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Abstract

Texture boundary detection (or segmentation) is an im-
portant capability in human vision. Usually, texture seg-
mentation is viewed as a 2D problem, as the definition of
the problem itself assumes a 2D substrate. However, an
interesting hypothesis emerges when we ask a question re-
garding thenatureof textures:What are textures, and why
did the ability to discriminate texture evolve or develop?A
possible answer to this question is that textures naturally
define physically distinct surfaces, thus, we can hypothesize
that 2D texture segmentation may be an outgrowth of the
ability to discriminate surfaces in 3D. In this paper, we in-
vestigated the relative difficulty of learning to segment tex-
tures in 2D vs. 3D configurations. It turns out that learn-
ing is faster and more accurate in 3D, very much in line
with our expectation. Furthermore, we have shown that the
learned ability to segment texture in 3D transfers well into
2D texture segmentation, bolstering our initial hypothesis,
and providing a possible explanation for the developmental
origin of 2D texture segmentation function in human vision.

1. Introduction

Detection of a tiger in the bush is a perceptual task that
carries a life or death consequence for preys trying to sur-
vive in the jungle [1]. Here, figure-ground separation be-
comes an important perceptual skill. Figure-ground sepa-
ration is based on many different cues such as luminance,
color, texture, etc. In case of the tiger in the jungle, tex-
ture plays a critical role. What are the visual processes that
enable perceptual agents to separate figure from ground us-
ing texture cues? This intriguing question leads many re-
searchers in vision to investigate the mechanisms of texture
perception.

Beck[2][3] and Julesz[4] conducted psychological ex-
periments investigating the features that enable humans to

discriminate one texture from another. These studies sug-
gested that texture segmentation occurs based on the distri-
bution of simple properties of “texture elements”, such as
brightness, color, size, and the orientation of contours, or
other elemental descriptors [5]. Julesz also proposed the
texton theory, in which textures are discriminated if they
differ in the density of simple, local textural features, called
textons [6]. Most models based on these observations lead
to a feature-based theory, in which segmentation occurs
when feature differences (such as difference in orientation)
exist. Furthermore, psychophysical and physiological stud-
ies have shown that human texture processing may be based
on the detection of texture boundaries between heteroge-
neous textures using contextual influences via intra-cortical
interactions in the primary visual cortex [7][8].

In the current studies of texture segmentation and bound-
ary detection, texture is usually defined to be a 2D problem.
However, an interesting hypothesis arises when we ask an
important question regarding the nature of textures:What
are textures, and why did the ability to discriminate textures
evolve or develop?One possible answer to the question
is that texture is that which defines physically distinct sur-
faces, belonging to different objects, and that texture seg-
mentation function may have evolved out of the necessity
to distinguish different surfaces. Human visual experience
with textures in life can be, therefore, in most cases to use
them as cues for surface perception, depth perception, and
3D structure perception. In fact, psychological experiments
by Nakayama and He [9][10] showed that the visual sys-
tem cannot ignore information regarding surface layout in
texture discrimination and proposed that surface represen-
tation must actually precede perceptual functions such as
texture perception (see the discussion section for more on
this point).

From the discussion above, we can reasonably infer that
texture processing may be closely related to surface dis-
crimination. Surface discrimination is fundamentally a 3D
task, and 3D cues such as stereopsis and motion parallax
provide unambiguous information about the surface. Thus,



we can hypothesize that 3D surface perception could have
contributed in the formation of early texture segmentation
processing capabilities in human vision. In this paper,
through computational experiments using artificial neural
networks, we investigate the relative difficulty of learning to
discriminate texture boundaries in 2D vs. 3D arrangements
of textures. We will also study whether the learned ability
to segment texture in 3D can transfer into 2D. In the fol-
lowing, we will first describe in detail the methods we used
to prepare the 2D and 3D texture inputs (Section 2.1), and
the procedure we followed to train multilayer perceptrons to
discriminate texture boundaries (Section 2.2). Next, we will
present our main results and interpretations (Section 3), fol-
lowed by discussion (Section 4) and conclusion (Section 5).

