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Abstract

Intelligent human-computer interfaces, medical diag-
nostics, and design of consumer products are just a few of
the many applications that can benefit considerably from
machine abilities to recognize and adapt to the user emo-
tional state. The paper considers the problem of auto-
matic affect recognition from continuous speech. It de-
scribes a new text-independent affect recognition system
that is shown to have the capability to provide discrimina-
tion of speaker emotional state from acoustic features. The
algorithm represents acoustic signals in form of timing se-
quences. The key feature of the representation is the learn-
ing of the timing information directly from the data. In this
representation, strong deterministic structures in the data
are uncovered. The proposed system exploits the data struc-
ture information to perform text-independent affect recog-
nition. The experiments were performed using sentences
from a German-language emotional speech corpus [1]. The
method is shown to extreact acoustic features that can be
used to differentiate neutral, happy, and angry emotions ex-
pressed by a speaker.

1. Introduction

Ability to perceive and process emotions is basic to our
thinking and day to day functioning [2]. Effective human-
computer interactions require that machines possess at least
a subset of the emotion processing skills of humans. A com-
puter that recognizes what a person says but ignores how the
person says it will appear to be talking but never listening,
and is likely to annoy the user.

Affect recognition is useful in a number of other fields
outside intelligent machine interfaces, ranging from the
medical field, in evaluation of patient emotional states and
stress, to ergonomic design, and in assessing user accep-
tance of ever more complicated consumer technologies by

evaluating the level of aggravation arising from user inter-
action with a product.

This paper is concerned with recognition of emotional
expression from speech. Although humans can easily per-
ceive emotions from auditory cues, corresponding machine
technology for emotion recognition has been slow to de-
velop. Most current computer technology for affect recog-
nition is based on spectral domain features. Although these
have been found very valuable for characterizing speakers
and recognizing speech, thus far they have shown only some
promise in affect recognition. Currently, no affect recog-
nition systems exists that can be deployed universally, i.e.
applied to a range of speakers in a range of operating envi-
ronments.

The difficulty in recognizing emotions is compounded
by their wide range. Not only there are numerous emotional
extremes, that sometimes are not even discriminated con-
sistently by human speakers, for example, joy-happiness-
elation, but the expression of emotions spans a continuum
between these extremes. Emotions that carry a similar con-
notation, i.e. negative or positive, may have very dissimi-
lar speech features. Anger - sadness - fear are example of
emotions that have a negative connotation but are entirely
different in their acoustic features. The difficulty is also
compounded by the localized and nonstationary nature of
emotional expression. A speaker may place the entire emo-
tional expression on one word in the sentence, or spread it
over multiple words. Emotional expression can also vary
with prosodic content, pitch and pronunciation. Individual
speakers can employ different acoustic ’gestures’ in their
expression of affect.

The paper explores a novel approach for recognizing af-
fect from acoustic-level features extracted from continuous
speech. The approach exploits deterministic structures in
the acoustic speech signals which it learnes directly from
the signals. The structures can be arbitrarily complex, con-
taining any combination of linear (i.e. periodic) and non-
linear (aperiodic) components plus stochastic noise. Being
able to analyze a signal that is an arbitrary mixture of lin-



ear and nonlinear parts embedded in noise, without a priori
having to establish the nature of the signal, is one powerful
feature of this technique.

The structure is recovered from data in the form of a tim-
ing sequence. We refer to this representation as the Inter-
val Domain (ID) representation. What is important in this
construct is that the parameters of the timing sequence are
learned from the data.

The mammalian auditory system is known to encode in-
coming acoustic signals as timing sequences of neuronal
spikes. The mathematical principle for such encoding of
a temporal signal as a timing sequence is not known, how-
ever. The algorithm in this paper is derived purely by con-
sidering projection of noisy data in a feature space described
below. It is interesting, however, that this approach results
in the same general principle for representation in terms of
a timing sequence as that used by the mammalian auditory
system.

The method is tested using sample sentences from a
German-language emotional speech corpus [1]. A speech
feature extracted by the method is shown to correlate with
the neutral, happy, and angry emotions expressed by a
speaker.

2. Emotional Speech Corpus

The experiments in this paper use seven sentences from
the German language emotional speech corpus described in
[1]. The entire corpus is comprised of 148 sentences with
identical syntactic form (subject-auxiliary-NP-verb), where
NP stands for 'the nominal phrase’. The 148 sentences are
divided according to their lexical content. The lexical con-
tent, neutral, positive, or negative, was determined by hav-
ing a group of subjects (n=20) rate the sentences. The sen-
tences were recorded while spoken in Standard German by
a trained female speaker. Each sentence was recorded and
appeared in the database 6 times, using two forms of ac-
centuations (on the NP and on the verb) and three forms of
emotional state (happiness, neutral, and cold anger). Thus
recorded utterances either matched sentence lexical content
or mismatched it. The seven sentences were randomly cho-
sen from the corpus and the six recordings of each of the
sentence were provided to us.

