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Abstract. Digital Still Color Cameras sample the color spectrum
using a monolithic array of color filters overlaid on a charge coupled
device array such that each pixel samples only one color band. The
resulting mosaic of color samples is processed to produce a high
resolution color image such that the values of the color bands not
sampled at a certain location are estimated from its neighbors. This
process is often referred to as demosaicking. This paper introduces
and compares a few commonly used demosaicking methods using
error metrics like mean squared error in the RGB color space and
perceived error in the CIELAB color space. © 2002 SPIE and IS&T.
[DOI: 10.1117/1.1484495]

1 Introduction

Commercially available Digital Still Color Cameras a
based on a single charge coupled device~CCD! array and
capture color information by using three or more color
ters, each sample point capturing only one sample of
color spectrum.

The Bayer array1 @shown in Fig. 1~a!# is one of the many
realizations of color filter arrays~CFA! possible. Many
other implementations of a color-sampling grid have be
incorporated in commercial cameras, most using the p
ciple that the luminance channel~green! needs to be
sampled at a higher rate than the chrominance chan
~red and blue!. The choice for green as ‘‘representative’’ o
the luminance is due to the fact that the luminance respo
curve of the eye peaks at around the frequency of gr
light ~around 550 nm!.

Since, at each pixel, only one spectral measurement
made, the other colors must be estimated using informa
from all the color planes in order to obtain a high resoluti
color image. This process is often referred to asdemosaick-
ing. Interpolation must be performed on the mosaicked
age data. There are a variety of methods available, the
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plest being linear interpolation, which, as shall be show
does not maintain edge information well. More complicat
methods2–6 perform this interpolation and attempt to mai
tain edge detail or limit hue transitions. In Ref. 7, Truss
introduces a linear lexicographic model for the image f
mation and demosaicking process, which may be used
reconstruction step. In Ref. 8, linear response models p
posed by Voraet al.9 have been used to reconstruct the
mosaicked images using an optimization technique ca
mean field annealing.10 In this paper we briefly describe th
more commonly used demosaicking algorithms and de
onstrate their strengths and weaknesses. In Sec. 2, we
scribe the interpolation methods we use in our comp
sons. We compare the interpolation methods by running
algorithms on three types of images~two types of synthetic
image sets and one set of real-world mosaicked imag!.
The images used for comparison and their properties
presented in Sec. 3. Qualitative and quantitative results
presented in Sec. 4. Discussions about the propertie
these algorithms and their overall behavior are presente
Sec. 5. We use two error metrics, the mean squared erro
the RGB color space and theDEab* error in the CIELAB
color space~described in the Appendix!.

2 Demosaicking Strategies

2.1 Ideal Interpolation

Sampling of a continuous imagef (x,y) yields infinite rep-
etitions of its continuous spectrumF(z,h) in the Fourier
domain. If these repetitions do not overlap~which is almost
never the case as natural images are not band limited!, the
original imagef (x,y) can be reconstructed exactly from i
discrete samplesf (m,n), otherwise we observe the phe
nomenon of aliasing. The one-dimensional ‘‘ideal’’ interp
lation is the multiplication with a rect function in the fre
quency domain and can be realized in the spatial domain
a convolution with the sinc function. This ‘‘ideal interpola

1;
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Demosaicking methods
tor’’ kernel is band limited and, hence, is not space limite
It is primarily of theoretical interest and not implemented
practice.11

2.2 Neighborhood Considerations

It may be expected that we get better estimates for
missing sample values by increasing the neighborhood
the pixel, but this increase is computationally expensi
There is, hence, a need to keep the interpolation filter k
nel space-limited to a small size and also extract as m
information from the neighborhood as possible. To this e
correlation between color channels is used.12 For RGB im-
ages, crosscorrelation between channels has been d
mined and found to vary between 0.25 and 0.99 with av
ages of 0.86 for red/green, 0.79 for red/blue, and 0.92
green/blue cross correlations.13 One well-known image
model12 is to simply assume that red and blue are perfec
correlated with the green over a small neighborhood
thus differ from green by only an offset. This image mod
is given by

Gi j 5Ri j 1k, ~1!

where~i, j! refers to the pixel location,R ~known! and G
~unknown! the red and green pixel values,k is the appro-
priate bias for the given pixel neighborhood. The same
plies at a blue pixel location. The choice of the neighb
hood size in such a case is important. It is observed
most implementations are designed with hardware imp

Fig. 1 Sample Bayer pattern.
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mentation in mind~paying great attention to the need fo
pipelining, system latency, and throughput per clock cyc!.
The larger the neighborhood, the greater the difficulty
pipelining, the greater the latency, and possibly, lesser
throughput.

