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plest being linear interpolation, which, as shall be shown,
does not maintain edge information well. More complicated
method$~® perform this interpolation and attempt to main-
tain edge detail or limit hue transitions. In Ref. 7, Trussell
introduces a linear lexicographic model for the image for-
mation and demosaicking process, which may be used in a

Abstract. Digital Still Color Cameras sample the color spectrum
using a monolithic array of color filters overlaid on a charge coupled
device array such that each pixel samples only one color band. The
resulting mosaic of color samples is processed to produce a high
resolution color image such that the values of the color bands not
sampled at a certain location are estimated from its neighbors. This

process is often referred to as demosaicking. This paper introduces
and compares a few commonly used demosaicking methods using
error metrics like mean squared error in the RGB color space and
perceived error in the CIELAB color space. © 2002 SPIE and IS&T.
[DOI: 10.1117/1.1484495]

reconstruction step. In Ref. 8, linear response models pro-
posed by Voraet al® have been used to reconstruct these
mosaicked images using an optimization technique called
mean field annealintf’ In this paper we briefly describe the

more commonly used demosaicking algorithms and dem-
onstrate their strengths and weaknesses. In Sec. 2, we de-
] ) o ) scribe the interpolation methods we use in our compari-
Commerually_ available Digital Still C(_)Ior Cameras are ggns. We compare the interpolation methods by running the
based on a single charge coupled deViC€D) array and  gjgorithms on three types of imagéwo types of synthetic
capture color |nformat.|on by using three or more color fil- image sets and one set of real-world mosaicked images
ters, each sample point capturing only one sample of theThe images used for comparison and their properties are
color spectrum. o ) presented in Sec. 3. Qualitative and quantitative results are
The Bayer arraﬁ/[shc_)wn in Fig. 1a)] is one of the many presented in Sec. 4. Discussions about the properties of
realizations of color filter array$CFA) possible. Many  these algorithms and their overall behavior are presented in
other implementations of a color-sampling grid have beengec. 5. We use two error metrics, the mean squared error in
incorporated in commercial cameras, most using the prin-yo RGB color space and theE?, error in the CIELAB

ciple that the luminance channébreen needs to be . : :
sampled at a higher rate than the chrominance channels?oIor spacedescribed in the Appendix
(red and blug The choice for green as “representative” of
the luminance is due to the fact that the luminance respons@ Demosaicking Strategies
curve of the eye peaks at around the frequency of green
light (around 550 nm 2.1
Since, at each pixel, only one spectral measurement Wa%ampling of a continuous imadéx,y) yields infinite rep-
made, the other colors must be estimated using information_.... . : i . .
from all the color planes in order to obtain a high resolution gtmon_s Oh]: t':]S contlnutth_Js spdectrufl(g, ’7|) in tﬂ‘? Folurlert
color image. This process is often referred talamosaick- omaur. ese repetitions do not overkaghich is aimos

ing. Interpolation must be performed on the mosaicked im- "SVe the case as natural images are not band lipited

age data. There are a variety of methods available, the sim®/19inal imagef (x,y) can be reconstructed exactly from its

discrete sample$(m,n), otherwise we observe the phe-
nomenon of aliasing. The one-dimensional “ideal” interpo-
—P 02-001009 received Feb. 20. 2001 revised ¢ received Auc 20 2001Iation is the multiplication with a rect function in the fre-
aper - receive en. s ; revised manuscript receives ug. s ; H H H - H
accepted for publication Dec. 10, 2001, guency domain and can be realized in the spatial domain by

1017-9909/2002/$15.00 © 2002 SPIE and IS&T. a convolution with the sinc function. This “ideal interpola-

1 Introduction

Ideal Interpolation
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Demosaicking methods

mentation in mind(paying great attention to the need for

Bl &l B | % | Bl S| B pipelining, system latency, and throughput per clock cycle
The larger the neighborhood, the greater the difficulty in

G B G B G B G pipelining, the greater the latency, and possibly, lesser the

21 2 23 24 25 26 27 throughput_

50 % % Y| 5] % S 2.3 Bilinear Interpolation

o B o B o B o Consider the array of pixels as shown in Figa)1At a blue

41 yy) 3 M 45 46 47 center(where blue color was measujedve need to esti-
mate the green and red components. Consider pixel loca-