2. Methods

To test our hypothesis proposed in the introduction, we
need to conduct texture discrimination experiments with 2D
and 3D arrangements of textures. In this section, we will
describe in detail how we prepared the two different ar-
rangements (Section 2.1), and explain how we trained two
standard multi-layer perceptrons to discriminate these tex-
ture arrangements (Section 2.2). We trained two separate
networks that are identical in structure, one with input pre-
pared in a 2D arrangement (we will refer to this network the
2D-net), and the other in a 3D arrangement (the3D-net).

2.1. Input preparation

We prepared three sets of texture stimuli S1, S2, and S3.
Textures in S1 were simple artificial texture images (ori-
ented bars of orientation0, π

4 , π
2 , or 3π

4 ); those in S2 were
more complex texture images (bars with orientations dif-
ferent from S1 or more complex patterns such as crosses
and circles); and those in S3 were real texture images from
the widely used Brodatz texture collection [11], as shown
in Figure 1. For the training of the 2D-net and the 3D-net,
four simple texture stimuli in S1 were used. For testing the
performance of the 2D-net and the 3D-net, all sets of texture
stimuli, S1, S2 and S3, were used.

To extract the primitive features in a given texture, we
used Gabor filters. Previous results have shown that Gabor
filters closely resemble experimentally measured receptive
fields in the visual cortex [12] and have been widely used to
model the response of visual cortical neurons. A number of
texture analysis studies also used oriented Gabor filters or
difference of Gaussian (DOG) filters to extract local image
features [13][14].

We used a bank of oriented Gabor filters to approximate
the responses of simple cells in the primary visual cortex.
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Figure 1. Texture stimuli. Three texture sets S1, S2,
and S3 are shown from the top row to the bottom.

The Gabor filter is defined as follows [15]:

Gθ,φ,σ,ω(x, y) = exp−
x′2+y′2

2σ2 cos(2πωx′ + φ), (1)

whereθ is the orientation,φ is the phase,σ is the standard
deviation (width) of the envelope,ω is the spatial frequency,
(x, y) represents the pixel location, andx′ andy′ are defined
as:

x′ = x cos(θ) + y sin(θ) (2)

y′ = −x sin(θ) + y cos(θ). (3)

For simplicity, only four different orientations (0, π
4 , π

2 , 3π
4 )

were used forθ. (Below, we will refer toGθ,φ,σ,ω as simply
G.) To adequately sample the spatial-frequency features of
input stimuli, three frequency ranges (1 to 3 cycles/degree)
were used forω. The size of filter was 16× 16,σ = 16/3,
andφ = π/2. This resulted in 12 filtersGi (for i = 1..12)
for the computation of simple cell responses as shown in
Figure 2. To get the Gabor response matrixCi, a gray-level
intensity matrixI was obtained from the images randomly
selected from S1 and convolved with the filter bankGi:

Ci = I ∗Gi, (4)

wherei = 1..12 denotes the index of a filter in the filter
bank, and∗ represents the convolution operator. The Ga-
bor filtering stage is linear, but models purely based on lin-
ear mechanisms are not able to reproduce experimental data
[16]. Thus, half-wave rectification is commonly used to
provide a nonlinear response characteristic following linear
filtering. However, in our experiments, full-wave rectifica-
tion was used as in [17], which is similar to half-wave rec-
tification, but is simpler to implement. Full-wave rectifica-
tion is equivalent to summing the outputs of the two corre-
sponding half-wave rectification channels (see, e.g. Bergen
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Figure 2. Gabor filter bank. The process used to gen-
erate two orientation response matrices is shown. The
textureI is first convolved with the Gabor filtersGi

(for i = 1..12), and the resulting responses are passed
through a full-wave rectifier resulting inRi. Finally,
among the twelveRis, two that showed maximal re-
sponse are selected (bottom row; white is high and
black is low response).

and Adelson [18] [16]). The final full-waved rectified Ga-
bor feature response matrix is calculated as

Ri = |Ci|, (5)

for i = 1..12. Among the twelve responses, only the top
two maximally responding matrices were used in subse-
quent experiments. The same filtering procedure was used
for both the 2D and the 3D arrangement of textures, which
will be discussed below. Figure 2 shows the Gabor filter
bank and the two maximally respondingRi’s G4 andG10

that have orientation preference ofπ
4 , 3π

4 and frequency of
1 cycle/degree.

