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Abstract

We present a system for on-line, cumulative learning of hier-
archical collections of frequent patterns from unsegmented data
streams. Such learning is critical for long-lived intelligent agents
in complex worlds. Learned patterns enable prediction of unseen
data and serve as building blocks for higher-level knowledge rep-
resentation. We introduce a novel sparse�-gram model that, un-
like pruned�-grams, learns on-line by stochastic search for fre-
quent�-tuple patterns. Adding patterns as data arrives compli-
cates probability calculations. We discuss an EM approach to this
problem and introduce hierarchical sparse�-grams, a model that
uses a better solution based on a new method for combining infor-
mation across levels. A second new method for combining infor-
mation from multiple granularities (�-gram widths) enables these
models to more effectively search for frequent patterns (anon-line,
stochastic analog of pruning in association rule mining). The re-
sult is an example of a rare combination—unsupervised, on-line,
cumulative, structure learning. Unlike prediction suffix tree (PST)
mixtures, the model learns with no size bound but using less space
than the data. It does not repeatedly iterate over data (unlike Max-
Ent feature construction). It discovers repeated structure on-line
and (unlike PSTs) uses this to learn larger patterns. The type of re-
peated structure is limited (e.g., compared to hierarchical HMMs)
but still useful, and these are important first steps towardslearning
repeated structure in more expressive representations, which has
seen little progress especially in unsupervised, on-line contexts.

1 Introduction

For purposes here,on-line learningmeans the learner
sees data a little at a time and cannot remember all data
nor repeatedly iterate over it. This paper takes as a given
the importance of on-line learning and will not dwell on
motivating it. It suffices to note that (a) on-line learning is�
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critical for long-lived autonomous agents in complex envi-
ronments, (b) in many specific applications data sizes over-
whelm storage capacities [1], and (c) a vast array of litera-
ture has argued for on-line learning (e.g., [1, 2, 3, 4]). To
quote [2], “in a broad sense, online learning is essential if
we want to obtainlearning systems as opposed to merely
learnedones.” This paper further assumes the importance
of Cumulative learning(also called layered or hierarchical
learning), which involves using the results of prior learning
to facilitate further learning (e.g., building new knowledge
structures from experience by combining previously learned
structures). For more discussion, see [5].

We present a model,hierarchical sparse�-grams, for
on-line cumulative learning of frequently occurring pat-
terns from unstructured unsegmented data, along with a
related subcomponent model,sparse�-grams. Language,
music, spatial configurations, event chronologies, actionse-
quences, and many other types of data exhibit repeated sub-
structure. For intelligent autonomous agents, identifying re-
peated substructure or frequent patterns in data has many
benefits, including prediction of unseen information, im-
proving short-term memory capacity and thus information
processing capability generally, and facilitating communi-
cation and further learning. In addition, frequent patterns
serve as building blocks for higher-level knowledge rep-
resentation. General methods for identifying frequent pat-
terns would greatly aid automated selection of higher-level
representational units that are tuned to the environment.
Frequent patterns in unbounded, unsegmented data streams
can be identified on-line by simply noticing and remember-
ing patterns that occur often, and using these to search for
larger patterns that would otherwise have been more dif-
ficult to notice. Putting this into practice involves several
challenges, as we will explain. We must emphasize that
though our models are based on�-grams, our main goal is
not model-class specific, but is the (under-investigated) on-
line learning of frequent patterns in data and the cumulative
use of existing patterns to help identify larger ones. Our pur-
pose is not to tweak a slight performance improvement on
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standard NLP, compression, or speech community�-gram
benchmarks (most of which are batch and all of which are
non-cumulative).

This paper is organized as follows. Section 2 presents
sparse�-grams, the component model. This section demon-
strates the benefits of the sparse representation, explains
the method for on-line structure learning in the presence of
sparseness, and introduces the mathematical form of novel
probability estimates that form the basis for inference in
both the basic and hierarchical models. Section 3 intro-
duces hierarchical sparse�-grams and explains how the
hierarchical nature of these models dramatically improves
both the probability estimates (inference) and pattern selec-
tion (structure learning). Experimental results demonstrate
that the models do an impressive job of finding frequent
patterns demonstrated by their environments despite very
sparse sampling of huge pattern spaces. Section 4 discusses
related work from a diverse set of research communities.
In general, the related models share certain properties but
address different fundamental goals. The paper concludes
with Section 5.