Bl %Sl S| S| % % | % tion 44 at which onlyB,4 is measured; we need to estimate
Gas. Given Gy, Guz, Gus, Gsa, 0One estimate fo,, is

BBl %Sl Bl %) S| 9 given _by Gus= (Gagt+ Gyat Gyst G54)/4._ To determl_ne
R44, given Ras, Rs3s, Rss, Rgs, the estimate folRy, is

Ro| G | Rl G| BRo| G | R given byRss= (Ra3+ Ras+ Rs3+ Rss) /4. At a red center, we
would estimate the blue and green accordingly. Performing

this process at each photositecation on the CC} we
can obtain three color planes for the scene which would
give us one possible demosaicked form of the scene.

The band-limiting nature of this interpolation smooths
edges, which shows up in color images as fringeferred
to as the zipper effed‘gl‘ﬁ This has been illustrated with
two colors channelg¢for simplicity) in Fig. 2.

Fig. 1 Sample Bayer pattern.

tor” kernel is band limited and, hence, is not space limited.
It is primarily of theoretical interest and not implemented in
practice™

2.2 Neighborhood Considerations

: 2.4 Constant Hue-Based Interpolation
It may be expected that we get better estimates for the ) i .
missing sample values by increasing the neighborhood ofln general, hue is defined as the property of colors by which
the pixel, but this increase is computationally expensive.they can be perceived as ranging from red through yellow,
There is, hence, a need to keep the interpolation filter ker-green, and blue, as determined by the dominant wavelength
nel space-limited to a small size and also extract as muchof the light. Constant hue-based interpolation, proposed by
information from the neighborhood as possible. To this end, Col¢ and is one of the first few methods used in commer-
correlation between color channels is use&or RGB im- cial camera systems. Modifications of this system are still
ages, crosscorrelation between channels has been detel? use. The key objection to pixel artifacts in images that
mined and found to vary between 0.25 and 0.99 with aver-result from bilinear interpolation is abrupt and unnatural
ages of 0.86 for red/green, 0.79 for red/blue, and 0.92 forhue changé.There is a need to maintain the hue of the
green/blue cross correlatiohs.One well-known image  color such that there are no sudden jumps in (exeept for
modef? is to simply assume that red and blue are perfectly Over edges, sayThe red and blue channels are assigned to
correlated with the green over a small neighborhood andbe the chrominance channels while the green channel is
thus differ from green by only an offset. This image model assigned as the luminance channel.

is given by As used in this section, hue is defined by a vector of
ratios as R/G,B/G).? It is to be noted that the term hue

Gjj=Rj; tKk, (1) defined above is valid for this method only, also, the hue
needs to be “redefined” if the denominat@® is zero. By

where(i, j) refers to the pixel locationR (known) and G interpolating the hue value and deriving the interpolated

(unknown) the red and green pixel valudsjs the appro-  chrominance valuegblue and regl from the interpolated
priate bias for the given pixel neighborhood. The same ap-hue values, hues are allowed to change only gradually,
plies at a blue pixel location. The choice of the neighbor- thereby reducing the appearance of color fringes which
hood size in such a case is important. It is observed thatwould have been obtained by interpolating only the chromi-
most implementations are designed with hardware imple-nance values.

123456 7 8 9 101112 1234 56 7 89 101112 123456 78 9 101112

(2) (b) (©)

Fig. 2 lllustration of fringe or zipper effect resulting from the linear interpolation process. An edge is
illustrated as going from navy blue (0,0,128) to yellow (255,255,128). The zipper effect produces green
pixels near the edge: (a) original image (only 2 colors, blue constant at 128), (b) one scan line of
subsampled Bayer pattern (choose every other pixel), (c) result of estimating missing data using linear
interpolation. Observe color fringe in locations 5 and 6.
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Fig. 3 lllustration of Freeman'’s interpolation method for a two channel system, as in Fig. 2 an edge is
illustrated as going from navy blue (0,0,128) to yellow (255,255,128): (a) original image (only 2 colors,
blue constant at 128), (b) one scan line of subsampled Bayer pattern (choose every other pixel), (c)
result of linear interpolation, (d) green minus red, (€) median filtered result (filter size of five pixels) of
the difference image, and (f) reconstructed image.

