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Abstract

We first present a computational framework of the
emergence of gaze following that is based on a generic
basic set of mechanisms. Whereas much attention has
been focused so far on the study of the infant’s behavior,
we systematically analyze the caregiver and show that
the he plays a crucial role in the development of gaze
following in our model, especially for virtual infants
with developmental disorders.

We first create two nearly optimal infant parame-
ter sets by means of an evolutionary algorithm and test
their behavior with a simple standard caregiver. Based
on these findings we then propose new caregiver mod-
els and evaluate them on normally developing and on
infants with developmental disorders.

1 Introduction

Humans and many animals live in social groups,
which confers a number of benefits and costs to its
members. But living in groups also requires differ-
ent cognitive abilities for social interactions, which of-
ten rely on visual inputs since they are less ambigu-
ous than auditory and olfactory signals and allow for
a much richer and more complex communication. One
such cognitive skill—with an immediate benefit to the
members of a group—is the capacity to imitate other
members and to learn from them, reason why humans
share with a number of non-human primates the abil-
ity to use the eyes, the head, and the body of oth-
ers to orient to important objects and events in their
environment [18, 20]. The ability to follow the direc-
tion of conspecifics’ visual gaze does not only help to
localize interesting or dangerous entities in the envi-
ronment, but also provides rich information about the
group mates. For example, gaze following can be used
to determine the position of an individual in the domi-

nance hierarchy of large groups, where each individual
receives attention as a function of its social rank [7].

Compared to other mammals, human newborns are
nearly helpless, but rather quickly begin to show bur-
geoning social responsiveness [8], and by 3–6 months,
infant and caregiver typically engage in complex pat-
terns of reciprocal interaction [14]. By their first birth-
day, normally developing infants show a robust gaze
following [9]. The child then gets more and more adept
at recognizing diverse social cues, such as eye direction
and pointing gestures. These skills serve as a develop-
mental basis for more complex social communication
skills such as the development of the infant’s theory
of mind [1] and the development of language, which
starts around 13 months and is largely based on joint
attentional interactions with adults and objects [4,24].
Note that in the literature, a distinction is sometimes
made between shared attention and joint attention [10]:
in joint attention, two individuals are attending the
same object only, whereas shared attention requires
each having knowledge of the directions of the other’s
attention.

Gaze following has been addressed in a number of
computational and embodied models (see Section 1.1)
where most attention has been focused on the infant.
The goal of this paper is to systematically investigate
the role of the caregiver in the caregiver-infant dyad of
a computational gaze following framework.

We first present a computational framework (Sec-
tion 2) of the emergence of gaze following that is based
on a generic basic set of mechanisms. In order to have a
nearly optimal infant vis-à-vis of the caregiver, we op-
timized the infant’s parameters by means of an evolu-
tionary algorithm in Section 2.5. The outcome are two
infants which perform almost equally well, but have
different “personalities”. Section 2.6 analyzes the care-
giver’s parameters of the original computational model
as presented in [6]. Section 3 describes and analyzes
four new caregiver models with respect to our two ref-



erence infants, including versions with developmental
disorders. Section 4 concludes the paper.

1.1 Related Work

One of the main questions is how shared attention
develops and what the necessary and sufficient condi-
tions are. There are basically two alternative hypothe-
ses at the extremes, whereas a combination of both
could also be imagined: (1) it is hard-wired into the in-
fant’s brain or (2) it emerges through a learning process
while the infant interacts with its environment. The
most prominent exponent of the hard-wired hypothesis
is Baron-Cohen’s theory of social-cognitive modules [2],
which consists of four modules. This nativist and mod-
ularist description might be a useful tool, but provides
little explanatory and predictive power and does not
explain how these modules develop.

In 2001, Matsuda and Omori [16] proposed a re-
inforcement learning model for acquiring joint visual
attention in infants. In their model, the infant’s be-
havior is supervised and rewarded when it follows the
mother’s gaze. Further, they concluded that three abil-
ities are required for joint visual attention to emerge:
(1) the recognition of the mother’s face, (2) detection
of the eye gaze direction, and (3) a reward system.

Recently Carlson et al. [6] proposed a new and more
realistic dynamical systems approach which takes into
account that complex behaviors can emerge from sim-
ple learning mechanisms and which is based on a dif-
ferent and more complete basic set of hypotheses (see
Section 2). It basically relies on Moore’s suggestion [17]
that gaze following might emerge because infants learn
that the caregiver’s direction of gaze is a reliable predic-
tor of where interesting things are located and happen.
The proposed approach is the outcome of a more gen-
eral framework seeking to combine embodied models
and empirical research [11]. In contrast to the work
of Matsuda and Omori, the infant learns without su-
pervision and only receives a reward when he sees an
interesting object or looks at the caregiver’s face (see
Section 2.3), i.e., the model therefore learns how to use
the caregiver’s face as a predictor for where interesting
things are.