2 Sparse�-grams�-grams are considered state-of-the-art for problems in-
volving discrete sequences [6, 7]. Exhaustive�-grams store
an occurrence count for every pattern of width�. We in-
troducesparse�-grams(or SNGs), which keep only some
counts. They trade prediction quality for space, but wider
SNGs can out-predict narrower exhaustive�-grams with the
same number of patterns, making the sparse models useful
when data is plentiful relative to storage. Similar�-grams
trained exhaustively and then pruned [8] require increased
storage during training and are not easily adaptable to on-
line learning. Our goal is not merely to save space during
training, however, or to improve�-gram models, but to in-
vestigate on-line, hierarchical learning of frequent patterns
from unsegmented data. SNGs are a necessary subcompo-
nent of the hierarchical models introduced below, but they
are also interesting themselves and many issues are more
easily introduced with them.

2.1 Sparse joint distributions and inference

For our purposes here, the learning and inference tasks
are the unbounded, sequential analogs of those for standard
fixed-feature IID unsupervised learning. A query is a se-
quence of any width with symbols for some positions spec-
ified, some targets to be predicted, and the rest missing.
Each position is a symbol from alphabet� . �-grams keep
a count� for each of the	
 	� patterns and estimate proba-
bilities as� � (or a smoothed version, e.g.,�� �� � �� �� ), where�

sums all counts. An SNG with counts for� patterns,

calledtrackedpatterns, for fixed�, is a �-�-gram. It esti-
mates tracked patterns as above and distributes the remain-
ing probability mass evenly among the untracked patterns to
complete the joint distribution1, which can be conditioned
to make arbitrary predictions.

To demonstrate that sparseness can improve prediction,
we trained sparse and exhaustive�-grams on book1 (a
Thomas Hardy novel) of the Calgary corpus [7] (stripped of
non-letters).2 Batch training was used here just to demon-
strate the potential of SNGs. We examined several infer-
ence patterns (forward, backward, and middle prediction
and variants with missing values). Accuracy (0/1 loss) and
cross-entropy were measured on a held-out test set of the
last 10,000 characters. We expected sparseness to impair
prediction, expected it to hurt cross-entropy more than ac-
curacy (for which fine distinctions between unlikely events
is less important), and expected increased width to mitigate
the degradation.

Cross-entropy results were mixed, with�-grams outper-
forming SNGs in a few cases but not in others. Under ac-
curacy,�-grams were always outperformed by a one-wider
SNG with the same number of patterns (Figure 1(a)). This
shows that the advantage of an extra predictor variable can
outweigh the degradation caused by sparseness. Figure 1(b)
shows that there is little degradation until the sparsenessbe-
comes severe. Also, any increase in storage can increase
SNG performance by increasing� , whether or not it is
enough to use a wider exhaustive model (increasingly im-
portant as� or �� � rise). Since sparseness does not create
inefficiencies3, SNGs can be useful in some circumstances.

Sparseness degrades accuracy less than cross-entropy
since accuracy depends only on correctness of the mode
of the model’s conditional distribution of the targets, not
fine distinctions. The following is a more detailed explana-
tion. When predicting with a full set of��� given symbols,
the conditional distribution derives from renormalizing�� �
entries of the joint distribution. If a well-trained SNG in-
cludes at least one of these, it will get the correct mode.
Only whenall are absent will accuracy suffer, and this is
the least likely case if the model includes frequent patterns.

1�-grams are often stored in a conditional form, but can be undirected.
They are interchangeable for exhaustive but not sparse versions. We use
the undirected here for simplicity, more flexible sparseness (see Section 4),
predicting equally well backwards, and generalizability to 2D data (a long-
term goal). ADtrees [9] allow efficient prediction even fromthe undirected
representation.