Consider an image with constant hue. In exposure spacehe difference image, of say, red minus green and blue mi-
{be it logarithmic[Most cameras capture data in a logarith- nus green is median filtered. The median filtered image thus
mic exposure space and need to be linearized before th@btained is then used in conjunction with the original Bayer
ratios used as such. If interpolating in the logarithmic ex- array samples to recover the samplékistrated below.
posure space, difference of logarithms needs to be takerThis method preserves edges well, as illustrated in Fig. 3
instead of ratios; i.e., lo&;/Rq)=log(R;)—log(Ry).] or where only one row of the Bayer array is considered since
linear, the values of the luminanc&) and one chromi-  this process can be extrapolated to the case of the rows
nance componer(R, say at a location(i,j) and a neighbor-  containing blue and green pixels. Figuréa3shows one
ing sample locatiortk,|) are related a&;; /Ry =Gj; /Gy if scan I|r_1e of the _orl_glnal image b_efore Bayer subsz_implln_g,
Bij/Bu=Gi; /Gy . the horizontal axis is the location index and the vertical axis

If R, represents the unknown chrominance value, andrepresents intensity of red and green pixels. We have a step

Rij and G;; represent measured values aBg represents edge between locations 5 and 6. Figuri)3shows the

the interpolated luminance value, the missing chrominance>3M€ s¢an line, sampled in a Bayer fashion, picking out

o N 7 every other pixel for red and green. Figur)3(step 1 of
valueRy is given byRy =Gy (R;; /Gyj). In an image that .o algorithm shows the result of estimating the missing
does not have uniform hue, as in a typical color image,

; ; . data using linear interpolation. Notice the color fringes in-
smoothly changing hues are assured by interpolating th&,q,ced between pixel locations 5 and 6; Fieg)3step 2
hue values between neighboring chrominance values. .

Th h Lis first int lated using bil . shows the absqlute valued difference image betwegn the
€ green channel IS first interpoiated using bilinéar - v, channels; Fig. @) (step 3 shows the result of median
terpolatlon._After this first pass, the hue is interpolated. Re-filtering the difference image with a kernel of size 5. Using
ferring to Fig. 2a), this result and the sampled data, Fi¢f)3s generatedstep
4) as an estimate of the original ima¢ey adding the me-
dian filtered result to the sampled data, e.g., the red value at
location 6 is estimated by adding the median filtered result
4 @ at location 6 to the sampled green value at locatiprée
reconstruction of the edge in this example is exact, al-
and similarly for the blue channel though note that for a median filter of size 3, this will not
be the case.
By, Byy By By This concept can be carried over to three color sensors
G_zz G_24 6_42 G_44 wherein diffe'renc'es are calgulated betwegen pairs of colors
B3s=Ga3 ) 3 and the median filter is applied to these differences to gen-
4 erate the final image.
. . We shall consider neighborhoods of a size such that all
The G values in boldface are estimated values, after theine algorithms can be compared on the same basis. The
first pass of interpolation. The extension to the logarithmic algorithms described in this document have at most nine
exposure space is straightforward as multiplications and di'pixels under consideration for “estimation.” In a square
visions in the linear space become additions and SUbtraC'neighborhood, this would imply X33 window. We shall,

tions, respectively, in the logarithmic space. There is a ca-po 00 1se 283 neighborhood for Freeman’s algorithm.
veat however as interpolations will be performed in the '

logarithmic space and, hence, the relations in linear space
and exposure space are not identfcelence in mostimple- 2.6  Gradient Based Interpolation

mentations thg data is_ first lineariZédand then interpo- This method was proposed by Laroche and Prebaat is

lated as described earlier. in use in the Kodak DCS 200 digital camera system. It

. . employs a three step process, the first one being the inter-

2.5 Median-Based Interpolation polation of the luminance channéreen and the second

This method, proposed by Freentiis, a two pass process, and third being interpolation of the color differencesd

the first being a linear interpolation, and the second pass aminus green and blue minus greemhe interpolated color

median filter of the color differences. differences are used to reconstruct the chrominance chan-
In the first pass, linear interpolation is used to populate nels(red and blug This method takes advantage of the fact

each photosite with all three colors and in the second passthat the human eye is most sensitive to luminance changes.