To get the 2D training samples for the 2D-net, two ran-
domly selected textures from S1 were paired and convolved
with the Gabor filter bank (figure 2). Only the two maxi-
mally responding ones from the 12 different response ma-
trices were used as shown in figure 2. Each training input
in the 2D training set consisted of a 32-element vector (say,
ξ2D
k , wherek is the training sample index) taken from a hor-

izontal strip (response profile) of the Gabor response matrix,
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Figure 3. Generating the 2D input set (2D prepro-
cessing). The procedure used to generate training
data is shown. (a) Input with a texture boundary. (b)
Orientation response calculated from (a). (c) The re-
sponse profile from the 32-pixel wide area marked
with a white rectangle in (b). (d) A similarly calcu-
lated response profile in a different input texture, for
an area without a texture boundary (note the periodic
peaks).

and a single scalar value (say,ζ2D
k ) indicating the existence

(= 1) or nonexistence (= 0) of a texture boundary within
that strip. Each 32-element vectorξ2D

k was taken from a
horizontal strip centered at(xc, yc) within the response ma-
trix (e.g., the white rectangle in figure 3b), wherexc is the
horizontal center where the two textures meet, andyc is ran-
domly chosen within the full height of the matrix. When
the two selected textures are the same, a texture boundary
will not occur at the center, and if they were different a tex-
ture boundary will occur. We made sure that the number
of input-target pair (ξ2D

k ,ζ2D
k ) in each class, i.e., boundary

vs. no boundary, was balanced. Figure 3c shows an example
vectorξ2D

k when there was a texture boundary, and figure 3d
a case without a boundary.

For the training samples for the 3D-net, motion parallax
was applied to simulate self-motion of an observer as shown
in figure 4. One texture from a pair of textures was over-
layed on top of the other and the texture above was allowed
to slide over the one below, which resulted in successive fur-
ther occlusion of the texture below. The texture above was
moved by one pixel 32 times and each time the resulting
2D image (I ′j , for j = t1...t32; figure 5a) was convolved
with the oriented Gabor filter bank followed by full-wave
rectification as in the 2D preprocessing case (figure 5b). To
generate a single training input pair (ξ3D

k , ζ3D
k ) for the 3D-

net, at each time step the response value from pixel (xc, yc)
was collected into a 32-element vector, wherexc was 16
pixels away to the right from the initial texture boundary in



the middle, andyc was selected randomly for each new in-
put pair but remained the same within the same input pair
(the white square in figure 5b shows an example). Figure 5c
shows an example of such a vectorξ3D

k (note that the x-axis
represents time) for a case containing a texture boundary,
and figure 5d a case without a boundary. The target value
ζ3D
k of the input pair (ξ3D

k , ζ3D
k ) was set in a similar manner

as in the 2D case, either to 0 (no boundary) or 1 (boundary).
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(a) Texture in 3D (b) Resulting 2D view

Figure 4. Generating the 3D input set (3D prepro-
cessing). (a) A 3D configuration of textures and
(b) the resulting 2D views before, during, and after
the movement are shown. As the viewpoint is moved
from the right to the left (t1 to t32) in 32 steps, the 2D
texture boundaries in (b) (marked by black arrows)
show a subtle variation.

For a fair comparison between the 2D and the 3D ar-
rangements, 400 training samples were collected for each
combination of two different textures to make 2,400 sam-
ples with target value of 1, and the same number of samples
with target value of 0. This resulted in 4,800 input-target
samples for each case (1≤ k≤ 4,800). These 4,800 input-
target samples from each training set were then randomly
ordered during training.