2Our experiments have concentrated on letters as symbols (standard in
the compression community [7]) instead of words. We believethe structure
of letters, phonemes, musical notes, etc., is more appropriate for studying
identification of frequent patterns (and might play a role indiscovering
words in the first place [5]). Words have longer-range interactions. Despite
their word-level success,�-grams seem more suited to letters (also claimed
by [10]). Nonetheless, our models are not limited to the letter level and
should work well for word�-grams as well.

3Representation of SNGs uses a tree. Each leaf stores the count of a
corresponding�-tuple (� �� � lookup as for�-grams).
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Figure 1. (a) /-0-gram accuracy vs.0 for / 1 234 (5=1–3) for backward and middle prediction. Forward behaves similar to
backward and is omitted for clarity. Random guessing on this26-class problem gets only 0.038 accuracy, and majority (a 1-gram)
0.118. The leftmost points of the equi-/ lines are exhaustive0-grams, all outperformed by wider SNGs to the right. When/ is
limited to the number of non-zero counts in the exhaustive (067)-gram, performance (circle and square) still exceeds the exhaustive
model. (b)/-0-gram accuracy (and total tracked probability mass) vs./ for 0=3, for forward (ggt) and marginalized forward (gmt)
prediction (Given, Missing, Target). Degradation is severe only for small/. (c) The counts kept.

Cross-entropy will degrade ifany of these entries are re-
placed by the untracked average. When there are missing
values, the conditional distribution derives from renormal-
izing sums of entries. Being larger, the tracked entries will
usually dominate these sums so that if the model contains
any of this much larger set of entries, accuracy will often not
suffer. Indeed, Figure 1(b) shows that marginalized predic-
tion degrades relatively less with sparseness. Under a more
general loss function that penalizes incorrect answers butal-
lows “skipping questions” for a smaller penalty, sparseness
hurts even less since it is obvious to the model when it does
not have the relevant counts to make a good guess. These
concerns are important because accuracy (or more general
loss functions allowing abstention) is more appropriate than
entropy-based measures in some situations.

2.2 On-line learning of frequent patterns

The model cannot know the frequent patternsa priori,
so on-line learning requires structural selection of which
counts to include. Structure learning is harder on-line.
Batch structure learning often works by optimizing a global
metric such as a Bayesian posterior or MDL score over all
data. This cannot be done on-line4. We identify frequent
patterns on-line using a stochastic subset search that incre-
mentally adds and removes patterns. Patterns are added ran-
domly, but only when appearing in training (the add prob-
ability for a new instance is a small fixed value). Tracked

4. . . unless the model encodes sufficient statistics to summarize past
data, which is not possible with structure changes that grownew param-
eters. Sufficient statistics can be encoded where changes only shrink the
models, as in [11] where segmented data allows direct data incorporation
steps. Our techniques do not depend on segmented data. Note that adding
growth steps (reversing bad merges) breaks the on-line nature of the algo-
rithms in [11].

patterns with low observed frequencies are discarded. Thus,
infrequent patterns shuffle in and out of the model. The key
that makes learning feasible is that frequent patterns, once
added, are identifiable as such. A period of uncharacteristic
rarity might cause a truly frequent pattern to be discarded,
but if it is truly frequent then it will be added again, and
as a pattern is tracked longer the chance of large enough
anomalous drought to trigger removal becomes vanishingly
small.

Addition and removal can operate independently or one
can trigger the other to keep8 fixed. If only the least fre-
quent pattern is ever removed, the model will converge. Un-
fortunately, we do not know the true pattern frequencies but
only slowly converging estimates. We created a new ver-
sion ofHoeffding races[12, 1] to decide when to remove a
pattern and which to remove. Maron and Moore [12] intro-
duced Hoeffding races to the machine learning community
for model selection in supervised learning, and Domingos
and Hulten [1] used these races for on-line decision tree
construction. We adapt the technique for sparse9-gram pat-
tern removal and introduce a slight improvement specific to
the low probabilities of this application.