R33 R35 R53 R55

Gs; Gas Gsz Ges
Rya=Gug
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The interpolation is performed depending upon the position A
of an edge in the green channel. Referring to Fi@),3f
we need to estimat&,,, let a=abs$ (B4t Bsg)/2— Bl
and B=ab$ (B,s+ Bgs)/2—B,4]. We refer toa and 8 as
“classifiers” and will use them to determine if a pixel be- Gg a7 | G5 | Ao
longs to a vertical or horizontal edge, respectively. It is

intriguing to note that the classifiers used are second de-
rivatives with the sign inverted and halved in magnitude.

We come up with the following estimates for the missing @) (b)
green pixel value:

Ay Go Aj

Az

i 6

Ag

Fig. 4 Sample Bayer neighborhood, A;=chrominance (blue/red),
G,;=luminance, Cs=red/blue.

(( Gut+G
48 TS if a<p
2
G+ G . 27 A j lor Pl / lati
Gau= | 3417 G5y if >3, @ - dapt/v? Color Plane nterpt? ation -
2 This method is proposed by Hamilton and Adahisis a
Gt Guet Gast G modlflcatlon_ of the method proposed by_Laroche and
437 D45 T3] US4 g a=p Prescotf. This method also employs a multiple step pro-
\ 4 cess, with classifiers similar to those used in Laroche—

Prescott's scheme but modified to accommodate first order
Similarly, for estimating Gi3, let a=abg(Rs;+ R35)/2 and second order derivatives. The estimates are composed
—R33] and B=abg (R s+ Rsy)/2— Rsg]. These are esti- Of arithmetic averages for the chromaticitsed and blug
mates to the horizontal and vertical second derivatives indata and appropriately scaled second derivative terms for
red, respectively. Using these gradients as classifiers, wdhe luminance(green data. Depending upon the preferred

come up with the following estimates for the missing green orientation of the edge, the predictor is chosen. This pro-
pixel value: cess also has three runs. The first run populates that lumi-

nance(green channel and the second and third runs popu-
late the chrominancé&ed and blug channels.

( M if a<p Consider the Bayer array neighborhood shown in Fig.
2 4(a). G; is a green pixel and\; is either a red pixel or a
Goat Gy ) blue pixel(all A; pixels will be the same color for the entire
Gas=y —% — if a>p. () neighborhooll We now form classifiersa=abs(— A,
+2A5—A;)+absG,—Gg) and B=abs(—A;+2A5
Ca2t Gast Gogt Cus a=p —Ag) +absG,—Gg). These classifiers are composed of
. 4 second derivative terms for chromaticity data and gradients

for the luminance data. As such, these classifiers sense the

Once the luminance is determined, the chrominance valued!gh spatial frequency information in the pixel neighbor-

are interpolated from the differences between the cpkt ~ hood in the horizontal and vertical directions.
center, i.e., to estimat€s. Depending upon the preferred

orientation, the interpolation estimates are determined as
_ (Rag—Ggg) +(R35— Ggs) P

34~ > +Gay,
G442rG6+ 7A3+2A57A7 f acp
(R33— G33) + (R3s— Gg3s) G,+Gg  —A+2As—A
Rus= 33 33 5 35 35 + Gy, (6) Go— szr 8, 1+2 5~ Ag if a>B. (7)
G+ GutGutGy  —M-AstiAs—A=Ay o
 (R33—G33) + (R3s— Ggs) + (Rs3— Gg3) + (Rgs— Gos) 4 8

44~
4 These predictors are composed of arithmetic averages for
+Gyy. the green data and appropriately scaled second derivative
terms for the chromaticity data. This comprises the first
pass of the interpolation algorithm. The second pass in-

Note that the green channel has been completely estimate | lati he ch icity ch | ider th
before this step. The boldface entries correspond to esti-/0'VeS populating the chromaticity channels. Consider the

mated values. We get corresponding formulas for the bluen€ighborhood as shown in Figlb. G; is a green pixelf
pixel locations. Interpolating color differences and adding IS either a red pixel of a blue pixel ar is the opposite
the green component has the advantage of maintainingshromaticity pixel. ThenA,=(A;+Az)/2+ (-G, +2G;
color information and also using intensity information at —G3)/2, As=(A;+A7)/2+(—G1+2G,—G;)/2. These
pixel locations. At this point, three complete RGB planes are used when the nearest neighboré\tare in the same

are available for the full resolution color image. row and column respectively.
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To estimateCs, we employ the same method as we did 3.3 Type Il Images