2.3 Bilinear Interpolation

Consider the array of pixels as shown in Fig. 1~a!. At a blue
center~where blue color was measured!, we need to esti-
mate the green and red components. Consider pixel lo
tion 44 at which onlyB44 is measured; we need to estima
G44. Given G34, G43, G45, G54, one estimate forG44 is
given by G445(G341G431G451G54)/4. To determine
R44, given R33, R35, R53, R55, the estimate forR44 is
given byR445(R331R351R531R55)/4. At a red center, we
would estimate the blue and green accordingly. Perform
this process at each photosite~location on the CCD!, we
can obtain three color planes for the scene which wo
give us one possible demosaicked form of the scene.

The band-limiting nature of this interpolation smoot
edges, which shows up in color images as fringes~referred
to as the zipper effect.12,14! This has been illustrated with
two colors channels~for simplicity! in Fig. 2.

2.4 Constant Hue-Based Interpolation

In general, hue is defined as the property of colors by wh
they can be perceived as ranging from red through yell
green, and blue, as determined by the dominant wavele
of the light. Constant hue-based interpolation, proposed
Cok2 and is one of the first few methods used in comm
cial camera systems. Modifications of this system are s
in use. The key objection to pixel artifacts in images th
result from bilinear interpolation is abrupt and unnatu
hue change.2 There is a need to maintain the hue of t
color such that there are no sudden jumps in hue~except for
over edges, say!. The red and blue channels are assigned
be the chrominance channels while the green channe
assigned as the luminance channel.

As used in this section, hue is defined by a vector
ratios as (R/G,B/G).2 It is to be noted that the term hu
defined above is valid for this method only, also, the h
needs to be ‘‘redefined’’ if the denominatorG is zero. By
interpolating the hue value and deriving the interpola
chrominance values~blue and red! from the interpolated
hue values, hues are allowed to change only gradua
thereby reducing the appearance of color fringes wh
would have been obtained by interpolating only the chrom
nance values.
Fig. 2 Illustration of fringe or zipper effect resulting from the linear interpolation process. An edge is
illustrated as going from navy blue (0,0,128) to yellow (255,255,128). The zipper effect produces green
pixels near the edge: (a) original image (only 2 colors, blue constant at 128), (b) one scan line of
subsampled Bayer pattern (choose every other pixel), (c) result of estimating missing data using linear
interpolation. Observe color fringe in locations 5 and 6.
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 307
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3

Fig. 3 Illustration of Freeman’s interpolation method for a two channel system, as in Fig. 2 an edge is
illustrated as going from navy blue (0,0,128) to yellow (255,255,128): (a) original image (only 2 colors,
blue constant at 128), (b) one scan line of subsampled Bayer pattern (choose every other pixel), (c)
result of linear interpolation, (d) green minus red, (e) median filtered result (filter size of five pixels) of
the difference image, and (f) reconstructed image.
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Consider an image with constant hue. In exposure sp
$be it logarithmic@Most cameras capture data in a logarit
mic exposure space and need to be linearized before
ratios used as such. If interpolating in the logarithmic e
posure space, difference of logarithms needs to be ta
instead of ratios; i.e., log(Rij /Rkl)5log(Rij)2log(Rkl).# or
linear%, the values of the luminance~G! and one chromi-
nance component~R, say! at a location~i,j! and a neighbor-
ing sample location~k,l! are related asRi j /Rkl5Gi j /Gkl if
Bi j /Bkl5Gi j /Gkl .

