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Abstract

We present a virtual reality platform for developing and
evaluating embodied models of cognitive development. The
platform facilitates structuring of the learning agent, of its
visual environment, and of other virtual characters that in-
teract with the learning agent. It allows to systematically
study the role of the visual and social environment for the
development of particular cognitive skills in a controlled
fashion. We describe how it is currently being used for con-
structing an embodied model of the emergence of gaze fol-
lowing in infant-caregiver interactions and discuss the rel-
ative benefits of virtual vs. robotic modeling approaches.

1. Introduction

Recently, the field of cognitive science has been paying
close attention to the fact that cognitive skills are unlikely to
be fully specified genetically, but develop through interac-
tions with the environment and caregivers. The importance
of interactions with the physical and social environment for
cognitive development has been stressed by connectionist
[7] and dynamical systems [17] approaches.

Developmental schemes are also being proposed in the
field of intelligent robotics [1, 3, 18]. Instead of building a
fully working robot, a body capable of interacting with the
environment is given general learning mechanisms that al-
low it to evaluate the results of its actions. It is then “set
free” in the world to learn a task through repeated interac-
tions with both the environment and a human supervisor.

Our motivation is to develop embodied models of cog-
nitive development, that allow to systematically study the
emergence of cognitive skills in naturalistic settings. We fo-

cus on visually mediated skills since vision is the dominant
modality for humans. The kinds of cognitive skills whose
development we would ultimately like to model range from
gaze and point following and other shared attention skills
over imitation of complex behaviors to language acquisi-
tion. Our hope is that embodied computational models will
help to clarify the mechanisms underlying the emergence of
cognitive skills and elucidate the role of intrinsic and envi-
ronmental factors in this development.

In this paper, we present a platform for creating em-
bodied computational models of the emergence of cogni-
tive skills using computer-generatedvirtual environments.
These virtual environments allow the semi-realistic ren-
dering of arbitrary visual surroundings that make it easy
to relate model simulations to experimental data gathered
in various settings. Our platform facilitates structuring of
the graphical environment and of any social agents in the
model. Typically, a single developing infant and a single
caregiver are modeled, but arbitrary physical and social set-
tings are easily accommodated. To illustrate the features
of our our platform, we show how it can be used to build
an embodied model of the emergence of gaze following in
infant-caregiver interactions. This effort is a component of
a larger research project studying the emergence of shared
attention skills within the MESA (Modeling the Emergence
of Shared Attention) project at the University of California
San Diego1.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our modeling platform and the underlying
software infrastructure. Section 3 shows how it is currently
being used to build an embodied model of the emergence
of gaze following in mother infant interactions. Finally,
we discuss our work and the relative benefits of virtual vs.

1http://mesa.ucsd.edu



Figure 1. Left: various views of a virtual living room used to model the emergence of gaze following.
From top left, clockwise: caregiver’s view, birds eye view, lateral view, and infant’s view. Right:
Saliency maps generated by analyzing the infant’s visual input (lower left image in left half of figure).
Top row, left to right: red, green, blue. Bottom row, left to right: yellow, contrast, face position. Bars
on left of each saliency map indicate the intrinsic reward of this feature and the current habituation
level.

robotic modeling approaches in Section 4.

2. The Platform

2.1. Platform Overview

The platform allows the construction of semi-realistic
models of arbitrary visual environments. A virtual room
with furniture and objects can be set up easily to model,
say, a testing room used in a controlled developmental psy-
chology experiment, or a typical living room. These visual
environments are populated with virtual characters. The be-
havior and learning mechanisms of all characters can be
specified. Typically, a virtual character will have a vision
system that receives images from a virtual camera placed
inside the character’s head. The simulated vision system
will process these images and the resulting representation
will drive the character’s behavior [15]. Figure 1 shows an
example setting.

An overview of the software structure is given in Fig-
ure 2. The central core of software, the “Simulation Envi-
ronment,” is responsible for simulating the learning agent
(infant model) and its social and physical environment
(caregiver model, objects, . . . ). The Simulation Environ-
ment was programmed in C++ and will be described in
more detail below. It interfaces with a number of 3rd party
libraries for animating human characters (BDI DI-Guy),
managing and rendering of the graphics (SGI OpenGL Per-
former), and visual processing of rendered images to simu-
late the agents’ vision systems (OpenCV).