to estimate the luminance channel. We again, form two This category of images consists of real-world camera im-
classifiers,a and g which “estimate” the gradient in the  ages captured with a camera that has a CFA pattern. No
horizontal and vertical directionsa=abs(-~G3+2Gs  internal interpolation is performed on them. We were there-
—G7)+abs@z—A;) and B=abs(G;+2Gs— Gy) fore able to get the “true” CFA imagery corrupted only by
+abs@A;—Ay). a andp “sense” the high frequency infor-  the optical PSF. The ROIs of these images are shown in
mation in the pixel neighborhood in the positive and nega- Figs. 1%a) and 1&a). CFA; has sharp edges and high fre-

tive diagonal respectively. We now have estimates guency components while Ck/as a color edge.
Ag+A; —Gg+2Gs—G .
32 7,8 . 5 =7 if a<pB 4 Results
Aj+A; —Gy+2Gg— G ‘ The results of the demosaicking algorithms prese_nted_ in
Cs= s+ 5 it a>B. (8 Sec. 2 on the three types of images are shown in Figs.
At Ast At Ay — Gy Gy+4G,—G— Gy 7-16. Il_lteraturé suggests that .théEab (definition in-
+ if a=p cluded in the Appendixerror metric represents human per-

4 4 . . . .
ception effectively. We, hence, make use of this to quantify

These estimates are composed of arithmetic averages fon€ €rrors observed. However, bear in mind the bounds on
the chromaticity data and appropriately scaled second dethis error for detectability thad E},, errors less than about
rivative terms for the green data. Depending upon the pre-2.3 are not easily detected while on the other hand, errors
ferred orientation of the edge, the predictor is chosen. Wegreater than about 10 are so large that relative comparison
now have the three color planes populated for the Bayeris insignificant!’ This metric gives us a measure of the
array data. difference between colors as viewed by a standard observer.
Another metric used for comparison is the mean squared
error(MSE) which provides differences between colors in a

3 Comparison of Interpolation Methods “Euclidean” sense. MSE, although not being representative

We generated test images, shown in Figs. 5 and 6 which ar&f the errors we perceive, is popular because of its tracta-
simulations of the data contained in the Bayer array of the bility and ease in implementation. These metrics are tabu-
camera. In other words, these are images that considefated in Tables 1 and 2. The boldface numbers represent the
“what-if” cases in the Bayer array. They were chosen as Minimum values in the corresponding image, which gives

test images to emphasize the various details that each algg¥S @n idea about which algorithm performs best for a given
rithm works on. image. There will be errors introduced in the printing/

reproduction process, but assuming that the errors will be

consistent for all the reproductions, we may infer relative
3.1 Type I Test Images performance of these algorithms.
In Figs. 7 and 8, notice the fringe artifacts introduced in
ear interpolation, termed as the zipper effect by Adams.
The appearance of this effect is considerably redyobd
serve the decrease in the metfigs Cok’s interpolation.
Hamilton—Adams’ and Laroche—Prescott’s implementation
estimates test imageexactly (notice that the MSE and
AE}, errors are zeno This is because both these algo-
from the starburst pattern, to test the robustness of thesé.IthrnS use information from the other channels for estima-

ion (chrominance channel to interpolate luminance and

algorithms for noncardinal edge orientations. Note that ". , .
these images have perfectly correlated color planes. The/'c€ versa. Notice that all these algorithms perform poorly

: : . P e .. _at high spatial frequencies. All the algorithms discussed
gtgrr];of these images is to highlight alias-induced fringing here have identical properties in the horizontal and vertical

directions.

Images of this type are synthetic and have edge orientation?.
along both the cardinal directions as well as in arbitrary In
directions as shown in Fig. 5. Test imageas chosen to
demonstrate the artifacts each process introduces for vary
ing thicknesses of stripe@ncreasing spatial frequencies
Test image was chosen to study a similar performance, but
with a constant spatial frequency. Test imagea section

3.2 Type Il Images

Three RGB images, shown in Fig. 6 were subsampled in
the form of a Bayer array and then interpolated to get the ,

three color planes. The regions of inter¢ROls) in this - s

image has been highlighted with a white box. These images- s =

were chosen specifically to highlight the behavior of these = N .,
algorithms when presented with color edges. Test image  “L . &l L ”o
a synthetic image of randomly chosen color patches. Unlike b

type | images, these images have sharp discontinuities in all @) (b) (©

color planes, independent of each other. The ROIS in Fig..;, 5 106 | est images: (a) Test image, has vertical bars with