If Rkl represents the unknown chrominance value, a
Ri j and Gi j represent measured values andGkl represents
the interpolated luminance value, the missing chromina
valueRkl is given byRkl5Gkl(Ri j /Gi j ). In an image that
does not have uniform hue, as in a typical color ima
smoothly changing hues are assured by interpolating
hue values between neighboring chrominance values.

The green channel is first interpolated using bilinear
terpolation. After this first pass, the hue is interpolated. R
ferring to Fig. 2~a!,

R445G44

R33

G33
1

R35

G35
1

R53

G53
1

R55

G55

4
~2!

and similarly for the blue channel

B335G33

B22

G22
1

B24

G24
1

B42

G42
1

B44

G44

4
. ~3!

The G values in boldface are estimated values, after
first pass of interpolation. The extension to the logarithm
exposure space is straightforward as multiplications and
visions in the linear space become additions and subt
tions, respectively, in the logarithmic space. There is a
veat however as interpolations will be performed in t
logarithmic space and, hence, the relations in linear sp
and exposure space are not identical.2 Hence in most imple-
mentations the data is first linearized15 and then interpo-
lated as described earlier.

2.5 Median-Based Interpolation

This method, proposed by Freeman,3 is a two pass process
the first being a linear interpolation, and the second pa
median filter of the color differences.

In the first pass, linear interpolation is used to popul
each photosite with all three colors and in the second p
08 / Journal of Electronic Imaging / July 2002 / Vol. 11(3)
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the difference image, of say, red minus green and blue
nus green is median filtered. The median filtered image t
obtained is then used in conjunction with the original Bay
array samples to recover the samples~illustrated below!.
This method preserves edges well, as illustrated in Fig
where only one row of the Bayer array is considered sin
this process can be extrapolated to the case of the r
containing blue and green pixels. Figure 3~a! shows one
scan line of the original image before Bayer subsampli
the horizontal axis is the location index and the vertical a
represents intensity of red and green pixels. We have a
edge between locations 5 and 6. Figure 3~b! shows the
same scan line, sampled in a Bayer fashion, picking
every other pixel for red and green. Figure 3~c! ~step 1 of
this algorithm! shows the result of estimating the missin
data using linear interpolation. Notice the color fringes
troduced between pixel locations 5 and 6; Fig. 3~d! ~step 2!
shows the absolute valued difference image between
two channels; Fig. 3~e! ~step 3! shows the result of median
filtering the difference image with a kernel of size 5. Usin
this result and the sampled data, Fig. 3~f! is generated~step
4! as an estimate of the original image~by adding the me-
dian filtered result to the sampled data, e.g., the red valu
location 6 is estimated by adding the median filtered res
at location 6 to the sampled green value at location 6!. The
reconstruction of the edge in this example is exact,
though note that for a median filter of size 3, this will n
be the case.

This concept can be carried over to three color sens
wherein differences are calculated between pairs of co
and the median filter is applied to these differences to g
erate the final image.

We shall consider neighborhoods of a size such that
the algorithms can be compared on the same basis.
algorithms described in this document have at most n
pixels under consideration for ‘‘estimation.’’ In a squa
neighborhood, this would imply a 333 window. We shall,
hence, use a 333 neighborhood for Freeman’s algorithm

2.6 Gradient Based Interpolation

This method was proposed by Laroche and Prescott4 and is
in use in the Kodak DCS 200 digital camera system.
employs a three step process, the first one being the in
polation of the luminance channel~green! and the second
and third being interpolation of the color differences~red
minus green and blue minus green!. The interpolated color
differences are used to reconstruct the chrominance c
nels~red and blue!. This method takes advantage of the fa
that the human eye is most sensitive to luminance chan
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Demosaicking methods
The interpolation is performed depending upon the posit
of an edge in the green channel. Referring to Fig. 3~a!, if
we need to estimateG44, let a5abs@(B421B46)/22B44#
and b5abs@(B241B64)/22B44#. We refer toa and b as
‘‘classifiers’’ and will use them to determine if a pixel be
longs to a vertical or horizontal edge, respectively. It
intriguing to note that the classifiers used are second
rivatives with the sign inverted and halved in magnitud
We come up with the following estimates for the missi
green pixel value:

G4455
G431G45

2
if a,b

G341G54

2
if a.b

G431G451G341G54

4
if a5b

. ~4!

