Cumulative Learning of Hierarchical Skills

Pat Langley
Seth Rogers
Computational Learning Laboratory
Center for the Study of Language & Information
Stanford University, Stanford, CA 94305 USA

Abstract

In this paper, we review ICARUS, a cognitive architec-
ture that utilizes hierarchical skills and concepts for
reactive execution in physical environments. In addi-
tion, we present two extensions to the framework. The
first inwvolves the incorporation of means-ends analy-
sis, which lets the system compose known skills to solve
novel problems. The second involves the storage of new
skills and concepts that are based on successful means-
ends traces. We report experimental studies of this
mechanism in the blocks world, which show that learn-
ing operates in a cumulative manner and that it reduces
the time required to handle new tasks. We conclude
with a discussion of related work on learning and di-
rections for future research.

1. Introduction and Motivation

Research on cognitive architectures (Newell, 1990) at-
tempts to understand the computational infrastruc-
tures that support intelligent behavior. A specific ar-
chitecture specifies the aspects of a cognitive agent that
remain the same across time and over different do-
mains, and typically makes strong commitments about
the representation of knowledge structures and the pro-
cesses that operate them. Learning has been a central
concern in most architectural research, with a variety
of mechanisms having been proposed to model the ac-
quisition of knowledge from experience.

In this paper we review ICARUS, a candidate archi-
tecture that diverges from its predecessors on a num-
ber of dimensions. One key difference is that most
frameworks focus on production systems, which en-
code knowledge as a ‘flat’ set of condition-action rules,
whereas ICARUS provides explicit support for hierar-
chies of both concepts and skills. In addition, most
cognitive architectures evolved from theories of human
problem solving, and thus focus on mental phenomena.

In contrast, ICARUS is mainly an execution architecture
that perceives and reacts to external environments.

However, ICARUS’ commitment to hierarchical
structures raises important questions about their ori-
gin. Also, the architecture’s emphasis on execution
does not mean that mental activities such as problem
solving are unimportant, since they can let an agent
handle novel tasks for which stored knowledge is un-
available. The central hypothesis of this paper is that
hierarchical skills and concepts arise, at least in many
cases, from problem-solving behavior, and that, once
learned, these structures can be used to support reac-
tive execution in the environment.

In the sections that follow, we review ICARUS’ repre-
sentation and organization of concepts and skills, along
with the categorization and execution processes that
utilize them. After this, we present a new module that
interleaves means-ends problem solving with execution
when known skills are insufficient to solve a task. Next
we describe a mechanism for creating generalized skills
and concepts from traces of successful problem solving
that supports both incremental and cumulative learn-
ing. We then report experiments with this learning
mechanism that demonstrate its ability to reduce effort
on new problems and that examine effects of training
order. In closing, we discuss earlier research on learn-
ing problem-solving knowledge and cumulative learn-
ing, along with some directions for future work.

2. Representation and Organization

Like other cognitive architectures, ICARUS makes com-
mitments to its representation of knowledge, the man-
ner in which it is organized, and the memories in which
it resides. Here we discuss the framework’s long-term
and short-term memories, including the formalism used
to encode their contents. We will take our examples
from the blocks world, since many readers will find this
domain familiar.



One of ICARUS’ long-term memories stores Boolean
concepts that describe situations in the environment.
These may involve isolated objects, such as an indi-
vidual block, but they can also characterize physical
relations among objects, such as the relative position
of two blocks. Long-term conceptual memory contains
the definitions of these logical categories. Each element
specifies the concept’s name and arguments, along with
four optional fields — :percepts, which describes per-
ceptual entities that must be present; :positives,
which indicates lower-level concepts that must match;
:negatives, which specifies lower-level concepts that
must not match; and :tests, which specifies numeric
relations that must be satisfied.

Table 1 presents some concepts from the blocks
world. For example, on describes a situation in which
IcARUS perceives two blocks with the same x position
and the bottom of one has the same y position as the
top of the other. The concept clear refers to a single
block, but one that cannot hold the relation on to any
other, as specified in its :negatives field.!

Definitions of this sort organize ICARUS categories
into a conceptual hierarchy. Some concepts may be
defined entirely in terms of perceptual conditions and
numeric tests, but many incorporate other concepts in
their definitions. This imposes a lattice structure on
the memory, with more basic concepts at the bottom
and more complex concepts at higher levels. The re-
sulting hierarchy is similar in spirit to early models of
human memory like EPAM (Feigenbaum, 1963), as well
as to frameworks like description logics.