G(b) have fe'at'\_’e!y high spatial frequencies. The ROlIs in decreasing thicknesses (16 pixels down to 1 pixel), (b) test image,
Fig. 6(c) have distinct color edges, one between pastel col-has bars of constant width (3 pixels), and (c) test images is a section
ors and the other between fully saturated colors. from the starburst pattern.
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For noncardinal edge orientations such as those showrb Discussion

in test image (Fig. 9) performance(observed in the error | aroche—Prescott's and Hamilton—Adams’ interpolation
metrics alsdis noted to be worse. Note that thd=?, error processes have similar forms. Both of them use second de-
metric is “on an average” considerably higher for test rivatives to perform interpolation which may be written as
image when compared to test imagand test image

Test imagg has been used to illustrate the performance v =U+Ag, 9
of these algorithms when presented with sharp edges which
do not have correlated color planege Fig. 10 From the ~ Whereu is the data(original image, v is the resulting im-
error metrics, it is clear that all of them perform poorly at ageA>0, andg is a suitably defined gradient. We may
sharp color edges. Note however that although Afief, ~ think of Eq. (9) in the form of that used for unsharp
errors are high, the squared error metric is relatively low, MaSking,” an enhancement process. Unsharp masking may

S . . be interpreted as either subtraction of the low-pass image
*
clearly highlighting the advantage of usintEz,. USINg o the original imagéscaled or of even as addition of a

only the squareq error W_ould have been_ migleading. high-pass image to the original imag¢ecaled. To see the
The macaw images illustrate the alias-induced errorsequivalence let the imagebe written as

while at the same time, showing a confetti type of error.

These errors come about due to intensely bright or dark|j = +H (10)
points (in a dark or bright neighborhood, respectively

Freeman’s algorithm performs best in these regions becausgne sum of its low-pasé.) and high-pas¢H) components.
it is able to remove such “speckle” behavior in the images Now, define unsharp masking by

due to the median filtering proceésbserve that thA E},

errors are smallest for Freeman’s algorithms in such re-F=al—-L=(a—1)I+l1—-L=(a—1)I+H, (11
gions.

The crayon images on the other hand are reproducedvhich has a form similar to that in E¢49). Hence, one of
precisely (see Figs. 13 and 14 with few errors. RO| the many ways to interpret Laroche—Prescott's and
shows some errors at the edges where the line-art appear$iamilton—Adams’ algorithms, is an unsharp masking pro-
However, this error is not evident. RQis reproduced al-  C€SS. It may, hence, be ?Xpected that thgse processes will
most exactly. In fact, depending upon the print process orSharpen edge@nly those in the cardinal directions, due to

the display rendering process, one may not be able to setl\he mannern which they are implemented the re§u|t|ng
mages as is observed in the results obtained from

the errors generated at all. This shows that these algorithm ; . s .
perform well at blurred color edgéwhich is the case with é(LSBOSChf__lF;eSCOttS and Hamilton—Adams' interpolations

many natural scengs From Tables 1 and 2, on the basis of simple majority,

In type Il images which are raw readouts from a'CFA Freeman’s algorithm outperforms the other algorithms. On
camera, we cannot use the metrics we have been using thume other hand, in two cases, it performs poorly.

far as there is no “reference” image with which to compare g4 test image, as can be seen from Fig. 7, Linear

these results. However, we may use visual cues to deteryyierpolation produces the zipper effect that had been men-
mine performance, and we observe similar trends in thesjoned earlier. This is because linear interpolation is a low
images as was opserved in synthetlc. images. Obser\{e Ithass filter process and hence incorrectly locates the edges
Flg. 15 that the hlgh Spatlal frequenC|eS and noncard|nalin each color p|ane, introducing Zipp]érCc)k’S interpo|a_
edge orientations are not reproduced corre@ly was the  tion reduces hue transitions over the edges since it interpo-
case with type | imagesColor edges are also reproduced |ates the hue of the colors and not the colors themselves
with reasonably good fidelity as is seen in Fig. 16— which reduces abrupt hue jumps producing fewer percep-
although some zipper effect is observed with Linear andtual artifacts. Freeman’s algorithm, using the median as an
Cok interpolations. estimator, performs poorly because it first performs a linear

Table 1 AE%, errors for different interpolation algorithms after demosaicking.