Hoeffding races are useful when there are several com-
peting entities about which statistical evidence is accumu-
lating and the goal is to find an extreme (high or low) valued
example. In the present context, this allows one to smoothly
trade off how much less frequent the least-frequent pattern
is with how converged the estimates are so that a bigger
gap between the frequencies can be acted upon while the
error bars are still high, while a close race will require more
convergence. Traditional Hoeffding races use the Hoeffd-
ing bounds, a member of the broader class of Chernoff
bounds. We use a tighter version of the Chernoff bounds
[5, Sec.7.3.4], appropriate when the probabilities are close
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to zero, as they are for:-grams. The other difference from
traditional Hoeffding races is that in this case the race is per-
petual, with new competitors continually introduced after
the race has started. The exact rule that sparse:-grams em-
ploy can be abstractly stated as follows: The model removes
a pattern as soon as it can identify one that it is “reason-
ably sure” is “close” to being the least frequent (probably
approximately the least frequent). Specifically, the model
finds the pattern whose upper bound (highest possible prob-
ability in the confidence interval) is lowest. Then it finds a
different pattern whose lower bound is lowest. If the differ-
ence between the upper bound of the former and the lower
bound of the latter is less than a tolerance parameter; , the
model drops the former pattern. The continual addition and
removal process thereby converges to a stochastic equilib-
rium in which more frequent patterns are more likely to be
included.

For each pattern pat<, the model maintains a count=<
of occurrences since inclusion. Since patterns are added at
different times, empirical frequencies have different relia-
bilities and the model cannot simply use>? @A as the esti-
mate for every pattern, so it keeps the total numberB < of
instances seen since adding pat<. See Figure 1(c).>? @A ?
is less reliable for new patterns, so probability estimates
must be weighted based on age to insure that after adding
a new pattern, its probability under the model only slowly
diverges from the untracked averageC untracked, asymptoti-
cally approaching>? @A ?. To do this, the model keeps pat-
terns sorted byB< (A ? D A ?E F). For patG, H F I > F@A F, butC J has an additional term estimating missed occurrences
from when only patG was tracked, called episodeG: H K IFLM N>K O PA F Q A K RPS Q H FR FTU TV WF X, wherePA F QA K R PSQH F R es-
timates the number of non-patG occurrences in episodeG.
Appealingly, this is a linear interpolation ofFWY MTU TV WF (i.e.,C untrackedbefore adding patJ) and Z[L[ , weighted byBJ. The
general formula adds terms for each episode:H ? I SA F \>? O ?WF]̂_ F PA^ Q A^ E FR ` a^ ` Sbc bd Q e f (1)

wherea^ g PS Qh î_ F H i R. These approach>?@A ? and can be
computed in a linear sweep.

We have also investigated Bayesian and EM-based ap-
proaches to this problem. Bayesian predictions can be de-
rived for a slight problem variant that assumes knowledge
of the counts for each individual episode (a complex likeli-
hood function involving nested interacting sums makes the
original problem too difficult). It can be operationalized
by approximating the count breakdowns by episode. An
EM approach attempts to improve the uniform distribution
on Equation 1’s right side by instead using the resubsti-
tuted solution distribution. The resulting equations can be
solved algebraically rather than requiring iteration to a fixed
point. Under the modified problem, the solution is equiva-
lent to the Bayesian solution. We implemented this and the
above approach and in practice they behave almost identi-
cally. The next section improves on them. See [5, Sec.7.3.3]
for more on these approaches and their relationships.

3 Hierarchical Sparsej-grams

Hierarchical sparse:-grams(HSNGs) consist of multi-
ple sparse:-grams of consecutive widths (possibly an ex-
haustive:-gram as the smallest) and dramatically improve
two aspects of the fixed-width models: the probability cal-
culations and pattern selection. A single tree accommodates
all patterns by storing counts in non-leaves for smaller-
width patterns (stillk l:m lookup). This provides the same
variance advantages as traditional multiwidth exhaustive:-
grams but uses a new method for combining the models that
is more elegant than linear interpolation or backoff mod-
els. Slowly growing versions of HSNGs can incrementally
add greater widths during on-line training. These models
smoothly “surf” the bias/variance curve by fitting param-
eters for ever-widening joint probability distributions,con-
tinually decreasing bias error (by widening the joint) as well
as variance error (by converging on better parameter esti-
mates).