IcARUS also incorporates a second long-term mem-
ory that stores knowledge about skills it can execute
in the environment, including their conditions for ap-
plication and their expected effects. Each skill has a
name, arguments, and a set of optional fields. The
:start field specifies the concepts that must hold to
initiate the skill, whereas the :requires field indicates
conditions that must hold throughout the skill’s exe-
cution, which may require multiple cycles to complete.
The :effects field specifies a conjunction of concepts
that, taken together, describe the situation the skill will
produce when done. For example, Table 2 shows the
skill pickup, which refers to two blocks. These must
satisfy the single start condition, (pickupable ?block
?from), which (as shown in Table 1) requires (on ?block
?from), (clear ?block), and (hand-empty). The skill’s
only stated effect is to make (holding ?block) true.

Each ICARUSs skill also includes a field that speci-
fies how to decompose that skill. Most examples in
the table utilize the :actions field, which refers to

INote that on also mentions clear in its :negatives field, giving
IcARUS some ability to state mutually exclusive concepts.

Table 1. Some IcARUS concepts for the blocks world,
with variables indicated by question marks.

(on (?blockl ?block2)

:percepts ((block ?blockl xpos ?xl1 ypos 7yl)
(block 7block2 xpos 7x2 ypos 7y2

height ?h2))

:negatives ((clear ?block2))

:tests ((equal 7x1 7x2) (>= 7yl 7y2)
(<= ?7y1 (+ ?y2 ?7h2))))

(clear (?block)

:percepts ((block ?block))
:negatives ((on 7other ?block)))

(pickupable (7block 7from)
:percepts ((block ?block) (table 7from))
:positives ((ontable ?block ?from)
(clear 7block)
(hand-empty)))
(pickup-putonable (?block 7from 7to)
:percepts ((block ?block) (table 7from)(block 7to))

:positives ((pickupable 7block ?from)
(clear 7to)))

opaque actions the agent can execute directly in the en-
vironment. For instance, unstack invokes both *grasp,
which grasps a block, and *vertical-move, which moves
the hand in the vertical direction. However, non-
primitive skills like pickup-puton instead include the
:ordered field, which specifies one or more subskills of
which it is composed, in this case the primitive skills
pickup and puton.?

In fact, ICARUS lets one specify multiple ways to
decompose a given concept or skill, much as a Prolog
program can include more than one Horn clause with
the same head. In addition, each skill decomposition
can include a value function that encodes the utility ex-
pected if the agent executes the skill with that decom-
position. Neither capability plays an important role in
this paper, but we have described them in some detail
elsewhere (Choi et al., in press).

In addition to long-term memories, which encode
stable knowledge about a domain, ICARUS includes
short-term stores that can change more rapidly. These
make contact with long-term concepts and skills, but
they represent temporary beliefs about the environ-
ment and intended activities. In particular, the per-
ceptual buffer contains descriptions of physical enti-
ties that correspond to the output of sensors. For the
blocks world, this includes literals like (block B xpos

2IcARUS also supports an unordered field for subskills that can
be executed in any order, but they play no role in this paper.



Table 2. Some IcARuUS skills for the blocks world.

(pickup (7block 7from)
:percepts ((block 7?block)
(table 7from height ?7h))

:start ((pickupable ?block 7from))
tactions ((*grasp 7block)

(*vertical-move 7block (+ 7h 10)))
:effects ((holding 7block)))

(puton (7block ?to)
:percepts ((block 7?block)
(block 7to xpos ?x ypos 7y height 7h))

:start ((putonable 7block 7to))

ractions ((*horizontal-move 7block 7x)
(¥vertical-move 7block (+ 7y 7h))
(*ungrasp 7block))

:effects ((on ?block 7to) (hand-empty)))

(pickup-puton (?block 7from 7to)
:percepts ((block 7block)(block ?from) (table ?to))

:start ((pickup-putonable ?block 7from ?to))
:ordered ((pickup ?block ?7from)

(puton 7block ?to))
:effects ((on ?block 7to)))

10 ypos 2 width 2 height 2), which specify the position
and size of individual blocks. Moreover, the short-term
conceptual memory contains beliefs about the environ-
ment that the agent can infer from those present in its
perceptual buffer and its long-term concept memory.
For instance, this might contain the instance (on B C),
which is an instance of the on concept in Table 1. Fi-
nally, ICARUS includes a short-term skill memory that
contains the agent’s intentions about skill instances it
plans to execute, which lets the system engage in be-
havior that persists over time. Each literal specifies the
skill’s name and its arguments, as in (puton B C).