Simulation Environment

handling of graphics objects and light sources, scene rendering

character animation

OpenCV

BDI DI−Guy

visual processing

m
o

v
em

en
ts

: 
w

al
k

,

re
ac

h
, 

lo
o

k
, 

..
.

li
m

b
 p

o
si

ti
o

n
s

o
b

je
ct

 c
o

ll
is

io
n

s,
 e

tc
.

simulating behavior of persons and objects, models of online learning

o
b

je
ct

 c
re

at
io

n
 a

n
d

 h
an

d
li

n
g

re
n

d
er

ed
 i

m
ag

es

SGI OpenGL Performer

Figure 2. Overview of software structure.

The platform currently runs on a Dell Dimension 4600
desktop computer with a Pentium 4 processor running at
2.8GHz. The operating system is Linux. An NVidia
GeForce video graphics accelerator speeds up the graphi-
cal simulations.

2.2. Third Party Software Libraries

OpenGL Performer. The Silicon GraphicsOpenGL
Performer2 toolkit is used to create the graphical environ-
ment for running the experiments. OpenGL Performer is

2http://www.sgi.com/products/software/performer/



a programming interface built atop the industry standard
OpenGLgraphics library . It can import textured 3D objects
in many formats, including OpenFlight (.flt extension) and
3D Studio Max (.3ds extension). OpenGL is a software in-
terface for graphics hardware that allows the production of
high-quality color images of 3D objects. It can be used to
build geometric models, view them interactively in 3D, and
perform operations like texture mapping and depth cueing.
It can be used to manipulate lighting conditions, introduce
fog, do motion blur, perform specular lighting, and other vi-
sual manipulations. It also provides virtual cameras that can
be positioned at any location to view the simulated world.

DI-Guy. On top of OpenGL Performer, Boston Dy-
namics’sDI-Guy libraries3 provide lifelike human charac-
ters that can be created and readily inserted into the virtual
world. They can be controlled using simple high-level com-
mands such as “look at position(X,Y, Z),” or “reach for
position(X, Y, Z) using the left arm,” resulting in smooth
and lifelike movements being generated automatically. The
facial expression of characters can be queried and modi-
fied. DI-Guy provides access to the character’s coordinates
and link positions such as arm and leg segments, shoul-
ders, hips, head, etc. More than 800 different functions for
manipulating and querying the characters are available in
all. Male and female characters of different ages are avail-
able, configurable with different appearances such as cloth-
ing style.

OpenCV. Querying the position of a character’s head
allows us to dynamically position a virtual camera at the
same location, thus accessing the character’s point of view.
The images coming from the camera can be processed us-
ing Intel’s OpenCV library4 of optimized visual process-
ing routines. OpenCV is an open-source, extendable soft-
ware intended for real-time computer vision, and is use-
ful for object tracking, segmentation, and recognition, face
and gesture recognition, motion understanding, and mobile
robotics. It provides routines for image processing such as
contour processing, line and ellipse fitting, convex hull cal-
culation, and calculation of various image statistics.

2.3. The Simulation Environment

The Simulation Environment comprises a number of
classes to facilitate the creation and running of simulations.
Following is a description of the most important ones.

The Object Class. The OBJECT class is used to create
all inanimate objects (walls, furniture, toys, etc.) in the sim-
ulation. Instances of theOBJECTclass are created by giving
the name of the file containing the description of a 3D ge-
ometrically modeled object, a name to be used as a handle,

3http://www.bdi.com
4http://www.intel.com/research/mrl/research/opencv/

a boolean variable stating whether the object should be al-
lowed to move, and its initial scale. The file must be of a
format readable by OpenGL Performer, such as 3D Studio
Max (.3ds files) or OpenFlight (.flt files). When anOB-
JECT is created, it is attached to the Performer environment.
There are methods for changing the position of theOBJECT,
for rotating it, and changing its scale. Thus, it can easily be
modeled that characters in the simulation can grasp and ma-
nipulate objects, if this is desired.

The Object Manager Class. The OBJECT MANAGER

class holds an array of instances of theOBJECT class. The
OBJECTMANAGER has methods for adding objects (which
must be previously created) to the scene, removing them,
and querying their visibility from a specific location. The
latter function allows to assess if, e.g., an object is within
the field of view of a character, or if the character is looking
directly at an object.