Nagai et al. [19] present a constructive model by
which a real robot acquires the ability of joint attention
with a human caregiver without supervised feedback.
Although the model develops according to the three
developmental stages as proposed by Butterworth and
Jarret [5], it cannot deal with ambiguous object situ-
ations, reason why Lau and Triesch [15] recently pro-
posed a new approach which uses the infant’s depth
perception to solve such ambiguities.

A number of other researchers (see for Example [3,

21]) proposed and implemented mechanisms for joint
attention for their robots, however, the behaviors were
usually fully programmed in advance.

2 A Simple Computational Model

The computational model proposed in [6] relies on
a basic set of plausible mechanisms [11], which were
shown to be sufficient for gaze following to emerge:

• Perceptual preferences: Normally developing
infants enjoy looking at faces in general and their
caregivers in particular. In contrast, many chil-
dren with autism do not show such a social pref-
erence.

• Habituation: Infants tend to shift gaze from one
target to another after some time.

• Reward driven learning mechanisms: The in-
fant shifts gaze between social stimuli and interest-
ing targets in order to maximize internal rewards
resulting from visual stimuli.

• Contingent interactions and a structured

environment: There must be a correlation be-
tween where the caregiver is looking and where
interesting things are.

The basic set of mechanisms is then formalized
within the framework of a biologically plausible tem-
poral difference reinforcement learning algorithm [23].
The framework shall be briefly summarized in the fol-
lowing.

2.1 Environment and Object

The environment is represented as set of N distinct
spatially unattributed regions where exactly one inter-
esting object is present at any discrete time step t in
one of the N locations. After an initial fixation time
Tfix, the object has a relocation probability of pshift at
each upcoming time step t. Once relocated to a new
location it will remain fixed again for at least Tfix time
steps before the cycle restarts.

Carlson et al. [6] used an environment with N = 10
regions, Tfix = 4, and pshift = 0.5.

2.2 The Caregiver (CG)

The caregiver can either look at the object, at one
of the N − 1 remaining empty regions, or at the in-
fant. Each time the object is relocated to a new loca-
tion the caregiver decides to look at either the infant
with probability 1

N+1 , at the object with probability
N

N+1pvalid, or at an empty location with probability



N
N+1(1 − pvalid). He then fixates the location or the
infant until the target is relocated again as described
in the previous section.

Carlson et al. [6] set pvalid to 0.75, which means that
the CG spends about 10% of its time looking at the
infant, 68% at the object and 22% at an empty location
in an N = 10 region environment.

2.3 The Infant (INF)
The infant is modeled as a pleasure-driven tempo-

ral difference (TD) reinforcement learning agent [23],
which tries to maximize the rewards it receives for look-
ing at interesting things. At each time step, the infant
can look at one of the N regions or at the caregiver,
whereby, the infant can see four possible things: (1) the
object, (2) no object, (3) the caregiver’s frontal view,
or (4) the caregiver’s profile. Associated with these
views are four base reward values Rfix, namely Robject,
Rnothing, Rfrontal, and Rprofile. The infant can only tell
where the caregiver is looking when he directly gazes
at him. When the infant is looking at something he
habituates to it. For each location N , the caregiver,
and the object the infant has a habituation value. As
the infant continues to fixate on something, this value
decreases, likewise, the infant dishabituates to all other
possible looking locations. The habituation change at
each time step is given by h(t+1) = h(t)e−β, the disha-
bituation by h(t+1) = 1−h(t)e−β . In our experiments,
all habituation values are set to 1 at initialization and
β = 1. The actual or instantaneous reward received by
the infant at time t is given by rinst(t) = Rfix(t)h(t).