3. Categorization and Execution

Like most cognitive architectures, ICARUS operates in
cycles. On each iteration, the system updates its
perceptual buffer by applying sensors to every object
within a given distance. This produces perceptual el-
ements that initiate matching against long-term con-
cepts. The matcher checks to see which concepts are
satisfied, adds each matched instance to conceptual
short-term memory, and repeats the process on the ex-
panded set. In this way, ICARUS infers all instances of
concepts that are implied by its conceptual definitions
and the contents of the perceptual buffer. In the blocks
world, the agent would first update its descriptions of
the blocks and the table, then infer concepts like on,
and then infer concepts like unstackable.

On each cycle, the architecture examines the inten-
tions in short-term skill memory to determine which,
if any, apply to the current situation and which one
has the highest expected value. For each skill instance,
IcARUS accesses all expansions of the general skill to
see if they are applicable. A skill is applicable if, for its
current variable bindings, its :effects field does not
match, the :requires field matches, and, if the sys-
tem has not yet started executing it, the :start field
matches the current situation. Also, for higher-level
skills, at least one subskill must be applicable. Because
this test is recursive, a skill is applicable only when
ICARUS can find at least one acceptable path down-
ward to an executable action. ICARUS considers all ac-
ceptable paths downward through the skill hierarchy,
returning the path with the highest expected value.

When expected values are equal, ICARUS selects one
of the skill paths at random, as we assume in this pa-
per. For example, suppose the agent has the inten-
tion (pickup-puton A table B) in a situation where
the concept instances (pickup-putonable A table B)
and (pickupable A table) hold. This means the path
((pickup-puton A table B), (pickup A table)) is accept-
able and would be considered for execution. If selected,
the pickup skill would alter the environment, making
acceptable the path ((pickup-puton A table B), (puton
A B)) on the next cycle. This would produce a state
that satisfies the effects of (pickup-puton A table B),
making any path in which it occurs unacceptable.

The architecture handles a skill differently depend-
ing on how it is decomposed. For primitive skills that
include an :actions field, ICARUS executes each of the
physical actions, one after another, on a single cycle.
For higher-level skills that have an :ordered field, it
treats the list as a reactive program that considers each
subskill in reverse order. If the final subskill is appli-
cable, then it considers only paths that include that
subskill. Otherwise, it considers the penultimate skill,
the one before that, and so forth. Presumably, the sub-
skills are ordered because later ones are closer to the
parent skill’s objective, and should be preferred over
earlier ones when applicable.

4. Means-Ends Problem Solving

As explained above, the initial version of ICARUS can
execute complex hierarchical skills in a reactive man-
ner, but it assumes that these skills are already present
in long-term memory. Although much human behavior
involves the application of such routine skills, people
also have the ability to solve novel problems that re-
quire the combination of existing knowledge elements.

To model this capability in ICARUS, we have intro-
duced a variant of means-ends analysis (Newell, Shaw,



& Simon, 1960) that operates over the architecture’s
knowledge structures. Traditional means-ends problem
solving selects some unsatisfied aspect of the goal state
to achieve, then selects an operator that would achieve
it. If that operator’s preconditions match the current
state, it is applied; otherwise, the method selects an
unsatisfied precondition to achieve, selects an operator
that would achieve it, and so on. Once a condition is
achieved, the process is repeated until the original goal
description is satisfied. This may require search, which
is typically pursued in a depth-first manner. Means-
ends analysis has been implicated strongly in human
problem solving, and it forms the central technique in
the PrRODICY architecture (Minton et al., 1989).