Algorithm Test Test Test Test Macaw Macaw Crayon Crayon
used image; image, image; image, ROI, ROI, ROIl, ROI,
Linear 34.731 65.487 57.553 9.711 15.457 23.299 7.293 3.645
Cok 16.352 27.122 30.828 11.437 11.017 14.924 6.003 4.131
Freeman 15.179 55.301 19.513 9.599 5.404 7.421 4.649 3.645
Laroche— 7.321 0 24.592 10.944 11.028 14.198 5.507 4.234
Prescott

Hamilton— 3.052 0 21.793 9.303 9.279 11.579 4.409 3.936
Adams
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(a) (b (c)

Fig. 6 Type Il images: (a) test image,, (b) original RGB Macaw image showing ROIs, and (c) original
Crayon image showing ROls.

|88

Fig. 7 (a) Linear, (b) Cok, (c) Freeman, (d) Laroche—Prescott, (e) Hamilton—Adams interpolations on
test image; . Note: Images are not the same size as original. Image has been cropped to hide edge

effects.
d ];.]. ] ..L.. d} ) .._{e 1

Fig. 8 (a) Linear, (b) Cok, (c) Freeman, (d) Laroche—Prescott, (e) Hamilton—Adams interpolations on
test image, . Note: Images are not the same size as original. Image has been cropped to hide edge

——
(a) (b) ic) (d) (e)

Fig. 9 (a) Linear, (b) Cok, (c) Freeman, (d) Laroche—Prescott, (¢) Hamilton—Adams interpolations on
test image; . Note: Images are not the same size as original. Image has been cropped to hide edge
effects.

fal (b (cl

Fig. 10 (a) Linear, (b) Cok, (c) Freeman, (d) Laroche—Prescott, () Hamilton—Adams mterpolatlons on
test image, . Note: Images are not the same size as original. Image has been cropped to hide edge
effects.

2 25 7 {e} - m

Flg. 11 (a) Original “truth” ROI; of Macaw image, (b) Linear, (c) Cok, (d) Freeman, (e) Laroche—
Prescott, (f) Hamilton—Adams interpolations on Macaw image. Note: Images are displayed along with
original image for comparison purposes.
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N e

by e 0

Fig. 12 (a) Original truth ROIl, of Macaw image, (b) Linear, (c) Cok, (d) Freeman, (e) Laroche—
Prescott, (f) Hamilton—Adams interpolations on Macaw image. Note: images are displayed along with

original image for comparison purposes.

-

(b}
Fig. 13 (a) Original truth ROI; of Crayon image, (b) Linear, (c) Cok, (d) Freeman, (e) Laroche—
Prescott, (f) Hamilton—Adams interpolations on Macaw image. Note: Images are displayed along with

original image for comparison purposes.

(b)

Fig. 14 (a) Original truth ROI, of Crayon image, (b) Linear, (c) Cok, (d) Freeman, (e) Laroche—
Prescaott, (f) Hamilton—Adams interpolations on Macaw image. Note: Images are displayed along with

original image for comparison purposes.
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1] 41

(d)

Fig. 15 (a) Original image CFA;, (b) Linear, (c) Cok, (d) Freeman, (e) Laroche—Prescott, (f)

Hamilton—Adams interpolations.
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Fig. 16 (a) Original image CFA,, (b) Linear, (c) Cok, (d) Freeman,
Hamilton—Adams interpolations.

(e) Laroche—Prescott, (f)
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Table 2 MSE (x 10 %) for different interpolation algorithms after demosaicking.