2.2. Training the texture segmentation networks

We used standard multilayer perceptrons to perform tex-
ture boundary detection. The networks (2D-net and 3D-
net), which consisted of two layers including 32 input units,
16 hidden units and 1 output unit, were trained for 1,000
epochs each using standard backpropagation with momen-
tum (the learning rate was 0.2 and the momentum parameter
was 0.9).1 The goal of this study was to compare the relative
learnability of the 2D vs. the 3D texture arrangements, thus
a backpropagation network was good enough for our pur-
pose. The input vectors were only drawn from the texture
set S1.

1Matlab neural networks toolbox was used for the simulations.
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Figure 5. Generating 3D input set through motion
(3D preprocessing). (a) Texture pair images result-
ing from simulated motion:I ′j for eachj = t1..t32.
(b) The response matrix of the texture pair:R3D

ij . (c)
Response profile obtained over time near the bound-
ary of two different texture images (marked by the
small squares). (d) A similarly measured response
profile collected over time, using a different input tex-
ture, near a location without a texture boundary (note
the periodic peaks).

After the two networks were trained, the speed of con-
vergence and the classification accuracy were compared.
To test generalization and transfer potentials, test stimuli
drawn from the texture sets S1, S2, and S3 were prepro-
cessed using both 2D- and 3D-preprocessing to obtain six
input sets. These input samples were then presented to the
2D-net and the 3D-net to compare the performances of the
two networks.

3. Experiments and Results

We compared the performance of the two trained net-
works (2D-net and 3D-net), and also compared the perfor-
mance of the two networks over novel texture images that
were not used in training the networks.
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Figure 6. Learning curve of the networks. The
learning curves of the 2D-net and the 3D-net after
1,000 epochs of training on texture set S1 are shown.
The 3D-net converges much faster than the 2D-net
(near 50 epochs), suggesting that the 3D preprocessed
training set may be easier to learn than the 2D set.

3.1. Speed of convergence and accuracy on the
training set

Figure 6 shows the learning curves of two networks. Af-
ter 1,000 epochs, the mean square error (MSE) of the 2D-
net was 0.17 and that of the 3D-net was 0.08. A noticeable
difference in the two learning curves is that the error rapidly
decreases in the 3D-net (near 50 epochs), and the error at
that moment is comparable already to the asymptotic error
(∼ 0.17) in the 2D-net. These results indicate that the 3D-
net is easier to train than the 2D-net. In other words, texture
arrangements in 3D may be easier to segment than those in
2D. We independently conducted 10 similar experiments,
and the results were comparable each time (data not pre-
sented here). The misclassification rate in the 2D-net for
the 2D training set was 26% and that of the 3D-net for the
3D training set was 9%, thus, accuracy was also higher in
the 3D-net for the training data.

3.2. Generalization and transfer

The 2D-net and the 3D-net trained with the texture set S1

were tested on texture pairs from S1, S2 and S3. (Note that
for the texture set S1, input vectors different from those in
the training set were used.) The test samples were prepared
in the same manner as the training samples, which gave us
three 4,000-sample sets of 2D and three 4,000-sample sets
of 3D per each texture set. All six sample sets were pre-
sented to the 2D-net and the 3D-net. We used two meth-
ods to compare the performance of the networks. First, we
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Figure 7. Comparison of misclassification rates.
The misclassification rates of the different test condi-
tions are shown (white bars represent the 2D-net, and
the black bars the 3D-net). The x-axis label SnD

i mD
indicates that input seti preprocessed inn-D was used
as the test input, and them-D network was used to
measure the performance. In all cases, the 3D-net
shows a lower misclassification rate compared to that
of the 2D-net.

compared the misclassification rate, which is the percentage
of misclassification. Misclassification rates were calculated
for all 12 cases (= 6 sample sets× 2 networks): Figure 7
shows the result. The 3D-net outperformed the 2D-net in all
cases, even for the sample set from S1 with 2D preprocess-
ing, which was similar to those used for training the 2D-net.
It is also notable that the 3D-net outperformed the 2D-net
on all the sample sets prepared with 2D preprocessing (1st,
3rd, and the 5th column in figure 7; these are basically a 2D
texture segmentation problem), where one would normally
expect the 2D-net to perform better because of the manner
in which the input was prepared. These results suggest that
(1) developing a texture segmentation function in 3D can be
easier than in 2D, and (2) the ability to segment texture in
3D may transfer very well into solving texture segmentation
problems in 2D.