IcArUSs implements a variant of this mechanism
with a goal stack that contains goal elements in an or-
dered list. Each goal element specifies an objective (a
desired goal literal) and whether it involves backward
chaining off a concept definition or a skill. If the latter,
then the element may specify a skill that achieves the
objective. Also, a goal element may have a ‘failed’ field
for skills or concepts that it has tried and rejected. On
each cycle, ICARUS takes one of six steps:

e If the top entry E on the stack has an associated skill
instance S that is allowable, in the sense described
above, then ICARUS selects a skill path for S and
executes it in the environment.

o If the top entry E on the stack has an associated
skill instance S that is not executable, then ICARUS
adds a new entry on top of the stack with the start
condition of skill S as its objective.

o If the top entry E on the stack has objective O but
does not have an associated skill, ICARUS retrieves
skills that include O in their effects field, selects an
instance S from this set, and associates S with E.

e If ICARUS retrieves no skills that would achieve ob-
jective O, it determines which instantiated subcon-
cepts of O are not met, selects one (C) at random,
and adds a goal element with C' as its objective.

o If the objective O for the top entry E on the stack
is satisfied by the current environmental state, then
ICARUS pops E from the stack.

e Otherwise, if the system cannot find a skill instance
that does not appear in the entry E’s failed field,
and if chaining off the unmatched elements of E’s
objective O has failed, then it pops E from the stack
and stores O in the failed field of E’s parent.

Each of these activities takes a single cycle of the ar-
chitecture. Because reasoning about how to achieve an
objective can require many manipulations of the goal
stack, it takes more cycles than executing a hierarchi-
cal skill for the same objective, even when the agent
does not have to backtrack.

Search enters into this formulation in two places.
One involves backward chaining off the unmatched el-
ements of a concept definition. Here ICARUS selects
a literal randomly from those not yet tried and keeps
track of literals it has failed to achieve. The other in-
volves backward chaining off skills that, if executed,
would achieve the objective of the current stack entry.
Here IcARUS prefers skill instances that have not yet
failed and that have the fewest expanded :start con-
ditions unmet by the current environmental state, with
fully matched conditions being the most desirable. If
two or more candidates tie on this criterion, it prefers
skill instances that have a shorter expected duration,
and if ties remain, it selects a candidate at random.

Taken together, these biases produce a heuristic ver-
sion of means-ends analysis. However, this problem-
solving method is tightly integrated with the execu-
tion process. ICARUS backward chains off concept or
skill definitions when necessary, but it executes the skill
associated with the top stack entry as soon as it be-
comes applicable. Moreover, because the architecture
can chain over hierarchical reactive skills, their exe-
cution may continue for many cycles before problem
solving is resumed. In contrast, most models of human
problem solving and most AI planning systems focus
on the generation or the execution of plans, rather than
interleaving the two processes.

Of course, executing a component skill before con-
structing a complete plan can lead an agent into diffi-
culties, since it is harder to backtrack in the world than
in one’s head. This strategy may well lead to nonop-
timal behaviors, but human intelligence is more about
satisficing than optimizing, and interleaving problem
solving with executing requires far less memory than
constructing a full plan before executing it. However,
it can produce situations from which the agent cannot
recover. Thus, if ICARUS has not achieved the top-level
objective in a goal stack within N cycles, it resets the
environment in the original situation and tries again,
with no memory of its previous attempts.

5. Learning from Problem Solving

In the previous pages, we described two facets of
IcARrus: its ability to execute hierarchical skills on fa-
miliar tasks and its ability to use problem solving to
handle novel tasks. The first lets the system operate
efficiently, but skills are tedious to construct manually,
whereas the second gives the system flexibility but re-
quires reasoning and means-ends search. We believe
that humans also have both capabilities, but that they
also use learning to transform the results of successful
problem solving into hierarchical skills. We would like
to incorporate a similar capability into ICARUS.



However, we want our learning mechanisms to sat-
isfy certain constraints that appear to hold for human
skill acquisition. One is that learning should take ad-
vantage of existing knowledge, such as the definitions
of current skills and concepts. Another characteris-
tic is that learning should be incremental and inter-
leaved with the problem-solving process. Taken to-
gether, these imply that learning should be cumula-
tive in the sense that it builds directly on the results
of previous learning. The literature on computational
learning contains remarkably few examples of such cu-
mulative acquisition of knowledge.

Our extension of ICARUS achieves this effect through
a form of impasse-driven learning that is tied closely
to its problem-solving and execution processes. As in
SoAR (Laird et al., 1986), the purpose of skill learning
is to avoid such impasses in the future. Thus, whenever
the architecture achieves an objective that is associated
with an entry in the goal stack, this provides an oppor-
tunity for learning. The system acquires three distinct
forms of skill, which we describe in turn.