The Person Class. The PERSON class is used to add
any characters to the simulation. These may be rather com-
plicated models of, say, a developing infant simulating its
visual perception and learning processes, or they may be
rather simplistic agents that behave according to simple
scripts. To create an instance of thePERSON class, a DI-
Guy character type must be specified, which determines the
visual appearance of the person, along with a handle to the
OpenGL Performer camera assigned to the character. The
BRAIN type andV ISION SYSTEM type (see below) must be
specified. If the character’s actions will result from a script,
then a filename with the script must be given. For example,
such a script may specify what the character is looking at at
any given time. OneBRAIN object and oneV ISION SYS-
TEM object are created, according to the parameters passed
when creating thePERSON object. ThePERSON object
must be called periodically using the “update” method. This
causes the link corresponding to the head of the character to
be queried, and its coordinates to be passed to the virtual
camera associated with the character. The image from the
virtual camera in turn is passed to the character’sV ISION

SYSTEM, if the character has any. The output of theV I-
SION SYSTEM along with a handle to the DI-Guy character
is passed to theBRAIN object, which will decide the next
action to take and execute it in the DI-Guy character.

The Brain class.TheBRAIN class specifies the actions
to be taken by an instance of thePERSONclass. The space
of allowable actions is determined by the DI-Guy character
type associated with the person. The simplest way of how a
BRAIN object can control the actions of aPERSONis by fol-
lowing a script. In this case thePERSONwill “play back” a
pre-specified sequence of actions like a tape recorder. More
interestingly, aBRAIN object can contain a simulation of
the person’s nervous system (at various levels of abstrac-
tion). The only constraint is that this simulation has to run
in discrete time steps. For example, theBRAIN object may



instantiate a reinforcement learning agent [14] whose state
information is derived from a perceptual process (see be-
low) and whose action space is the space of allowable ac-
tions for this character. An “update” method is called every
time step to do any perceptual processing, generate new ac-
tions, and possibly simulate experience dependent learning.

The actions used to control a character are fairly high-
level commands such as “look to location (X,Y,Z),” “walk
in directionΘ with speedv,” or “reach for location (X,Y,Z)
with the left arm,” compared to direct specification of joint
angles or torques. Thus, this simulation platform is not well
suited for studying the development of such motor behav-
iors. Our focus is on the development of higher-level skills
that use gaze shifts, reaches, etc. as building blocks. Thus,
it is assumed that elementary behaviors such as looking and
reaching have already developed and can be executed reli-
ably in the age group of infants being modeled — an as-
sumption that of course needs to be verified for the partic-
ular skills and ages under consideration. The positive as-
pect of this is that it allows to focus efforts on modeling
the development of higher level cognitive processes with-
out having to worry about such lower-level skills. This is
in sharp contrast to robotic models of infant development,
where invariably a significant portion of time is spent on im-
plementing such lower level skills. In fact, skills like two-
legged walking and running, or reaching and grasping are
still full-blown research topics in their own right in the area
of humanoid robotics.

The Vision System class.The V ISION SYSTEM class
specifies the processing to be done on the raw image cor-
responding to the person’s point of view (as extracted from
a virtual camera dynamically positioned inside the person’s
head). It is used to construct a representation of the visual
scene that aBRAIN object can use to generate behavior.
Thus, it will typically contain various computer vision al-
gorithms and/or some more specific models of visual pro-
cessing in human infants, depending on the primary goal of
the model.

If desirable, theV ISION SYSTEM class may also use so-
called “oracle vision” to speed up the simulation. Since the
simulation environment provides perfect knowledge about
the state of all objects and characters in the simulation, it
is sometimes neither necessary nor desirable to infer such
knowledge from the rendered images through computer vi-
sion techniques, which can be difficult and time consuming.
Instead, some property, say the identity of an object in the
field of view, can simply be looked up in the internal repre-
sentations maintained by the simulation environment — it
functions as an oracle. This simplification is desirable if the
visual processing (in this case object recognition) is not cen-
tral to the developmental process under consideration, and if
it can be assumed that it is sufficiently well developed prior
to the developmental process being studied primarily. In

contrast, in a robotic model of infant development, there is
no “oracle” available, which means that all perceptual pro-
cesses required for the cognitive skill under consideration
have to be modeled explicitly. This is time-consuming and
difficult.