Similarly, for estimating G33, let a5abs@(R311R35)/2
2R33# and b5abs@(R131R53)/22R33#. These are esti-
mates to the horizontal and vertical second derivatives
red, respectively. Using these gradients as classifiers,
come up with the following estimates for the missing gre
pixel value:

G3355
G321G34

2
if a,b

G231G43

2
if a.b

G321G341G231G43

4
if a5b

. ~5!

Once the luminance is determined, the chrominance va
are interpolated from the differences between the color~red
and blue! and luminance~green! signals. This is given by

R345
~R332G33!1~R352G35!

2
1G34,

R435
~R332G33!1~R352G35!

2
1G43, ~6!

R445
~R332G33!1~R352G35!1~R532G53!1~R552G55!

4

1G44.

Note that the green channel has been completely estim
before this step. The boldface entries correspond to e
mated values. We get corresponding formulas for the b
pixel locations. Interpolating color differences and addi
the green component has the advantage of maintai
color information and also using intensity information
pixel locations. At this point, three complete RGB plan
are available for the full resolution color image.
-

e

s

d
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2.7 Adaptive Color Plane Interpolation

This method is proposed by Hamilton and Adams.5 It is a
modification of the method proposed by Laroche a
Prescott.4 This method also employs a multiple step pr
cess, with classifiers similar to those used in Laroch
Prescott’s scheme but modified to accommodate first o
and second order derivatives. The estimates are comp
of arithmetic averages for the chromaticity~red and blue!
data and appropriately scaled second derivative terms
the luminance~green! data. Depending upon the preferre
orientation of the edge, the predictor is chosen. This p
cess also has three runs. The first run populates that lu
nance~green! channel and the second and third runs pop
late the chrominance~red and blue! channels.

Consider the Bayer array neighborhood shown in F
4~a!. Gi is a green pixel andAi is either a red pixel or a
blue pixel~all Ai pixels will be the same color for the entir
neighborhood!. We now form classifiersa5abs(2A3

12A52A7)1abs(G42G6) and b5abs(2A112A5

2A9)1abs(G22G8). These classifiers are composed
second derivative terms for chromaticity data and gradie
for the luminance data. As such, these classifiers sense
high spatial frequency information in the pixel neighbo
hood in the horizontal and vertical directions.

Consider, that we need to estimate the green value a
center, i.e., to estimateG5 . Depending upon the preferre
orientation, the interpolation estimates are determined a

G555
G41G6

2
1

2A312A52A7

2
if a,b

G21G8

2
1

2A112A52A9

2
if a.b

G21G41G61G8

4
1

2A12A314A52A72A9

8
if a5b

. ~7!

These predictors are composed of arithmetic averages
the green data and appropriately scaled second deriva
terms for the chromaticity data. This comprises the fi
pass of the interpolation algorithm. The second pass
volves populating the chromaticity channels. Consider
neighborhood as shown in Fig. 4~b!. Gi is a green pixel,Ai

is either a red pixel of a blue pixel andCi is the opposite
chromaticity pixel. ThenA25(A11A3)/21(2G112G2

2G3)/2, A45(A11A7)/21(2G112G42G7)/2. These
are used when the nearest neighbors toAi are in the same
row and column respectively.

Fig. 4 Sample Bayer neighborhood, Ai5chrominance (blue/red),
Gi5 luminance, C55red/blue.
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 309
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To estimateC5 , we employ the same method as we d
to estimate the luminance channel. We again, form t
classifiers,a and b which ‘‘estimate’’ the gradient in the
horizontal and vertical directions.a5abs(2G312G5

2G7)1abs(A32A7) and b5abs(2G112G52G9)
1abs(A12A9). a andb ‘‘sense’’ the high frequency infor-
mation in the pixel neighborhood in the positive and ne
tive diagonal respectively. We now have estimates

C555
A31A7

2
1

2G312G52G7

2
if a,b

A11A9

2
1

2G112G52G9

2
if a.b

A11A31A71A9

4
1

2G12G314G52G72G9

4
if a5b

. ~8!