Based on the work of Findlay and Walker [12], the
decision of when and where to shift gaze is implemented
in two separate agents in our infant model. The when-
agent decides whether to continue to fixate on the same
location or two shift gaze. It’s state space has two
dimensions: (1) the time the infant has been fixated on
the current location and (2) the instantaneous reward
received by the infant. The where-agent provides the
new gaze location if the when-agent decides to shift
gaze. It has one dimension only, namely, the caregiver’s
gaze direction, which can be one out of the N locations,
the infant (N +1), or unknown (N +2) in the case the
infant is not looking at the caregiver. Both agents make
use of a standard TD learning algorithm with tabular
SARSA [23] to estimate the state-action values Q(s, t):

Qt+1(s, a) = Qt(s, a)

+ α[rt + γQt(st+1, at+1) − Qt(st, at)]
(1)

The action selection is made with a standard soft-
max decision rule, where action a is chosen with prob-
ability

pt(a|s) =
eQ̃t(s,a)/τ

∑N
a′=1 eQ̃t(s,a)/τ

, (2)

where Q̃t(s, a) = Qt(s,a)
max

a′ |Qt(s,a′)| .

The following parameters are important for the
model:

1. α, learning rate: A small learning rate induces slow
learning, a large learning rate oscillations.

2. γ, discount factor: Specifies how far in the future
rewards should be taken into account. For small γ

the agent is only interested in immediate rewards
and does not consider long-term consequences of
its actions.

3. τ , temperature: The lower τ , the more likely it is
for the model to chose the action with the highest
Q-value (exploitation). For τ → ∞, all actions will
be chosen with equal probability (exploration).

In many applications these parameters are hand-
tuned and fixed, but ideally they should be dynami-
cally adapted to the environment and the agent’s per-
formance. Schweigerhofer and Doya [22], for exam-
ple, propose a meta-reinforcement learning algorithm
to tune α, γ, and τ . For our purpose, the parameters
were fixed in order to allow for comparisons between
the various experiments.

2.4 Performance Measure

In order to measure the gaze following performance,
we will only use the gaze following index (GFI) in this
paper:

GFI =
# gaze shifts from CG to location looked at

# gaze shifts

The gaze following index measures the frequency
of gaze shifts that lead from the location of the
caregiver—where the infant can determine the care-
giver’s gaze location—to where the caregiver is look-
ing. During our experiments, the learning was sus-
pended every T = 1000 time steps and the gaze follow-
ing performance was tested for 1000 time steps before
the learning process resumed.

Note that the maximum GFI with the original care-
giver as described in Section 2.2 is GFImax = N

2(N+1)

as the caregiver spends on the average 1
N+1 of his time

looking at the infant. For N = 10 regions, GFImax be-
comes 0.45 on the average. For N = 2, the maximum
GFI drops to 0.33.



2.5 Finding Optimal Infant Parameters by Means
of an Evolutionary Algorithm

Carlson et al. [6] used an experimentally determined
set of parameters which consisted of the following val-
ues: α = 0.0025, γ = 0.8, and τ = 0.095. For our care-
giver experiments, however, we were interested in using
a nearly“optimal” infant as a vis-à-vis and we therefore
decided to use an evolutionary algorithm (EA) [13] to
find optimal parameters for α, γ, and τ with regards
to the speed of learning and the gaze following index
at the end of the learning process.

The optimization was performed by means of a
standard elitist genetic algorithm with a generation
gap of 0.9, a cross-over probability of 0.7, a mutation
rate of 0.01, fitness-based reinsertion, and a single-
point cross-over operator. The variables α, γ, and τ

use a 20 bit representation for the interval [0.0001, 1]
on a binary genotype. The fitness function was de-
fined as the average GFI over T simulation time steps:
fitness = 1

T

∑T
t=1 GFI(t).

We ran the algorithm over ten trials for (1) a pop-
ulation size of ind = 15 individuals, gen = 50 genera-
tions, T = 300, 000 simulation steps (5 trials), and (2)
a population size of ind = 20 individuals, gen = 100
generations, T = 50, 000 simulation steps (5 trials).

The results suggest that the algorithm gets easily
stuck in a local optimum (independently of the two
trial setups) around α2 = 0.5, γ2 = 0.03, τ2 = 0.05,
whereas a global optimum seems to be located around
α1 = 0.075, γ1 = 0.5, τ1 = 0.007. We decided to simply
retain these two showcase candidates without further
investigating the EA’s underlying fitness landscape.

Figure 1 shows the evolution of the GFI as a function
of four different parameter sets. Origus represents the
original infant used by Carlson et al. [6], Optimiss and
Optimuse are the two parameter sets found by the evo-
lutionary algorithm, whereas Mediocrus is an example
of a suboptimal solution for comparison (his parame-
ters were experimentally determined).

What can we learn from these results? As one
can see, Optimuse and Optimiss both perform almost
equally well and are much faster learners than Origus
and Mediocrus. Optimuse learns gaze following slightly
faster than Optimiss, but both have approximatively
the same final value. Due to the higher learning rate,
Optimiss tends to slightly oscillate. Origus ultimately
also reaches a pretty high, yet lower GFI than the two
evolved infants.