Main Program and Control Flow. The main pro-
gram is written in C++ using object-oriented programming.
OpenGL Performer is first initialized, and a scene with a
light source is created and positioned. A window to display
the 3D world is initialized, and positioned on the screen.
Virtual cameras are created and positioned in the world, for
example as a birds eye view or a lateral view. Cameras
corresponding to the characters are created but positioned
dynamically as the characters move their heads. Each cam-
era’s field of view can be set (characters would usually have
around a 90o field of view), and can be configured to elimi-
nate objects that are too close or too far. All cameras created
are linked to the window that displays the 3D world. Envi-
ronment settings such as fog, clouds, etc. can be specified.
The DI-Guy platform is then initialized, and a scenario is
created. The scenario holds information about all the char-
acters, and must be used to create new characters. New in-
stances of thePERSONclass are created, and their activities
are specified by periodically giving them new actions to per-
form. The level of graphical detail of the characters can be
specified to either get fairly realistically looking characters
or to speed up processing.

Statistics gathering. Throughout the session, statistics
are gathered by querying the different libraries: DI-Guy
calls can be used to extract the position of the different
characters or the configuration of their joints. TheOBJECT

MANAGER can be used to query the position of objects and
their visibility from the point of view of the different char-
acters. In addition, the internal states of all characters’ sim-
ulated nervous systems are perfectly known. This data or
arbitrary subsets of it can easily be recorded on a frame by
frame basis for later analysis. These statistics are useful
for analyzing long-term runs, and allow to evaluate whether
the desired behavior is being achieved and at what rate. We
point out that every simulation is perfectly reproducible and
can be re-run if additional statistics need to be collected.

3. A First Example: Gaze Following

The motivation for constructing the platform was to fa-
cilitate the development of embodied models of cognitive
and social development. To illustrate how the platform can
be used through a concrete example, we will outline how we
are currently developing an embodied model of the emer-
gence of gaze following [5]. Gaze following is the capacity
to redirect visual attention to a target when it is the object of
someone else’s attention. Gaze following does not occur at
birth, but instead develops during a child’s first 18 months



of life.

The model we are developing is aimed at testing and re-
fining thebasic set hypothesis[8], which states that the fol-
lowing conditions are sufficient for gaze following to de-
velop in infants: a) a reward-driven general purpose learn-
ing mechanism, b) a structured environment where the care-
giver often looks at objects or events that the infant will find
rewarding to look at, c) innate or early defined preferences
that result in the infant finding the caregiver’s face pleas-
ant to look at, and d) a habituation mechanism that causes
visual reward to decay over time while looking at an ob-
ject and to be restored when attention is directed to a differ-
ent object. Recently, Carlson and Triesch [4] demonstrated
with a very abstract and simplified computational model,
how the basic set may lead to the emergence of gaze follow-
ing and how plausible alterations of model parameters lead
to deficits in gaze following reminiscent of developmental
disorders such as autism or Williams syndrome.

In our current work, we want to investigate if the ba-
sic set hypothesis still holds for a more realistic situation,
where learning takes place in a complex naturalistic envi-
ronment. The platform is configured for an experimental
setup consisting of a living room with furniture and a toy,
all of them instantiations of theOBJECTclass and built from
3D Studio Max objects. Two instantiations of thePERSON

class are created, one for the caregiver and one for the baby.
The caregiver and learning infant are placed facing each
other. The caregiver instantiates aBRAIN object control-
ling its behavior. A single toy periodically changes location
within a meter of the infant, and its position is fed to the
caregiver’sBRAIN. In a first version of the model, the care-
giver’s BRAIN will simply cause the character to look at the
position of the interesting toy with fairly high probability
(75%). No visual system is given to the caregiver.

The baby instantiates aV ISUAL SYSTEM object that
models a simple infant vision system. In particular, it evalu-
ates thesaliencyof different portions of the visual field [9],
it recognizes the caregiver’s head, and it discriminates dif-
ferent head poses of the caregiver. Saliency computation is
based on six different features, each habituating individu-
ally according to Stanley’s model of habituation [13]. The
feature maps (see Figure 1) are: red, green, blue and yellow
color features based on a color opponency scheme [12], a
contrast feature that acts as an edge detector by giving a
high saliency to locations in the image where the intensity
gradient is high, and finally a face detector feature that as-
signs a high saliency to the region of the caregiver’s face,
which is localized through orace vision. The saliency of the
face can be varied depending on the pose of the caregiver’s
face with respect to the infant (infant sees frontal view vs.
profile view of the caregiver). A similar scheme for visual
saliency computation has been used by Breazeal [2] for a
non-developing model of gaze following, using skin tone,

Image Scale Vision Map Display Animation
80×60 0.0226 0.0073 0.0476

160×120 0.0539 0.0092 0.0431
240×180 0.0980 0.0121 0.0522
320×240 0.1507 0.0113 0.0422
400×300 0.2257 0.0208 0.0507
480×360 0.3025 0.0276 0.0539