The first type of skill results from situations in which
ICARUS has attempted to execute a skill instance S to
achieve an objective O, but found its start conditions
unsatisfied and selected another skill instance, P, to
achieve them. Once both skills have been executed
successfully and the objective reached, the system con-
structs a new skill N that has P and S as ordered
subskills. The objective of IV is the original objective,
O, and the start condition is a new concept, C, that in-
cludes the conditions of O that were satisfied initially,
the preconditions of S that were satisfied initially, and
the start conditions of P. The definitions have their
arguments replaced by variables in a consistent man-
ner. For example, the skill pickup-puton in Table 1
might be learned from a problem that involved execut-
ing (pickup A table) followed by (puton A B) to achieve
the goal (on A B).

The other types of skills result from situations in
which the problem solver could not find a skill to
achieve an objective O, and thus created as subgoals
the literals {O1,0a3,...,0,} from the unsatisfied con-
ditions of O’s conceptual definition. Suppose these
subgoals have each been achieved in turn by execut-
ing the skill instances {Si,Sa,...,Sn}, respectively,
thus satisying the parent goal O. When this occurs,
ICARUS constructs a new skill N with ordered sub-
skills {S1,Gs,...,G,}. Each Gy is a “guard” skill
with Sy as a single subskill, with no effects, and with
{O1,...,0k_1} as its start conditions, which ensure
that Sy, is invoked only after these objectives have been
met. Their parent skill NV has as its effect O and has, as
its start condition, a new concept C' that includes both

the elements of O and the elements of Sy, ..., and S,
that were satisfied initially. Again, specific arguments
are replaced by variables in a consistent way.

We have emphasized the construction of hierarchical
skills, but, as noted above, ICARUS also acquires new
concepts in the process. These play the role of start
conditions for the new skills and ensure they are exe-
cuted only when appropriate. Thus, one can view these
concepts as functionally motivated, even though their
definitions are purely structural. For example, the con-
cept (pickup-putonable ?block ?from ?to) created as
the start condition of skill pickup-puton above is de-
fined as the conjunction of (pickupable ?block ?from)
and (clear ?to), which is the situation in which execut-
ing (pickup ?block ?from) followed by (puton ?block
?to) will achieve the effect (on ?block ?to).

These learning mechanisms are fully incremental, in
that each learning event draws on a single problem-
solving experience and thus requires no memory of pre-
vious ones. They even support within-trial learning,
since skills acquired on one subproblem may be used
to handle later subproblems. The learning processes
also build on existing knowledge, since the construction
of new skills and concepts involves the composition of
those used in a training problem’s solution. Taken to-
gether, these support a form of cumulative learning, in
which ICARUS learns skills and concepts on one prob-
lem, uses them in solving a later problem, and incor-
porates them into still higher-level skills and concepts.

6. Experiments with Hierarchy Learning

Initial studies with the blocks world confirmed that the
extended version of ICARUS learns hierarchical skills
and concepts in the manner described. Moreover, they
revealed that, when given the same task to solve a sec-
ond time, the system utilizes this knowledge to han-
dle it without problem solving, although this does not
mean it completes the problem in a single cycle. Recall
that, unlike traditional cognitive architectures, ICARUS
resorts to problem solving only to enable execution,
and it must still execute its acquired skills to reach
an objective. Thus, for a problem that requires four
primitive steps, the system takes six cycles the second
time it encounters this task, with one to retrieve the
hierarchical skill and one to realize that it has finished.

For this domain, ICARUS learns skills for achieving
particular configurations of blocks from particular ini-
tial configurations, along with concepts for the start
conditions of each skill and subskill. Yet because the
system generalizes its learned structures beyond the
specific instances on which they are based, it can han-
dle without problem solving any task that is isomorphic
to one it has already solved. This isomorphism must



involve the same objective and have the same subcon-
cepts satisfied or unsatisfied in the initial environment.

However, we desired more than anecdotal demon-
strations that the new mechanisms supported cumula-
tive learning of skills and concepts. We also wanted ev-
idence from systematic experiments that this learned
knowledge produces more effective behavior. To this
end, we examined the state space for blocks world prob-
lems that involve three blocks. If one ignores isomor-
phisms, then there are five problems that can be solved
in two primitive steps, eight tasks solvable in four steps,
nine six-step problems, and four eight-step problems.?
These 26 tasks constituted both the training and test
problems for the study.