3.1 Improved Probability Estimation

To estimate untracked occurrences, the EM approach
above used the resubstituted width-: distribution, whichis
unreliable precisely when needed, when too little data has
been seen for the: distribution to have converged. Smaller
widths converge exponentially faster, so each level: in
HSNGs uses the:no distribution to estimate the missing
data. Equation 1 becomes:H pV Ppatd q? R I SAmax r>d q?O?WF]̂_s PAd q̂ QAd q̂ E F R `ad q̂ `H p Ppatd q? btpatd qF u v v v u tpatd q̂ Rw(2)H pV Ppatx q? R is the probability of paty z< (the {-th oldest
width-| pattern) under the: distribution. ai q̂ g PS QhŶ_ F H p } Ppatd qY RR, is as before the rest of the probability
mass without the~ oldest patterns (at level�). For HSNGs,� I �dWF instead of�� (the EM approach) or uniform��
(Equation 1). The conditioning is just renormalization:H pV�M Ppatd q? b t

patd qF u v v v u tpatd q̂ R I H pV�M Ppatd q? RadWFq̂ (3)

This all reduces to Equation 1 in the base case.
Of course, the:no distribution does not specify:-tuple

probabilities directly. The trick is to use estimates basedon
the order-(:no) Markov assumption:� P� F u � K u v v v u �d RI � P� F u � K u v v v u �dWFR ` � P�d b � F u � K u v v v u �dWFR� � P� F u � K u v v v u �dWFR ` � P�d b � K u v v v u �dWFR� � P� F u � K u v v v u �dWFR ` � P� K u v v v u �dWF u �d R� P� K u �� u v v v u �dWFR

(4)

The approximation from the first to second lines above,� P�d b � F u � K u v v v u �dWFR � � P�d b � K u v v v u �dWFR , is in a sense
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the best estimate given only order-(���) knowledge. This
gives us a way to effectively “widen” an�-gram, using two
lookups at width� � � and one lookup at width� � � to
determine a width-� probability.

For untracked patterns (� � �� , where�� is the number of
width-� patterns), width� falls back on width��� directly
(and renormalizes):� �� �pat� �� � � � ���� �pat� �� � �� ���������� (5)

Using Equation 1, the probabilities for all patterns can be
computed in a linear sweep. This works despite that each
pattern’s probability involves the sum of a linear number of
terms since the terms are the same from one pattern to the
next, but that is not true of Equation 2 due to the rightmost
term. Thus, straightforward computation of all probabili-
ties for a level would require computation quadratic in the
number of patterns. However, using the expansion of Equa-
tion 3 the portion of the rightmost term that changes from
pattern to pattern can be factored out, preserving the ability
to compute probabilities for all patterns in the model in a
linear sweep.

With cached probabilities for the tracked patterns, look-
ing up the probability for an untracked pattern requires three
lookups to narrower submodels using Equations 4 and 5.
Any of these may in turn be absent, requiring three more
lookups. Nonetheless, querying the widest model for a spe-
cific probability takes  ¡�¢ £ rather than time exponential
in � since some of the submodel lookups can be handled by
the same traversals down the tree. (Lookup requires up to�
tree traversals, each of at most� steps.)� is typically very
small relative to the overall size of the model. Furthermore,
many inference patterns that require lookup of several pat-
terns can be handled more efficiently since many patterns
will be accessible from one traversal. (E.g., looking up all
possible single-symbol extensions of a pattern requires only
one traversal from the root.) This is a worst case. Normally,
each narrower level contains more of the necessary patterns,
making typical lookups linear in�. Other optimizations are
also possible (see [5, Sec.8.2.2] for further optimizations or
more detailed derivations of the equations here.)

Predictions are made using the largest width. Lower-
order information filters up through the submodel calls.
Smaller widths have larger¤ s and more fully converged
estimates. Dynamically adding a new level will not jar
the distribution as a model having mostly small¤ val-
ues will smoothly fall back on the robust narrow informa-
tion except where it identifies strong wide patterns in the
data. Estimates both within and across widths are naturally
weighted by their reliabilities. Authority smoothly transi-
tions to greater widths as more data is seen.