One of the objectives in creating this corpus was to ex-
amine the connection between affect-dependent acoustic
features and the neural responses of listeners, which were
monitored using event-related brain potentials (ERPs). One
of the study aims was to discriminate the different seman-
tic conditions from listener responses. The use of the two
forms of the accentuation were motivated by the hypoth-
esis that the accented syllables are hyper-articulated while
unaccented syllables are hypo-articulated. Vocal effort in-
volved in hyper-articulation may produce measurable dif-

ferences in acoustic features of emotional expression. The
match/mismatch between the lexical content and the spo-
ken affect was the other variable condition. The researchers
in [1] hypothesized that the mismatch condition would pro-
duce a stronger emotive expression.

The objective of the present study is different from the
goals in [1]. We are not concerned with discriminating
among the different semantic conditions (match versus mis-
match, NP versus final verb accent). The aim here is to rec-
ognize the expressed affect from spoken sentences. Thus we
use only the speech corpus part of the data in our analysis.
The different semantic conditions used in the original study
yield an interesting dataset for testing affect-recognition in
a variety of speech forms.

3. Timing sequence model for affect recogni-
tion

The method presented here is derived from the embed-
ding concept of nonlinear dynamics theory [3]. The im-
petus for its development was the need to analyze real-life
data that could originate in unknown environments that are
complex, unstructured, and highly noisy.

At the heart of the method is identification of the de-
terministic structure in data that may be embedded in high
amplitude, random noise. The formulation of the problem
is straightforward. Given some data, we are interested in
identifying the presence of all structures, periodic (linear)
as well as aperiodic (nonlinear), they may contain. The
problems associated with analysis of stochastically contam-
inated time series using classical nonlinear dynamics theory
has been well described in the past. Casdagli at al. in [4]
showed that given even arbitrarily small amounts of noise,
some of the degrees of freedom of a system become com-
pletely unrecoverable. This means that classical embedding
theory cannot be expected to be almost valid when data are
almost deterministic. In other words, formal embedding re-
construction is not directly applicable to noisy data.

To deal with this problem several researchers have used
projective schemes that identify a manifold in the embed-
ding space (e.g. [5, 6]). The idea is that deviations of
a trajectory in the embedding space from a manifold are
caused by random noise in the data and the projection onto
the manifold filters this noise, thus recovering the determin-
istic structure buried in data. Such projection techniques
have been proposed and demonstrated on a number of sig-
nals including speech [5]. The projective techniques used
in these works rely on recovery of the manifold from a re-
constructed embedding.

The approach taken here is different. One of the immedi-
ate restrictions of the classical embedding theory is the fact
that information contained in the embedded representation
is critically influenced by the choice of embedding param-



eters and in particular the choice of the time delay values.
There have been practical examples where the theoretically
sufficient dimension can produce less optimal results than
using a smaller dimension []. A relevant consensus from
the existing works is that to optimize the embedding per-
formance, including minimizing redundancy in the recon-
struction, one should consider time delays that are variable
in length, not integer multiples of a common lag [7].

We interpret this conclusion in a derivation where we
learn the time delay parameters from data. Starting with
the classical embedding theory, one can represent the state
of an L-dimensional system from its output time series
x(t) by constructing an object in a space spanned by the
time series and its time-delayed replicas. The object is
a phase trajectory which can then be written as x(t) =
{z(t),z(t —1),...,2(t — 7p—1)}, which is a function of
delayed coordinates. Based on the discussion above, we ex-
plicitly assume non-uniformdelays r;, 1 <i < D — 1.

The importance of this construct is that it is diffeomor-
phic to the original phase space for sufficiently large D so
that topological properties of the original high-dimensional
system are preserved in the embedding under relatively
loose restrictions. This means we can extend embedding
theory to model the dynamics of the system output. Specif-
ically, we express the evolution of the state vector dx(t)/dt
as a function of the phase trajectories, i.e. dx(t)/dt =
F[x(t),x(t — 71),...]. This formulation provided a novel
data representation strategy. Instead of chosing delays to
construct the embedding, we estimate the parameters of the
deterministic function F from the data derivative dx(t)/dt.

We estimate it in the following way. A general non-linear
real-valued function can be extressed in a Taylor series
expansion of functionals of increasing complexity around
some fixed point. When the function F[-] represents behav-
ior of a dynamical system, that is, a time series model where
the input is formed from past inputs [z(¢), z(t — 71),...],
the expansion becomes a Volterra series. We have
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Equation (1) models the linear and non-linear data com-
ponents as separate model terms. To find a model that is
a projection onto a stable manifold, we consider low-order
models made of a finite number of leading terms of equa-
tion (1). In other words we subselect candidate structures
from equation (1) and fit them to data until we identify the
smallest best fitting model.