Table 1. Simulation times (sec.)

color, and motion features.
The infant’sBRAIN object consists of a two-agent rein-

forcement learning system similar to that used in [4]. The
first agent learns to decide when to simply look at the point
of highest saliency (reflexive gaze shift) or whether to exe-
cute a planned gaze shift. The second agent learns to gener-
ate planned gaze shifts based on the caregiver’s head pose.
The infant should learn to direct gaze to the caregiver to
maximize visual reward, and habituation will cause him/her
to look elsewhere before looking back to the caregiver. With
time, the infant learns to follow the caregiver’s line of re-
gard, which increases the infant’s chance of seeing the inter-
esting toy. However, the caregiver’s gaze does not directly
index the position of the object, but instead only specifies a
direction with respect to the caregiver but not the distance
from the caregiver. One goal of the current model is to better
understand such spatial ambiguities and how infants learn to
overcome them [11].

3.1. Platform Performance

To illustrate the performance of the platform given our
current hardware, we made a number of measurements
to establish the computational bottlenecks for this specific
model. The time spent for each frame was divided into three
separate measures for analysis: the time to calculate the fea-
ture maps (Vision), the time to display them (Map Display),
and the time for the DI-Guy environment to calculate the
next character positions and display them (Animation). Ta-
ble 1 shows how the times vary with the resolution of the
infant’s vision system. As can be seen, most time is spent
on simulating the infant’s visual processing. Real time per-
formance is achievable if the image resolution is not set too
high.

4. Discussion

The platform presented here is particularly useful for
modeling the development ofembodiedcognitive skills.
In the case of the emergence of gaze following discussed
above, it is suitable because the skill is about the inference



Property Robotic Model Virtual Model
physics real simplified or ignored
agent body difficult to create much easier to simulate
motor control full motor control problem substantially simplified
visual environment realistic simplified computer graphics
visual processing full vision problem can be simplified through oracle vision
social environment real humans real humans or simulated agents
real time requirements yes no, simulation can be slowed down or sped up
data collection difficult perfect knowledge of system state
reproducibility of experiments difficult perfect
ease-of-use very difficult easy
development costs extremely high very modest

Table 2. Robotic vs. virtual models of infant cognitive development.

of mental states from bodily configurations, such as head
and eye position, which are realistically simulated in our
platform.

4.1. Virtual vs. Robotic Models

Recently, there has been a surge of interest in building
robotic models of cognitive development. Compared to the
virtual modeling platform presented here, there are a num-
ber of important advantages and serious disadvantages of
robotic models that we will discuss in the following. A sum-
mary of this discussion is given in Table 2.

Physics.The virtual simulation is only an approximation
of real-world physics. The movements of the characters do
not necessarily obey physical laws but are merely animated
to “look realistic.” For the inanimate objects, we currently
do not simulate any physics at all. In a robotic model, the
physics are real, of course. The justification of neglecting
physics in the virtual model is that the cognitive skills we
are most interested in are fairly high-level skills, i.e., we
simply do not want to study behavior at the level of muscle
activations, joint torques, and frictional forces, but at the
level of primitive actions such as gaze shifts, reaches, etc.,
and their coordination into useful behaviors.

Agent body. In the virtual modeling platform, we can
choose from a set of existing bodies for the agents. These
bodies have a high number of degrees of freedom, compara-
ble to that of the most advanced humanoid robots. Further,
since physics is not an issue, we are not restricted by current
limitations in robotic actuator technology. Our characters
will readily run, crawl, and do many other things.

Motor control. Our interface to the agents in the model
allows us to specify high-level commands (walk here, reach
for that point, look at this object). The underlying motor
control problems do not have to be addressed. In contrast,
for a robotic model the full motor control problem needs

to be solved, which represents a major challenge. Clearly,
the platform should not be used to study the specifics of
human motor control but it makes it much easier to focus
on higher level skills. At the same time, perfect control over
individual joint angles is possible, if desired.

Visual environment. The simulated computer graphics
environment is of course vastly simpler than images taken
by a robot in a real environment. For example, shadows
and reflections are not rendered accurately, and the virtual
characters are only coarse approximations of human appear-
ance. Clearly, again, such a modeling platform should not
be used to, say, study the specifics of human object recog-
nition under lighting changes. The skills we are most inter-
ested in, however, use object recognition as a basic building
block (e.g., the ability to distinguish different head poses
of the caregiver with a certain accuracy). We believe that
the details of the underlying mechanism are not crucial as
long as the level of competence is accurately captured by
the model.