3.2 Improved Pattern Selection

Fixed-width models must search a large space blindly.
HSNGs use smaller known-frequent patterns to bias new
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Figure 2. Learning curves for a sparse 2-gram using a pre-
trained 1-gram submodel for probability estimation, pattern
selection, both, or neither on book1. Each submodel use
yields benefit.

selections. Specifically, the probability for adding any new�-tuple, rather than a small constant, is proportional to its
estimate based on¥�¦§. This can be viewed as a refine-
ment of a simple strategy of combining existing frequent
patterns to yield larger likely-frequent patterns. This refine-
ment automatically takes into account all of the possibly
many ways to parse the new pattern into existing patterns
and the frequency estimates for all of these existing pat-
terns. Since each level seeks frequent patterns, a bias based
on their probabilities functions as a bias for compositional
chunking of known patterns. This is the key to the cumu-
lative aspect of HSNG learning—the learning at narrower
levels is not only combined with the results of learning at
the next wider level for better prediction (as in traditional
multiwidth �-gram combinations) but alsodirectly enables
the structure learning at this wider level, which is critical as
we will see in the results below.

HSNGs can use fixed��s (the number of patterns at each
level) or the��s and number of levels can grow slowly as
more data is seen by applying the add and remove rules
independently and always considering addition of a new
widest pattern (which creates a new level). Since wider pat-
terns generally have lower absolute probabilities and vastly
more patterns, higher levels converge more slowly.

3.3 Results

Figure 2 shows that each use of submodels above pro-
vides significant benefit (which can be greater when com-
bined). Similar results are seen for larger� but with the
improvement from probability estimation being more dom-
inant when used with fully-converged submodels (because
the widening approximation becomes more accurate for
larger �). To test frequent pattern identification, hierar-
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chical models were trained on several large datasets using
slowly growing¨©s (and numbers of levels). The following
tables shows̈ © and the top 5 patterns by model probabil-
ity for eachª after training on 30 million letters of Reuters
newswire text (1994 section of North American News cor-
pus with non-letters removed.)© 2 3 4 5 6«¬

367 1540 1131 433 142
th the tion ation nation
he ing said ofthe saidth
in and nthe inthe ingthe
er ion ther tions ations
an ent dthe ingth aidthe© 7 8 9«¬

38 11 7
saidthe official president
esident resident ternation
residen presiden residento
nationa thenatio theminist
preside tsaidthe andforthe

The learned chunks are reasonable substrings for this
text. With spaces removed, frequent word, sub-word, and
super-word patterns were all mixed together. The following
table shows how many of the most frequent 100 and 1000
patterns (by true corpus frequency) were learned by the
model for the smaller widths (larger widths were still far
from converging).

Reuters© 2 3 4 5«¬
367 1540 1131 433

top100 100 100 99 75
top1000 n/a 910 560 238
unique 670 12556 121799 626465

Similar results were achieved with speech data (the
TIMIT corpus) and DNA data (chromosome 22 of the
human genome, about 34 million base pairs). The DNA
results are shown below. Note that our purpose in testing on
different data types was not to show particular performance
on problems of traditional importance in each of these
domains but to demonstrate that our technique for learning
compositional patterns and estimating their prevalence is
general enough to handle several different kinds of data.

chromosome 22© 5 6 7 8 9 10 11«¬
886 2094 1629 737 279 114 55

top100 100 100 99 68 44 28 19
top1000 886 991 669 258 128 57 32

unique 1024 4096 16384 65536 261726 1.0mil 3.5mil

The models do an excellent job of identifying the fre-
quent patterns. For Reutersª  ®, for example, the model
had added 434 patterns and removed 1 (it was still early in
convergence at this level), but included 75 of the top 100 out
of 626,465 unique 5-tuples that occurred (out of 11.8 mil-
lion possible)—a dramatic improvement over chance guess-
ing. Further, over half of the patterns added at the 5 level are
in the top 1000 (top 0.16%). This is even more impressive
considering theª  ¯ level contained fewer than 1% of the

900 920 940 960 980 1000

pattern number indexed by when added to the model

0

0.0002

0.0004

0.0006

0.0008

0.001

true p
model p

Figure 3. Comparison of the Reuters-trained hierarchical
model’s estimate vs. the true probability for the 900-1000th
oldest 3-grams. The model tracks true probabilities well.

data’s unique 4-tuples. This demonstrates that the narrower
submodels do an impressive job enabling successful pattern
selection at the wider levels (just as those levels will in turn
do for even wider levels).