As another measure of performance, we compared the
absolute error (= |target − output|) for each test case for
the two networks. The results are shown in figure 8. The
plot shows the mean absolute errors and their 99% con-
fidence intervals. The results are comparable with those
reported above: The 3D-net consistently outperformed the
2D-net, and the differences were found to be statistically
significant (t-test:n = 4, 000, p << 0.001), except for one
case (S2 with 3D preprocessing; figure 8 fourth pair from
the left).
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Figure 8. Comparison of output errors. The mean
error in the output vs. the target value in each trial and
its 99% confidence interval (error bars) are shown for
all test cases (white bars represent the 2D-net, and
the black bars the 3D-net). In all cases except for the
fourth pair from the left (S3D2 2D and S3D2 3D), the dif-
ferences between the 3D-net and the 2D-net are sig-
nificant (t-test:n = 4, 000, p << 0.001).

4. Discussion

Since the early works of Julesz[4] and Beck[2] on texture
perception, a lot of studies have been conducted to under-
stand the mechanisms of the human visual system under-
lying texture segmentation and boundary detection in both
psychophysical research and pattern recognition research.
In most cases their main concerns have been about the tex-
ture perception ability of human in 2D. The present paper
suggests an alternative approach to the problem of texture
perception, with a focus on boundary detection. First, we
demonstrated that texture boundary detection in 3D is eas-
ier than in 2D. We also showed that the learned ability to
find texture boundary in 3D can easily be transferred to tex-
ture boundary detection in 2D. Based on these results, our
careful observation is that the outstanding ability of 2D tex-
ture boundary detection of the human visual system may
have been derived from an analogous ability in 3D.

Our preliminary results allow us to challenge one com-
mon belief that many other texture boundary detection stud-
ies share. In this view, intermediate visual processing such
as texture perception, visual search and motion process do
not require object (in our context, “3D”) knowledge, and
thus perform rapidly; and texture perception is understood
in terms of features and filtering, so the performance is de-
termined by differences in the response profiles of receptive
fields in low-level visual processing. A similar point as ours
was advanced by Nakayama and his colleagues [9][10]. In

Nakayama’s alternative view on intermediate visual pro-
cessing, visual surface representation is necessary before
other visual tasks such as texture perception, visual search,
and motion perception can be accomplished (figure 9). Such
an observation is in line with our results indicating that 3D
performance can easily transfer into a 2D task.
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(a) Traditional view
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(b) An alternative view

Figure 9. Two views of intermediate visual process-
ing. (a) Texture perception, visual search, motion
perception depend on feature processing in early cor-
tical areas. (b) Surface representation must precede
intermediate visual tasks [10]. Adapted from [10].

The main goal of our work was to understand the na-
ture of textures, and from that emerged the importance of
3D cues in understanding the texture detection mechanism
in human visual processing. To emulate 3D depth, we em-
ployed motion cues to provide 3D depth. This imposes po-
tential limitations on our work, which is that additional in-
formation in 3D input may have become available to the
3D-net–some form of temporal information that that 2D in-
puts do not have. This can be seen as an unfair advantage
for the 3D-net, but on the other hand, the 2D-net has addi-
tional spatial information which the 3D-net does not have,
so eventually these two relative advantages may cancel out.

5. Conclusion

We began with the simple question regarding the nature
of textures. The tentative answer was that textures natu-
rally define distinct physical surfaces, and thus the ability
to segment texture in 2D may have grown out of the ability
to distinguish surfaces in 3D. To test our insight, we com-



pared texture boundary detection performance of two neu-
ral networks trained on textures arranged in 2D and in 3D.
Our results revealed that texture boundary detection in 3D
is easier to learn than in 2D, and that the network trained in
3D easily solved the 2D problem as well, but not the other
way around. Based on these results, we carefully conclude
that the human ability to segment texture in 2D may have
originated from a module evolved to handle 3D tasks. One
immediate future direction is to extend our current approach
to utilize stereo cues as well as monocular cues used in this
paper.
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