These estimates are composed of arithmetic average
the chromaticity data and appropriately scaled second
rivative terms for the green data. Depending upon the p
ferred orientation of the edge, the predictor is chosen.
now have the three color planes populated for the Ba
array data.

3 Comparison of Interpolation Methods

We generated test images, shown in Figs. 5 and 6 which
simulations of the data contained in the Bayer array of
camera. In other words, these are images that cons
‘‘what-if’’ cases in the Bayer array. They were chosen
test images to emphasize the various details that each a
rithm works on.

3.1 Type I Test Images

Images of this type are synthetic and have edge orientat
along both the cardinal directions as well as in arbitra
directions as shown in Fig. 5. Test image1 was chosen to
demonstrate the artifacts each process introduces for v
ing thicknesses of stripes~increasing spatial frequencies!.
Test image2 was chosen to study a similar performance, b
with a constant spatial frequency. Test image3 is a section
from the starburst pattern, to test the robustness of th
algorithms for noncardinal edge orientations. Note t
these images have perfectly correlated color planes.
intent of these images is to highlight alias-induced fringi
errors.

3.2 Type II Images

Three RGB images, shown in Fig. 6 were subsampled
the form of a Bayer array and then interpolated to get
three color planes. The regions of interest~ROIs! in this
image has been highlighted with a white box. These ima
were chosen specifically to highlight the behavior of the
algorithms when presented with color edges. Test image4 is
a synthetic image of randomly chosen color patches. Un
type I images, these images have sharp discontinuities i
color planes, independent of each other. The ROIs in F
6~b! have relatively high spatial frequencies. The ROIs
Fig. 6~c! have distinct color edges, one between pastel c
ors and the other between fully saturated colors.
310 / Journal of Electronic Imaging / July 2002 / Vol. 11(3)
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3.3 Type III Images

This category of images consists of real-world camera
ages captured with a camera that has a CFA pattern.
internal interpolation is performed on them. We were the
fore able to get the ‘‘true’’ CFA imagery corrupted only b
the optical PSF. The ROIs of these images are shown
Figs. 15~a! and 16~a!. CFA1 has sharp edges and high fr
quency components while CFA2 has a color edge.

4 Results

The results of the demosaicking algorithms presented
Sec. 2 on the three types of images are shown in F
7–16. Literature16 suggests that theDEab* ~definition in-
cluded in the Appendix! error metric represents human pe
ception effectively. We, hence, make use of this to quan
the errors observed. However, bear in mind the bounds
this error for detectability thatDEab* errors less than abou
2.3 are not easily detected while on the other hand, er
greater than about 10 are so large that relative compar
is insignificant.17 This metric gives us a measure of th
difference between colors as viewed by a standard obse
Another metric used for comparison is the mean squa
error~MSE! which provides differences between colors in
‘‘Euclidean’’ sense. MSE, although not being representat
of the errors we perceive, is popular because of its tra
bility and ease in implementation. These metrics are ta
lated in Tables 1 and 2. The boldface numbers represen
minimum values in the corresponding image, which giv
us an idea about which algorithm performs best for a giv
image. There will be errors introduced in the printin
reproduction process, but assuming that the errors will
consistent for all the reproductions, we may infer relati
performance of these algorithms.

In Figs. 7 and 8, notice the fringe artifacts introduced
linear interpolation, termed as the zipper effect by Adams12

The appearance of this effect is considerably reduced~ob-
serve the decrease in the metrics! in Cok’s interpolation.
Hamilton–Adams’ and Laroche–Prescott’s implementat
estimates test image2 exactly ~notice that the MSE and
DEab* errors are zero!. This is because both these alg
rithms use information from the other channels for estim
tion ~chrominance channel to interpolate luminance a
vice versa!. Notice that all these algorithms perform poor
at high spatial frequencies. All the algorithms discuss
here have identical properties in the horizontal and vert
directions.