We find the following low-order general structure to
work well in many practical applications that we have at-
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tempted, including modeling affect expression
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where z,, = x(t — 7;) is a delayed data vector with the
delay 7; , %, j, [, m € Ng and 7; ; permiting zero values, i.e.
the signal itself.

This idea of restricted complexity of the model, i.e. leav-
ing some of the dynamics unmodeled, plays a key role in the
development of the practical algorithm. First of all, it allows
us to reduce the computational load in this ill-posed prob-
lem to a manageable level so we can solve for the terms
of the model. We describe this later when we present the
final practical design model. Second, the unmodelled dy-
namics provides a means to control effect of noise on the
estimation, much like the use of regularization in linear es-
timation.

The model in (2) permits polynomial functions with up
to two non-zero delayed data vectors. The linear part of the
equation can contain the scaled data itself plus up to two
scaled delayed versions of the signal. The non-linear part
of the equation permits any number of two term products of
data and/or their delayed versions.

The model estimation problem reduces to a two part task:
first select an appropriate low order model expansion and
then fit the unknown parameters using the derivatives of
the measured data. This estimation problem is non-trivial
because its highly ill-posed and because the unknown pa-
rameters depend non-linearly on the data. We use a genetic
algorithms (GA) to perform optimization here.

4. Affect analysis

The analysis in this paper was done using sample sen-
tences from the German-language emotional speech corpus
[1] described in Section 2. Each sentence was recorded six
times: with three types of affect and two types of accentu-
ations as described in Section 2. Seven sentences, which
were numbers 17, 43, 83, 85, 112, 123 in the corpus, were
randomly chosen and the six recordings of each of the sen-
tence were provided to us, for a total of 42 records available
for analysis.

Bellow is a list of the seven sentences. The set contains
3 sentences rated as having positive lexical content, 3 sen-
tences rated as having negative lexical content and one sen-
tence rated as having neutral content. The number in front
of each sentence indicates its position in the database and
the sign ’+’, ’-’, or 0’ indicates the positive, negative, or
neutral rating of the sentence.

85 + Sie hates ans Licht gebracht.

(She brought some facts to light.)

103 + Erhatum ihre Hand angehalten.



(He asked for her hand in marriage.)
112 +  Sie hat den Rekord gebrochen.
(She broke the record.)

17 —  Sie hat ihn mit der Waffe bedroht.
(She threatened him with the weapon.)

40 —  Erhatsie von der Klippe gestoben.
(He pushed her from the cliff.)

83 — Erhatihn ins Gesicht geschlagen.

(He slapped him in the face.)

123 0 Er hat den Brief geschrieben.

(He wrote the letter.)

Affect-recognition is typically investigated in the lexical
context that is either nonspecific or consistent with the exp-
resed affect. Yet, in practice, many instances can be found
where the spoken affect mistmaches the lexical content, sar-
castic expression being one example. Affect-lexicon mis-
match in the given corpus provide an interesting study case
in this respect. The authors in [] hypothesize that a speaker
may use a stronger expression of affect in the mismatched
condition, thus resulting in stronger acoustic features than
in the neutral or matched condition. As shown below, we
find strong evidence in our models that supports this.

4.1. Affect recognition model

The affect recognition model was derived from the 42
sentence dataset as follows. The data were resampled from
the original 44100Hz down to 8820Hz. Two, three, and
four term models from the general model, Eq. (2) were se-
lected and the model parameters were calculated for frames
ranging from 20-ms to 100-ms with various overlaps. The
model-frame-overlap combination which was consistently
selected by our GA algorithm to produce the smallest fit er-
ror in all 42 recordings was the two delay 2nd order model

T =a1%r, + 02%r, + Q3T 1, Try. 3)

with 74.3-ms frames and 12-ms updates.

This model-frame-update setting was selected for the
subsequent analysis. Parameters for all 42 records and all
frames were calculated again using this setting. Analysis of
the results is presented next.

4.2. Resultsfrom experiments

We summarize the results for the seven sentences each
spoken six different ways and present selected results as
space allows. Overall, model Eq. (3) was found to suc-
cessfully discriminate the three utterances of each sentence
recorded with different expressed affect: neutral, happiness,
and cold anger. This was found for all seven sentences and
for both forms of accent. The parameter 7 was found to be
the main parameter in Eq. (3) that accounted for acoustic
features related to the expressed affect.