Visual processing.In the virtual modeling platform we
can vastly simplify perceptual processes through the use of
oracle vision. In a robotic model, this is not possible and
the perceptual capabilities required for some higher level
cognitive skills may simply not have been achieved by con-
temporary computer vision methods.

Social environment. A robotic model can interact with
a real social environment, i.e., one composed of real human
beings. In our virtual modeling platform we could achieve
this to some extent by using standard Virtual Reality inter-
faces such as head mounted displays in conjunction with
motion tracking devices. In such a setup a real person would
control a virtual person in the simulation, seeing what the
virtual person is seeing through the head mounted display.
However, the ability to experiment with vastly simplified
agents as the social environment allows us to systematically
study what aspects of the social environment, i.e., which be-



haviors of caregivers, are really crucial for the development
of specific social skills [16]. This degree of control over
the social environment cannot be achieved with human sub-
jects. Also, the social agents may be programmed to exhibit
behavior that replicates important statistics of caregiver be-
havior observed in real infant caregiver interactions. For ex-
ample, Déak et al. are collecting such statistics from videos
of infant-caregiver dyad interactions [6]. We are planning
on developing caregiver models that closely replicate the
observed behaviors.

Real time requirements.A robotic model must be able
to operate in real time. This severely limits the complexity
of the model. Perceptual processes in particular are noto-
riously time consuming to simulate. In the virtual model,
we are not restricted to simulating in real time. Simulations
may be slowed down or sped up arbitrarily. In addition, the
availability of oracle vision allows to save precious compu-
tational resources.

Data collection. In the virtual model it is trivial to record
data about every smallest detail of the model at any time.
This is much harder to achieve in a robotic model inter-
acting with real human caregivers. In particular, the exact
behavior of the caregiver is inherently difficult to capture.
Useful information about the caregiver behavior can be re-
covered by manually coding video records of the experi-
ment, but this information is not available at the time of the
experiment.

Reproducibility of experiments. Along similar lines,
the virtual modeling platform allows perfect reproducibility
of experiments. Every last pixel of the visual input to the
learning agent can be recreated with fidelity. This is simply
impossible in a robotic model.

Ease-of-use. Not having to deal with robotic hard-
ware shortens development times, reduces maintenance ef-
forts to a minimum, and makes it much easier to exchange
model components with other researchers. Also, recreat-
ing the specific setup of a real-world behavioral experiment,
only requires changing a configuration file specifying where
walls and objects are, rather than prompting a renovation.

Development costs.Finally, robotic models are much
more expensive. Most of the software components used
in our platform (Linux OS, SGI OpenGL Performer, Intel
OpenCV) are freely available to researchers. The lion share
of the costs is the price of the BDI DI-Guy software.

All these benefits may make a virtual model the method-
ology of choice. Even if a robotic model is ultimately de-
sirable, a virtual model may be used for rapid proto-typing.
We see the use of virtual and robotic models as comple-
mentary. In fact, we are pursuing both methodologies at the
same time in our lab [10].

4.2. Possible Extensions

There are several extensions to our platform that may be
worth pursuing. First, we have only considered monocular
vision. It is easy to incorporate binocular vision by simply
placing two virtual cameras side by side inside a charac-
ter’s head. Foveation could also be added to the characters’
vision systems. Second, in order to model language acqui-
sition, a simulation of vocal systems and auditory systems
of the characters could be added. Even in the context of
non-verbal communication, a caregiver turning his head to
identify the source of a noise may be a powerful training
stimulus for the developing infant. Third, the platform is
not restricted to modeling human development, but could
be extended to model, say, the development of cognitive
skills in a variety of non-human primates. To this end the
appropriate graphical characters and their atomic behaviors
would have to be designed. Fourth, on the technical side, it
may be worth investigating in how far the simulation could
be parallelized to run on a cluster of computers.

4.3. Conclusion

In conclusion, we have proposed a research platform
for creating embodied virtual models of cognitive devel-
opment. We have outlined how the platform may be used
to model the emergence of gaze following in naturalistic
infant-caregiver interactions. The virtual modeling platform
has a number of important advantages compared to robotic
modeling approaches. The relative benefits of virtual mod-
els over robotic models on the one hand or more abstract
computational models on the other hand need to be evalu-
ated on a case-by-case basis.
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