Fig. 5 Type I test images: (a) Test image1 has vertical bars with
decreasing thicknesses (16 pixels down to 1 pixel), (b) test image2

has bars of constant width (3 pixels), and (c) test image3 is a section
from the starburst pattern.
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Demosaicking methods
For noncardinal edge orientations such as those sh
in test image3 ~Fig. 9! performance~observed in the erro
metrics also! is noted to be worse. Note that theDEab* error
metric is ‘‘on an average’’ considerably higher for te
image3 when compared to test image1 and test image2 .

Test image4 has been used to illustrate the performan
of these algorithms when presented with sharp edges w
do not have correlated color planes~see Fig. 10!. From the
error metrics, it is clear that all of them perform poorly
sharp color edges. Note however that although theDEab*
errors are high, the squared error metric is relatively lo
clearly highlighting the advantage of usingDEab* . Using
only the squared error would have been misleading.

The macaw images illustrate the alias-induced err
while at the same time, showing a confetti type of err
These errors come about due to intensely bright or d
points ~in a dark or bright neighborhood, respectively!.
Freeman’s algorithm performs best in these regions bec
it is able to remove such ‘‘speckle’’ behavior in the imag
due to the median filtering process~observe that theDEab*
errors are smallest for Freeman’s algorithms in such
gions!.

The crayon images on the other hand are reprodu
precisely ~see Figs. 13 and 14!, with few errors. ROI1
shows some errors at the edges where the line-art app
However, this error is not evident. ROI2 is reproduced al-
most exactly. In fact, depending upon the print process
the display rendering process, one may not be able to
the errors generated at all. This shows that these algorit
perform well at blurred color edges~which is the case with
many natural scenes!.

In type III images which are raw readouts from a CF
camera, we cannot use the metrics we have been using
far as there is no ‘‘reference’’ image with which to compa
these results. However, we may use visual cues to de
mine performance, and we observe similar trends in th
images as was observed in synthetic images. Observ
Fig. 15 that the high spatial frequencies and noncard
edge orientations are not reproduced correctly~as was the
case with type I images!. Color edges are also reproduce
with reasonably good fidelity as is seen in Fig. 16
although some zipper effect is observed with Linear a
Cok interpolations.
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5 Discussion

Laroche–Prescott’s and Hamilton–Adams’ interpolati
processes have similar forms. Both of them use second
rivatives to perform interpolation which may be written

v5u1lg, ~9!

whereu is the data~original image!, v is the resulting im-
age l.0, and g is a suitably defined gradient. We ma
think of Eq. ~9! in the form of that used for unshar
masking,18 an enhancement process. Unsharp masking m
be interpreted as either subtraction of the low-pass im
from the original image~scaled! or of even as addition of a
high-pass image to the original image~scaled!. To see the
equivalence let the imageI be written as

I 5L1H ~10!

the sum of its low-pass~L! and high-pass~H! components.
Now, define unsharp masking by

F5aI2L5~a21!I 1I 2L5~a21!I 1H, ~11!

which has a form similar to that in Eq.~9!. Hence, one of
the many ways to interpret Laroche–Prescott’s a
Hamilton–Adams’ algorithms, is an unsharp masking p
cess. It may, hence, be expected that these processes
sharpen edges~only those in the cardinal directions, due
the manner in which they are implemented! in the resulting
images as is observed in the results obtained fr
Laroche–Prescott’s and Hamilton–Adams’ interpolatio
~Figs. 7–16!.

From Tables 1 and 2, on the basis of simple major
Freeman’s algorithm outperforms the other algorithms.
the other hand, in two cases, it performs poorly.

For test image1 , as can be seen from Fig. 7, Linea
interpolation produces the zipper effect that had been m
tioned earlier. This is because linear interpolation is a l
pass filter process and hence incorrectly locates the e
in each color plane, introducing zipper.12 Cok’s interpola-
tion reduces hue transitions over the edges since it inte
lates the hue of the colors and not the colors themse
which reduces abrupt hue jumps producing fewer perc
tual artifacts. Freeman’s algorithm, using the median as
estimator, performs poorly because it first performs a lin
Table 1 DEab* errors for different interpolation algorithms after demosaicking.