In the design of a classification system, one generally
employs a scoring function made of multiple signal fea-
tures. Here, since we can identify a single model parameter
that clearly correlates with the variations in the affect, it is
useful to study 7 to gain insight into how affect expression
varies with the different utterance conditions that exist in
the data.

We first examine how consistent = responds to affect
changes across all 7 sentences. We find the least well de-
fined separation of the three affect conditions when the con-
tent sentence is neutral (number #123) when NP was ac-
centuated. NP accentuation is the default accentuation in
German for verb-final sentences. Thus this sentence ut-
terance represents the most regular’ form of speech. The
fact that for this sentese the 7 response to affect changes
is the smallest may support the hypothesis that vocal effort
involved in the normal speech is less than in the cases of un-
usual constructs. Less vocal effort translates into less pro-
nounced affect expression. Nevertheless, even in this case
the 5 values for the three affect conditions were clearly sep-
arable prior to and during the accented part of the sentence.
Plots of the raw values of = for this sentence for both forms
of accent are shown in Figure 1. Three piecewise continu-
ous lines can be observed in the plots. In both plots, the
upper line corresponds to the neutral expression, the mid-
dle line to anger and the bottom line to happiness. In the
NP accentuation case, the upper plot, the separation in the
79 Values was observed most clearly in the first 2/3 of the
sentence, and diminished during the unaccented end of the
sentence. The middle line (anger) begins close to the up-
per line (neutral) at the start of the sentence but drops down
at approximately the 180th frame. On the other hand, the
“happiness’ line stays low throughout the entire first part of
the sentence.

In Figure 1(b), the case where the final verb is accen-
tuated, the 7 values form distinct piecewise continuous
lines. It is obvious that the lines in this case are separated
in enough places throughout the sentence to enable one to
discriminate between the three affect conditions.

The frames where 75 do not form coherent lines, but are
randomly distributed, correspond to pauses between within
words. The method finds no consistent model in this breaks
and much of the signal power is allocated to the misfit error
p. These frames can be easily filtered out by thresholding
across the p values.

For comparison we show in Figure 2 the 5 values for
sentence number 17, which was rated as being negative. In
this case 7 values for the three affect conditions are clearly
separated for both forms of accent. The top to bottom line
order corresponds the same emotions as for sentence #123
in Figure 1. In the NP accentuation case, the three affect
conditions are separated throughout most of the sentence,
coming together only at the point of unaccented verb at the



(a) T, values for sentence 123,neutral accentuation

ER

" T

wof LSl Ll e
& T P I A R

300f; e R N .~ oA K g

L1 \. hd ) . L L
300 350 00 450 500 550 600
Frame number

. . 1al I o
50 100 150 200 250

(b) T, values for sentence 123, stress on the final verb

100F" L ’ ST X B

50 I L. M i I : I * lve I I I I
50 100 150 200 250 300 350 400 450 500 550 600
Frame number

Figure 1. = values for the three forms of ex-
pressed affect in the lexically neutral sen-
tence number 123. (a) Neutral accent. (b)
Accent on the final verb.

end. In the final verb accentuation case, the 5 values are
also separated throughout most of the sentence. At the end
of the sentence, the 75 values for the "happiness’ and *anger’
conditions come together, thus reflecting the accentuation
of the final word rather than the difference in affect.

To assay the affect-lexicon independence we compare 7,
values for each form of affect across the different lexical
conditions. Overall, very little difference in > values was
found accross the lexically different sentences for each form
of affect expression. Figure 3 shows 7, plots for three lexi-
cally different sentences (numbers 40, 85, and 123), for two
affect conditions, "happiness’ and ’anger’, separated by the
two forms of accentuation. The only obvious separation in
79 values can be seen in frames 325-350 in the top plot of
Figure 3. This point is where the main emphasis is placed
in the sentence, a point of hyper-articulation.

5. Conclusions

We introduce the concept of timing domain represen-
tation, which is implemented by estimating directly from
data the delay parameters of a projection onto a manifold in
an embedding space. The resulting model estimates deter-
ministic structures in data and the residual stochastic com-
ponent. Affect recognition power of the model is demon-
strated at the acoustic feature level. Seven sentences are
selected from a German language emotional speech corpus.
The model is shown to find features that distinguish neutral,

(a) T, values for sentence 17, neutral accentuation
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Figure 2. = values for the three forms of ex-
pressed affect in the lexically negative sen-
tence number 17. (a) Neutral accent. (b) Ac-
cent on the final verb.

happy, and angry emotions expressed by a speaker.

The concept of learning embedding parameters from
data is in its infancy and it ushers in an entirely new ap-
proach. There are a number of areas that require further re-
search, such as design of a classifier based on the presented
model, training data requirements, and potential improve-
ment of discrimination by adding conventional speech fea-
tures to those identified here. More work is planned in this
area.
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