We examined how well the model’s probabilities
matched true corpus frequencies. Standard summarizations
such as relative entropy of the distributions are inappropri-
ate for the sparse representation. Also this metric is domi-
nated by errors in low probabilities, which are specifically
sacrificed by these sparse models. Thus, we just inspected
all the values directly, and all but the very newest patterns
matched quite well. Figure 3 shows a small sample section
of patterns. The majority of patterns were older than the
sample shown and matched even better than those shown.

4 Related Work

Pruning already-batch-trainedª-grams has been investi-
gated [8]. Our sparseness is similar to count cutoffs (widely
used in practice). Our models, however, grow rather than
scale back their storage and never need excessive space dur-
ing training. That literature also discusses tradeoffs between
space and predictive performance, but this research is the
first we are aware of to explicitly address the tradeoff be-
tween memory reduction and increased predictive accuracy
from increasedª and the first to explain that accuracy (0/1
loss) suffers less from missing counts than cross-entropy.

Prediction suffix trees (PSTs) [10, 13, 14] are multi-
width sparse models based on unbalanced trees. Each node
represents a string and stores a conditional distribution for
the next symbol given the string as preceding symbols.
PSTs are grown by adding nodes that (a) represent fre-
quent strings and (b) have distributions sufficiently different
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from their parent’s or have a descendant with this property.
Our models differ in several ways. PST learning contains
forward-directed inductive bias since it chooses patternsin
terms of forward distributions. Thus, PSTs do not make
equally good use of information on both sides of a target.
Second, our undirected representation allows for greater,
more flexible sparseness. PSTs store a full conditional dis-
tribution at each node. HSNGs store one probability. A PST
with a depth-° node must store counts for all±² ± ³°´µ¶-
tuple extensions, while an HSNG can represent any subset
of these. The counts saved can be used elsewhere, improv-
ing other predictions. Most importantly, PST learning does
not utilize repeated substructure. It is not more likely to ex-
tend a model by existing sequences with high counts from
elsewhere in the tree. PST mixtures [14] use incremental
updates, but not on-line structure learning in our sense. Ei-
ther they are given a depth bound and add all sufficiently
small strings that occur, or they have no bound and add all
strings that occur. The latter simply reorganizes and re-
members all data (often impractical). In the former case,
the model cannot grow to recognize patterns wider than the
bound and may require memory exponential in the bound.
We desire a middle ground where the model growsslowly,
but without bound. A model should be able to include any
pattern demonstrated strongly enough by the data.

ADtrees [9], structures for efficient access to discrete
multivariate data, are both similar to SNGs and complemen-
tary in that they can speed up SNG inference. ADtrees trade
space for speed while SNGs trade prediction performance
for space. The combination can balance all three. In addi-
tion, ADtrees use a sparse representation synergistic with
that of SNGs. Applying ADtrees to SNGs allows much
greater ADtree pruning (more speed for less space) when
compared with application to exhaustive·-grams since all
untracked patterns can be pruned.

Models equivalent to SNGs were used as hierarchical
Bayesian priors [15]. We have moved the sparseness from
the prior to the model itself.

Using the submodel to bias pattern selection is analogous
to pruning in association rule mining [16, Section 20.6.2]
[17] and sequence mining (e.g., [18]). Our heuristic is on-
line and stochastic rather than absolute. Since it does not
apply the same threshold to each level, it is more flexible. It
seeks the most frequent patterns at each level regardless of
their absolute frequencies. Neither the basic pruning ideas
nor the related incremental association rule work (based on
a very different problem with different assumptions from
our work) make clear how to do the job done by HSNGs.
For HSNGs, no pattern at the next level is prunable. They
must rely on a probabilistic interlevel bias.5

5The width-̧ distribution provides no useful absolute bounds on¸¹º
probabilities. If there were a low-frequency̧-tuple, the model could

avoid its extensions, but the sparse models by their nature do not retain

Our pattern selection bias (that amounts to a bias for
combinations of existing frequent patterns) is similar to
the compositional chunking of Sequitur [19] and similar
systems, but with finer statistical sensitivity than Sequitur,
which is very greedy. Also note that Sequitur remembers
all of its input in order to chunk. Therefore, it is not a true
on-line algorithm in the sense used here.