We provided the system with four primitive skills
and ten concepts, including one for the desired state,
that were sufficient, in principle, to solve these blocks-
world problems. We then presented it with these prob-
lems in sequence, using each task as a training prob-
lem but also recording the number of cycles required to
complete it. Because misguided search combined with
execution can lead the problem solver into undesirable
physical states, we told it to halt if it had not finished
a run within 50 cycles and start over from the initial
state. However, it could attempt a given problem only
ten times, and thus spend at most 500 cycles before giv-
ing up entirely. We also limited the stack depth to six
goal elements. We enforced these constraints for rea-
sons of practicality and because we think they reflect
the manner in which humans tackle novel problems.

We ran ICARUS on the 26 blocks-world problems,
ordering them by difficulty class (two-step tasks first
and eight-step tasks last) but randomly within a class.
The intuition was that the system would learn more
effectively if we presented it first with simpler prob-
lems, which it could then use in solving more difficult
ones. To this end, ICARUS retained skills and concepts
acquired on successful runs for use in later tasks. How-
ever, if the system failed on a given run, it removed any
skills and concepts created during that run, to prevent
them influencing behavior on later attempts. We ran
IcARrUS over 200 randomly generated problem orders
and averaged the number of cycles required at each
level of experience. As a control, we also ran the ar-
chitecture with its learning mechanisms off on another
200 random problem sets.

Figure 2 shows the result of this experiment, includ-
ing 95 percent confidence intervals around each mean.
The two curves show clearly that learning reduces the
total cycles required to solve problems in the blocks

3We ignored tasks with an odd number of steps, since these
start or end with a block in the air. Also, we considered only
problems in which the objective was a fully specified state.

No learning
Learning

Number of cycles required

Number of problems encountered

Figure 1. Number of cycles required by ICARUS to
solve a blocks-world task as a function of the number
of training problems, averaged over 200 runs, with
order randomized within each difficulty class.

world. Both curves are step functions that increase
with problem difficulty, as one would expect. Remem-
ber that none of the problems are isomorphic, although
they may involve isomorphic subtasks. The results sug-
gest that ICARUS takes advantage of that similar sub-
structure to reduce its effort on later problems. In a
typical run on 26 problems, the system constructed 54
new concepts and 79 skills, including 14 skill-chaining
skills, 36 concept-chaining skills, and 29 guard skills.

We presented ICARUS with problems in increasing
order of difficulty because we believed this training reg-
imen would lead to better learning. Our intuition was
that, because the system would be more likely to solve
simpler problems, it would be more likely to acquire
skills and concepts that would prove useful in more
complex ones encountered later. However, this hypoth-
esis seemed worth testing experimentally, so we carried
out another study with this in mind. In this case, we
held back the four eight-step tasks for testing, and let
ICARUS learn only from the 22 simpler problems.

We examined three conditions, one in which (as be-
fore) problems were ordered randomly within their dif-
ficulty class, one in which they were ordered randomly
without this consideration, and one in which no learn-
ing occurred. Again we averaged the required num-
ber of cycles over 200 different runs and, in this case,
over the four test problems. As expected, the condition
with no learning fared far worst, taking 230.16 4+ 11.28
cycles. However, the skills acquired from problems or-
dered by difficulty took 140.13 & 12.31, whereas those
learned from randomly ordered training tasks took only
118.91+11.62. Presenting simpler problems earlier cer-



tainly did not help ICARUS learn more rapidly, and may
even have slowed the system down.

To understand better the factors at work, we re-
peated the random order condition with fewer training
problems, again testing on the four eight-step tasks.
When trained only on the five two-step problems, the
average over 200 runs was 201.11 + 11.09 cycles, and
when the system learned from both these and the eight
four-step problems, the average was 144.43 £+ 11.05 cy-
cles. Thus, ICARUS shows steady improvement with
experience, suggesting that it acquires skills and con-
cepts even from relatively complex training problems.