Algorithm Test Test Test Test Macaw Macaw Crayon Crayon
used image; image, image; image, ROI; ROIl, ROl ROI,
Linear 154 253 101.6 18.1 33.0 68.6 10.4 1.7
Cok 100 163 67.3 31.0 205 375 6.7 21
Freeman 52.2 134 5.7 19.9 3.9 3.4 2.8 1.6
Laroche— 35.3 0 8.8 26.2 20.1 315 5.8 1.9
Prescott

Hamilton—Adams 21.4 0 8.3 26.6 11.7 10.5 33 1.9

interpolation for the green channé@ blur process also 6 Conclusion

introducing ripples. Laroche—Prescott's algorithm, using |t has been demonstrated that although the CFA pattern is
classifiers to interpolate in the preferred orientation reducessefy| to capture multispectral data on a monolithic array,
errors. AlSO, interpolating color diﬂ:erenCéGhrominance this System comes with associated prob|ems of “missing
minus luminancg it utilizes information from two chan-  samples.” The estimation of these missing samples needs to
nels to precisely locate the edge. Hamilton—Adams’ algo- be done in an efficient manner, at the same time, reproduc-
rithm interpolates the luminance channel with a bias to theing the original images with high fidelity.

second derivative of the chrominance channel, locating the In general, we observe two types of error zipper effect
edge in the three color planes with better accuracy. errors(occur at intensity edges see Fig. 7 for this behgvior

In test image, although we find the same trend in Lin- confetti errors(occur at bright pixels surrounded by a

ear and Cok interpolations as we did in test imagee darker neighborhood see Figs. 12 and 11 for this behgvior
find that Laroche—Prescott's and Hamilton—Adams’ algo- EXperimentally, it has been found that Freeman's algorithm
rithms are able to reproduce the image exactly. This is at-1S best suited for cases in which there is speckle behavior in

tributed to the structuréand size of their estimators and "€ image, while Laroche—Prescott's and Hamilton—
the width of the bars themselvéthree pixels. Adams’ algorithms are best suited for images with sharp

. . edges.
In test image, there are two factors that the algorithms It is to be noted that demosaicking is not shift invariant.

are tested against, one is varying spatial frequencies and thgyitterent results are observed if the location of the edges is
other bem_g no_ncardmal edge orientations. Comparlr]g F'gs-phase shiftedthe zipper effect errors show up either as

directions are reproduced with good clarity while edges edge-location, see Fig.).7The result of demosaicking is,
along other orientations are not, alluding to the fact that hence, a function of the edge location.

almost all these algorithmgwith the exception of
Hamilton—Adams’, which incorporates some diagonal edge
information are optimized for horizontal and vertical edge
orientations. A similar observation is made for the CFA The authors would like to thank the Army Research Office
images. for its support in this work. This work is the first step in the
Note that in test image the edge between the two green development of a set of rugged, robust multispectral sen-
patches has been estimated with good accuracy bysors for Army applications. We are also grateful to Pulnix
Laroche—Prescott’s and Hamilton—Adams’ algorithms. America Inc. for providing us with a camera for this
This is attributed to the fact that these two algorithms, un- Project.
like the others, use data from all the color planes for esti-
mation. In this case, the data on either side of the edgeAppendix: XYZto CIELAB Conversion

being “similar,” the estimate was correct. Two of the color models suggested by the CIE which are
Another trend observed is that Hamilton—Adams’ algo- perceptually balanced and uniform are the CIELUV and the
rithm performs better than Laroche—Prescott’s algorithm. CIELAB color models. The CIELUV model is based on the
This is attributed to two reasons; one that the process ofwork by MacAdams on the just noticeable differences in
estimating the green channels in Hamilton—Adams’ algo- color® These color models are nonlinear transformations
rithm incorporates the second order gradient in the chromi-of the XYZ color model. The transformation from th€yzZ
nance channels also, providing a better estimate whilespace to the CIELAB space is given by
Laroche—Prescott’s algorithm simply performs a prefential
averaging. The second reason is that Hamilton—Adams’ al- s Y
gorithm estimates diagonal edges while estimating the 11 Y, —16) for Y—n>0.008856
chrominance channels, giving it more sensitivity to noncar- L* = ,
dinal chrominance gradientsvhich partially explains the 903_:{1) otherwise
slightly smaller error metrics for test image Yn
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whereX,, Y,, Z, are the values oK, Y, Z for the appro-
priately chosen reference white; and where, if any of the!
ratios (X/X,), (Y/Y,), or (Z/Z,) is less than or equal to
0.008 856, it is replaced in the above formula by 7F87
+16/116 wherd-is (X/X,), (Y/Y,), or (Z/Z,) as the case
may be. The color differences in the CIELAB color space

are given byAE*, = \/(AL*)%+(Aa*)2+(Ab*)2.

Z
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