Algorithm
used

Test
image1

Test
image2

Test
image3

Test
image4

Macaw
ROI1

Macaw
ROI2

Crayon
ROI1

Crayon
ROI2

Linear 34.731 65.487 57.553 9.711 15.457 23.299 7.293 3.645

Cok 16.352 27.122 30.828 11.437 11.017 14.924 6.003 4.131

Freeman 15.179 55.301 19.513 9.599 5.404 7.421 4.649 3.645

Laroche–
Prescott

7.321 0 24.592 10.944 11.028 14.198 5.507 4.234

Hamilton–
Adams

3.052 0 21.793 9.303 9.279 11.579 4.409 3.936
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Fig. 6 Type II images: (a) test image4 , (b) original RGB Macaw image showing ROIs, and (c) original
Crayon image showing ROIs.

Fig. 7 (a) Linear, (b) Cok, (c) Freeman, (d) Laroche–Prescott, (e) Hamilton–Adams interpolations on
test image1 . Note: Images are not the same size as original. Image has been cropped to hide edge
effects.

Fig. 8 (a) Linear, (b) Cok, (c) Freeman, (d) Laroche–Prescott, (e) Hamilton–Adams interpolations on
test image2 . Note: Images are not the same size as original. Image has been cropped to hide edge
effects.

Fig. 9 (a) Linear, (b) Cok, (c) Freeman, (d) Laroche–Prescott, (e) Hamilton–Adams interpolations on
test image3 . Note: Images are not the same size as original. Image has been cropped to hide edge
effects.

Fig. 10 (a) Linear, (b) Cok, (c) Freeman, (d) Laroche–Prescott, (e) Hamilton–Adams interpolations on
test image4 . Note: Images are not the same size as original. Image has been cropped to hide edge
effects.

Fig. 11 (a) Original ‘‘truth’’ ROI1 of Macaw image, (b) Linear, (c) Cok, (d) Freeman, (e) Laroche–
Prescott, (f) Hamilton–Adams interpolations on Macaw image. Note: Images are displayed along with
original image for comparison purposes.
312 / Journal of Electronic Imaging / July 2002 / Vol. 11(3)
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Fig. 12 (a) Original truth ROI2 of Macaw image, (b) Linear, (c) Cok, (d) Freeman, (e) Laroche–
Prescott, (f) Hamilton–Adams interpolations on Macaw image. Note: images are displayed along with
original image for comparison purposes.

Fig. 13 (a) Original truth ROI1 of Crayon image, (b) Linear, (c) Cok, (d) Freeman, (e) Laroche–
Prescott, (f) Hamilton–Adams interpolations on Macaw image. Note: Images are displayed along with
original image for comparison purposes.

Fig. 14 (a) Original truth ROI2 of Crayon image, (b) Linear, (c) Cok, (d) Freeman, (e) Laroche–
Prescott, (f) Hamilton–Adams interpolations on Macaw image. Note: Images are displayed along with
original image for comparison purposes.

Fig. 15 (a) Original image CFA1 , (b) Linear, (c) Cok, (d) Freeman, (e) Laroche–Prescott, (f)
Hamilton–Adams interpolations.

Fig. 16 (a) Original image CFA2 , (b) Linear, (c) Cok, (d) Freeman, (e) Laroche–Prescott, (f)
Hamilton–Adams interpolations.
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Table 2 MSE (31023) for different interpolation algorithms after demosaicking.

Algorithm
used

Test
image1

Test
image2

Test
image3

Test
image4

Macaw
ROI1

Macaw
ROI2

Crayon
ROI1

Crayon
ROI2

Linear 154 253 101.6 18.1 33.0 68.6 10.4 1.7

Cok 100 163 67.3 31.0 20.5 37.5 6.7 2.1

Freeman 52.2 134 5.7 19.9 3.9 3.4 2.8 1.6

Laroche–
Prescott

35.3 0 8.8 26.2 20.1 31.5 5.8 1.9

Hamilton–Adams 21.4 0 8.3 26.6 11.7 10.5 3.3 1.9
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interpolation for the green channel~a blur process!, also
introducing ripples. Laroche–Prescott’s algorithm, us
classifiers to interpolate in the preferred orientation redu
errors. Also, interpolating color differences~chrominance
minus luminance!, it utilizes information from two chan-
nels to precisely locate the edge. Hamilton–Adams’ al
rithm interpolates the luminance channel with a bias to
second derivative of the chrominance channel, locating
edge in the three color planes with better accuracy.

