(x+Ly-)]  —— weighted average of the

iImage intensity of either

S =[f(x+Ly-D+2f (x+Ly)+ f(x+L y+1)] sides of f(x,y)

-[f(x-Ly-D+2f (x-Ly)+ f (x-1y+D)]

gxy) =S +S;

or:g(xy) =|S +‘Sy‘
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(a)

(b)

(c)

Edge operators can be represented as
convolution kernels:

a) Roberts
b) Prewitt
c) Sobel
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* Once the gradient magnitude has been estimated, decide if an edge
IS present or not based on a threshold:

0 if g(xvy)<t
1 otherwise

edge(x, y) = {

original image (rice.tif) Roberts (th=0.13) Prewitt (th=0.09) Sobel (th=0.09)

| = imread('rice.tif");
eRob= edge(l, ‘roberts’);
ePre = edge(l,'prewitt);
eSob = edge(l,'sobel");
figure(1), imshow(eRob)
figure(2), imshow(ePre)
figure(3), imshow(eSob)
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Laplacian

Alternative method, computes the Laplacian:

0%f 0°f
02 f(x,y) = ,
(%) (ax2 asz

Approximation:
1d: f(x+1)=f(x+1)-f(x), F(X)=f(x)-f(x-1) > f’"(x)=F(x+1)-f'(x)
2d: convolve with kernels:

o|-1|0 1)1
1l 4]-1]or |1]8]-1
o|-1|0 1)1

Zero response to linear ramps (gradual changes in intensity), respond to
either sides of edges (+/-) - detect edges as zero crossing

Drawback - strong response to noise
First convolve with a Gaussian (Marr and Hildreth)

SINA - 08/09
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The Laplacian operator has some nice properties:

O%{1 (%, y) DG(x, )} = 0°G(x, y) Ol (%, y)

DZG(X, Y) is also called LoG (Laplacian of Gaussian)

2122

| 5|56

alao|a

12| .24 -1z

24| -40|-24

12| .24 -1z

ajlo|3a

Q
1
1
z
2
z
1
1 | 5| &
a

= | Py [ |h (th |th | & || =
= | (th WD W | th [ 2
= |+ ([t | D |w |t [
= |k [ |th (th |th | & R =
o |22 | lm|a|la|lo

2|l 2|2

Discrete approximation of a LoG (std=1.4)

To recap the Laplacian is:

zero distant from the edge
> 0 just before the edge

x10”°

http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

’ .‘a;;ii;ii;é;%;i'ﬁ;;;
Wi

o,

F'(x)

zero in between the edge
< 0 after the edge

(%)
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More on the LoG (useful things to know)

 The two dimensional convolution can be separated into four one-
dimensional convolution:

02{1 (%, y) IG(x, Y)} = G(X D{l (%, Y) D;—ye(y>} +G(y) D{l (%, Y) D:Z—Xe(x)}

« The LoG can be approximated as:
6.4 Y) =0, (% Y) =G, LT (%) =G,, [ f(xy)=(G, -G, )T f(x,y) =DoGL f(x.y)
g, >0,

‘‘‘‘‘‘‘‘‘‘‘

N \ ; (S |
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Canny Edge Detector (1986)

Problem of the edge detectors: produce large edges, sometimes edges are not
connected because of noise

Smooth with a Gaussian, then apply Sobel
Thin edges, non-maxima suppression:
Edge is found if

a) response exceeds a given threshold and

b) it is not dominated by responses at neighboring points in a direction normal to the
candidate edge - the edge must be higher than the edge magnitude of the pixels on
either side

Edge strength

= — 1)
““ Ae direction /

Threshold

Suppressed

F'(x)

Detected edges
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Canny Edge (2)

« Extends weak edges: Hysteresis controlled by two thresholds T1 > T2; all pixels
above T1 are marked as edge; then all pixels connected to these edges whose
value is above T2 will be selected as edge (avoid ‘dashed edges’)

|74
“theesholf

'Hgﬂfarn‘r Ta

w1

—_
—
—

el Aon §

iy
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original image (rice.tif) Sobel (th=0.09) Canny
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