7. Related Research

The use of background knowledge to support learning
has a long history within both AI and cognitive science.
Research on explanation-based learning often aimed to
improve efficiency on problem-solving tasks and com-
bined experience with a domain theory to create new
cognitive structures. Some work focused on the acqui-
sition of search-control rules to guide problem solving,
but other efforts instead dealt with the construction
of macro-operators from primitive operators (e.g., Iba,
1988; Mooney, 1989). Our approach to learning hi-
erarchical skills comes closest to the second tradition,
since both involve composing knowledge elements into
larger structures. However, ICARUS adapts this idea for
the creation of skill hierarchies, whereas earlier meth-
ods produced flat macro-operators that contained less
structure than the original knowledge base.*

IcARUS also has similarities to other cognitive ar-
chitectures that incorporate varieties of explanation-
based learning. For example, Laird, Rosenbloom, and
Newell’s (1986) SOAR revolves around a problem solver
that proceeds until the system encounters an impasse,
in which case it creates a subgoal to resolve it. This
resolution may require search and take some time to
produce the information necessary. Once the impasse
has been handled, SOAR creates a chunk that encodes
a generalized explanation of the result in terms of the
original goal context. Intermediate steps from the so-
lution are lost, but the chunk lets the system sidestep
similar impasses in the future.

Anderson’s (1993) ACT-R employs a related mech-
anism, called compilation, that creates new production
rules from ones that are involved in the same reasoning
chain. This scheme produces very specific rules that
replace variables with the declarative elements against
which they matched, rather than forming generalized
structures, as do ICARUS and most systems that learn

4However, we have adopted Mooney’s key idea that one
should not chain off the preconditions of learned skills.

macro-operators. In fact, our approach is much closer
to the composition process that played a role in earlier
versions of ACT. The PRODIGY architecture (Minton
et al., 1989) can invoke a similar mechanism to learn
macro-operators from traces of means-ends problem
solving. However, neither framework produces hierar-
chical structures or demonstrates the cumulative learn-
ing found in ICARUS.

A few researchers have built systems that support
cumulative learning outside the context of problem-
solving tasks. An early example was Sammut and
Banerji’s (1986) Marvin, which learns logical concepts
that are composed of other, more basic, concepts. A
human trainer presents the system with examples of
increasingly complex concepts, ensuring that it has
mastered each one before moving to the next. Pfleger
(2002) describes another learning system that acquires
hierarchical patterns in an unsupervised on-line set-
ting. Like Marvin, it learns conceptual structures from
the bottom up, so that more complex patterns are ap-
parent after simpler ones have been acquired. Most
recently, Stracuzzi and Utgoff (2002) report another
learning system that operates in a cumulative manner.

A closer relative to ICARUS is Reddy and Tadepalli’s
(1997) system, which learns increasingly sophisticated
goal-decomposition rules from a sequence of training
exercises. Their system does not include an execution
engine, but it does generate hierarchical plans and ac-
quires its structures in a cumulative manner. Ruby and
Kibler’s (1991) SteppingStone also learns to solve more
difficult problems based on solutions generalized from
simpler ones, which it generates from a distribution
and obtains through a mixture of problem reduction
and exhaustive search. Benson’s (1995) TRAIL incor-
porates a reactive control module that invokes learn-
ing when it reaches an execution impasse. The system
learns from observing a teacher’s actions and from ex-
perimentation, rather than from problem solving, and
it acquires models for primitive actions rather than hi-
erarchical structures, but its behavior is cumulative in
that later learning depends on earlier experience.

8. Concluding Remarks

In the preceding pages, we presented ICARUS, a cog-
nitive architecture for physical agents that uses stored
concepts and skills, both organized in hierarchies, to
recognize familiar situations and to control its behav-
ior. We described a new module that supports means-
ends problem solving on novel problems, along with a
learning mechanism that produces new skills and con-
cepts from traces of problem solutions. This method
learns incrementally and in a cumulative manner, cre-
ating hierarchical structures that refer to others learned



earlier. In addition, we reported experiments with the
blocks world that showed such learning enables transfer
to different problems and to more effective behavior.

Despite these advances, our work on cumulative
learning in ICARUS is still in its early stages. For in-
stance, we should show its ability to learn hierarchi-
cal structures on domains other than the blocks world.
These should include traditional problem-solving tasks
such as the Tower of Hanoi, which has been the fo-
cus of many psychological studies. More important,
we should study ICARUS’ behavior in dynamic domains
that require integration of problem solving with reac-
tive control. A prime candidate is the driving environ-
ment used to evaluate the architecture’s categorization
and execution modules (Choi et al., in press).