In test image2 , although we find the same trend in Lin
ear and Cok interpolations as we did in test image1 , we
find that Laroche–Prescott’s and Hamilton–Adams’ alg
rithms are able to reproduce the image exactly. This is
tributed to the structure~and size! of their estimators and
the width of the bars themselves~three pixels!.

In test image3 , there are two factors that the algorithm
are tested against, one is varying spatial frequencies an
other being noncardinal edge orientations. Comparing F
7 and 8 with Fig. 9, we observe that vertical and horizon
directions are reproduced with good clarity while edg
along other orientations are not, alluding to the fact t
almost all these algorithms~with the exception of
Hamilton–Adams’, which incorporates some diagonal ed
information! are optimized for horizontal and vertical edg
orientations. A similar observation is made for the C
images.

Note that in test image4 , the edge between the two gree
patches has been estimated with good accuracy
Laroche–Prescott’s and Hamilton–Adams’ algorithm
This is attributed to the fact that these two algorithms, u
like the others, use data from all the color planes for e
mation. In this case, the data on either side of the e
being ‘‘similar,’’ the estimate was correct.

Another trend observed is that Hamilton–Adams’ alg
rithm performs better than Laroche–Prescott’s algorith
This is attributed to two reasons; one that the process
estimating the green channels in Hamilton–Adams’ al
rithm incorporates the second order gradient in the chro
nance channels also, providing a better estimate w
Laroche–Prescott’s algorithm simply performs a prefen
averaging. The second reason is that Hamilton–Adams
gorithm estimates diagonal edges while estimating
chrominance channels, giving it more sensitivity to nonc
dinal chrominance gradients~which partially explains the
slightly smaller error metrics for test image3!.
ctronic Imaging / July 2002 / Vol. 11(3)
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6 Conclusion

It has been demonstrated that although the CFA patter
useful to capture multispectral data on a monolithic arr
this system comes with associated problems of ‘‘miss
samples.’’ The estimation of these missing samples need
be done in an efficient manner, at the same time, reprod
ing the original images with high fidelity.

In general, we observe two types of error zipper effe
errors~occur at intensity edges see Fig. 7 for this behavi!
confetti errors ~occur at bright pixels surrounded by
darker neighborhood see Figs. 12 and 11 for this behav!.
Experimentally, it has been found that Freeman’s algorit
is best suited for cases in which there is speckle behavio
the image, while Laroche–Prescott’s and Hamilto
Adams’ algorithms are best suited for images with sh
edges.

It is to be noted that demosaicking is not shift invaria
Different results are observed if the location of the edge
phase shifted~the zipper effect errors show up either
blue-cyan errors or as orange-yellow errors depending u
edge-location, see Fig. 7!. The result of demosaicking is
hence, a function of the edge location.
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Appendix: XYZ to CIELAB Conversion

Two of the color models suggested by the CIE which a
perceptually balanced and uniform are the CIELUV and
CIELAB color models. The CIELUV model is based on th
work by MacAdams on the just noticeable differences
color.16 These color models are nonlinear transformatio
of the XYZcolor model. The transformation from theXYZ
space to the CIELAB space is given by

L* 5H 116S Y

Yn
D 1/3

216) for
Y

Yn
.0.008856
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Demosaicking methods
a* 5500F S X

Xn
D 1/3

2S Y

Yn
D 1/3G ,

b* 5200F S Y

Yn
D 1/3

2S Z

Zn
D 1/3G ,

whereXn , Yn , Zn are the values ofX, Y, Z, for the appro-
priately chosen reference white; and where, if any of
ratios (X/Xn), (Y/Yn), or (Z/Zn) is less than or equal to
0.008 856, it is replaced in the above formula by 7.78F
116/116 whereF is (X/Xn), (Y/Yn), or (Z/Zn) as the case
may be. The color differences in the CIELAB color spa
are given byDEab* 5A(DL* )21(Da* )21(Db* )2.
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