Maximum entropy (ME) [6, 20] (and related NLP) tech-
niques use “features” more general than our patterns. Uni-
form completion of the distribution in SNGs is consistent
with ME. In ME, features are added incrementally in a pro-
cess seemingly similar to ours but actually very different.
Each addition requires iterating over all training data. ME,
transformation-based techniques [6], and related schemes
all require batch training and it is not clear how to adapt
them for on-line learning, though our models may suggest
some necessary ingredients. ME uses its features as con-
straints, but it fundamentally assumes all constraints are
equally statistically reliable (fine in a batch context but not
when new features are introduced after different amounts of
data). ME would overweight recently introduced frequency
estimates. Some sort of regularization, as introduced here,
is required.

Hierarchical HMMs can represent sparse collections of
patterns in a more expressive representation, but only re-
cently has structure learning been addressed [21] and only
for batch training. Even with complete random access to
the data, identification of repeated substructure is problem-
atic. There are other learning models that representationally
subsume our models, but in each case the learning prob-
lem they address is dramatically different due to use of a
domain theory, supervision, batch training, or structured
or segmented data (usually many of these, see [5, Sec.8.3,
Sec.10.4, Ch.9]). In no case can they accomplish the learn-
ing described here.

5 Conclusion

Hierarchical sparse·-grams can be viewed as combin-
ing multiwidth ·-grams from the NLP and text compres-
sion communities, frequent itemset pruning from the KDD
community, and on-line learning in the ML and connection-
ist traditions. (This suggests much cross-fertilization.E.g.,
interlevel flow of information to help direct search is a key
thing lacking from PST work.) The difficulties in combin-
ing sparseness with on-line learning are fundamental and
require more than subtle changes to exhaustive batch tech-
niques.

Sparse·-grams are useful alternatives to exhaustive·-
grams when data overwhelms memory. For autonomous
agents in complex environments, this is always the case in

confidently estimated low-frequency patterns.
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the long run. Hierarchical sparse»-grams learn frequent
patterns using fewer parameters than the number of poten-
tial patterns and without remembering all data or repeat-
edly iterating over it. They use use novel techniques for
falling back on narrower distributions. A stochastic bias for
compositions of smaller known-frequent patterns facilitates
on-line learning of increasingly complex sparse representa-
tions. The result is a model capable of finding frequent pat-
terns in huge search spaces and cumulatively constructing
ever-larger representations of the frequent patterns demon-
strated by the environment.

We have necessarily concentrated on prediction as the
primary way to utilize knowledge of frequent patterns (or
chunks), but frequent chunks can be very valuable in many
other ways within a larger computational system. Learned
chunks can act as aids to increase working memory capac-
ity, based on substitution recoding, which improves infor-
mation processing capacity quite broadly.[22] Frequent pat-
terns are important for developing communication or shared
language. Frequent chunks can serve as important features
for other types of learning and can enable the automatic
formation of associations that would otherwise be impos-
sible to induce. For more on each of these topics, see [5,
Sec.10.3]. The point is that a single general learning mech-
anism can build representations that both enable useful pre-
dictions and also serve as foundations for improving several
aspects of an agent’s cognitive behavior.

Sparseness is fundamental in complex knowledge rep-
resentation. Whether in semantic networks, frames, de-
scription logics, ontologies, etc., knowledge is always non-
exhaustive for real-world domains. We must continue
to investigate domain-independent techniques for choosing
which patterns exhibited by the environment to include in
sparse representations. For more extensive treatment of all
material, including motivations, derivations, a formal de-
scription of the learning problem, experimental results, re-
lated work comparisons, and explanations of the usefulness
of frequent patterns in the future research landscape, see [5].
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