In addition, ICARUS’ methods for problem solving
and hierarchical learning would also benefit from new
capabilities. For example, the current system selects
subgoals randomly when chaining off a concept defi-
nition, which means that it often needs to backtrack
even when it has skills for each component problem.
Extending the problem solver to avoid ‘goal clobber-
ing’ would let it take better advantage of learned sub-
skills. Nor can ICARUS acquire recursive skills for tasks
that involve regular structure, such as building towers
in the blocks world. Analyzing relations among learned
skills may provide this ability, which should let the sys-
tem transfer learned knowledge to problems with more
objects, as seems crucial for scaling to complex tasks.

We should also address directly the wutility problem,
which can actually produce slower behavior in systems
that learn problem-solving skills. Our plans here in-
volve storing, with each skill, its expected duration and
probability of success, then using these numbers in ex-
ecution and problem solving. Initial estimates would
come from a skill’s components but would be revised
with experience in utilizing the skill. Combined with
other extensions, this should give ICARUS a more ro-
bust and effective approach to cumulative learning.

Acknowledgements

This research was funded in part by Grant 11S-0335353
from the National Science Foundation, by Grant NCC
2-1220 from NASA Ames Research Center, and by
Grant HR0011-04-1-0008 from Rome Labs.

References

Anderson, J. R. (1993). Rules of the mind. Hillsdale,
NJ: Lawrence Erlbaum.

Benson, S. (1995). Induction learning of reactive ac-
tion models. Proceedings of the Twelfth Interna-
tional Conference on Machine Learning (pp. 47-54).
San Francisco: Morgan Kaufmann.

Choi, D., Kaufman, M., Langley, P., Nejati, N., &
Shapiro, D. (in press). An architecture for persistent
reactive behavior. Proceedings of the Third Interna-

tional Joint Conference on Autonomous Agents and
Multi-Agent Systems. New York: ACM Press.

Feigenbaum, E. A. (1963). The simulation of verbal
learning behavior. In E. A. Feigenbaum & J. Feld-
man (Eds.), Computers and thought. New York:
McGraw-Hill.

Iba, G. A. (1989). A heuristic approach to the dis-
covery of macro-operators. Machine Learning, 3,
285-317.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986).
Chunking in Soar: The anatomy of a general learning
mechanism. Machine Learning, 1, 11-46.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka,
D., Etzioni, O., & Gil, Y. (1989). Explanation-based
learning: A problem solving perspective. Artificial
Intelligence, 40, 63—118.

Mooney, R. J. (1989). The effect of rule use on the
utility of explanation-based learning. Proceedings of
the Eleventh International Joint Conference on Ar-
tificial Intelligence (pp. 725-730). Detroit: Morgan
Kaufmann.

Newell, A., Shaw, J. C., & Simon, H. A. (1960). Report
on a general problem-solving program for a com-
puter. Information Processing: Proceedings of the

International Conference on Information Processing
(pp- 256-264). UNESCO House, Paris.

Newell, A. (1990). Unified theories of cognition. Cam-
bridge, MA: Harvard University Press.

Pfleger, K. (2002). On-line learning of predictive com-
positional hierarchies. Dissertation, Computer Sci-
ence Department, Stanford University, Stanford.

Reddy, C., & Tadepalli, P. (1997). Learning goal-
decomposition rules using exercises. Proceedings of
the Fourteenth International Conference on Machine
Learning (pp. 278-286). San Francisco: Morgan
Kaufmann.

Ruby, D., & Kibler, D. (1991). SteppingStone: An em-
pirical and analytical evaluation. Proceedings of the
Tenth National Conference on Artificial Intelligence
(pp- 527-532). Menlo Park, CA: AAAT Press.

Sammut, C., & Banerji, R. B. (1986). Learning con-
cepts by asking questions. In R. S. Michalski, J. G.
Carbonell, & T. M. Mitchell (Eds.), Machine learn-
ing: An artificial intelligence approach (Vol. 2). Los
Altos, CA: Morgan Kaufmann.

Utgof, P., & Stracuzzi, D. (2002). Many-layered learn-
ing. Proceedings of the Second International Confer-
ence on Development and Learning (pp. 141-146).