Interestingly, although Optimuse and Optimiss show
very similar performance, they have very different pa-
rameters. Let us try to characterize their different
behaviors in order to understand why they perform
almost equally well. Optimiss could be described as

smart, risky, nearsighted, and exploratory because she
has a high learning rate (smart) and a higher tempera-
ture (more exploratory) than Optimuse. She also takes
more risk because she prefers immediate rewards (low
discount factor). Her smartness, however, allows her to
make up for the risk due to the exploratory short-term
oriented behavior. Optimuse, on the other hand, might
be described as tenacious, perspicacious, and exploitive
because of her low learning rate and the low temper-
ature. She is interested in getting long-term rewards
and therefore closely stands by her policy without tak-
ing too much risk and without being seduced by tempt-
ing decoys. Interestingly, both of these characteristic
personalities—which also commonly exist in real life—
perform almost equally well, but with a very different
strategy.

Why, one might ask, do Mediocrus and Origus per-
form less good? What do they wrong? According to
his parameters, Mediocrus is a quick learner, but all
the same sticks to his conservative policy (exploitive).
One might say that he uses a wrong combination of his
capacities and therefore only reaches a GFI of about
0.3. Finally, Origus is a really slow learner, but makes
otherwise good use of his exploitive behavior and inter-
est in long-term rewards, which ultimately also brings
him to the top.
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Figure 1. Learning curves for different α,
γ, and τ . Average GFI over 10 runs with
standard error. The evolved infants Optimiss
(α2 = 0.5, γ2 = 0.03, τ2 = 0.05) and Optimuse
(α1 = 0.075, γ1 = 0.5, τ1 = 0.007) perform al-
most equally well and better than Origus. In-
fant Mediocrus is suboptimal.

In the reminder of this paper we shall use our two



beloved toddlers Optimuse and Optimiss and their dif-
ferent behavioral strategies to evaluate and compare
the performance of various caregivers.

2.6 Analyzing the Parameters Tfix, pshift, and pvalid

In order to analyze the influence of the caregiver and
the environment on the infant’s gaze following behav-
ior we ran several simulations with different parameter
sets for the caregiver as described in Section 2.2—who
shall be baptized Ancestrus—while the infant’s param-
eters were that of Optimuse and Optimiss (see previous
section).

Figure 2 shows the average gaze following index as
a function of each of the three parameters pvalid, pshift,
and Tfix. The default parameter values (two were fixed
during each run) were as following: pshift = 0.5, pvalid =
0.75, and Tfix = 4.

As one can see, the predictiveness of the caregiver’s
gaze pvalid is the sole parameter which significantly af-
fects the infant’s GFI, i.e., for pvalid < 0.5, the GFI
begins to dramatically drop for both toddlers because
the caregiver gradually becomes less predictive. On the
other hand, Tfix and pshift do almost have no influence
on the GFI, at least not when modified individually1.
Optimiss has a slightly lower GFI for all three care-
giver parameter sweeps and the GFI begins to drop
earlier than for Optimuse, which suggests that she is
more sensitive to the caregiver’s behavior.

Figure 3 shows four plots for characteristic param-
eter sets. With Ancestrus as a vis-à-vis, Optimuse
quickly learns to follow the caregiver’s gaze. Caregiver
Ancestrus I performs less good with pvalid = 0.2 be-
cause he less often looks at the object. Ancestrus II has
the same pvalid as Ancestrus but a relocation probabil-
ity of pshift = 1 and an object fixation time of Tfix = 1,
which prevents the infant from learning gaze following
because the object is relocated et every time step and
the caregiver is “nervously” shifting gaze. Finally, al-
though Ancestrus III has a fixation time of Tfix = 1
only and a low pshift, the infant learns gaze following
fairly well due to pvalid = 0.3 (compare also with the
average GFI of Figure 2).

Simulations for Optimiss show a different picture for
Ancestrus I and Ancestrus III: they have a much lower
GFI (average of about 0.1 and 0.15 respectively) than
for Optimuse, which confirms the foregoing finding that
she is more sensitive to the caregiver’s behavior and
well adapted to Ancestrus only.

It can be concluded—what seems intuitively obvi-
ous for this setting and these toddlers—that the more
predictive and structured the environment is (i.e., the

1Note that the minimal Tfix is 1, i.e., the object moves at each

time step if pshift = 1.
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Figure 2. Average GFI as a function of pshift,
pvalid, and Tfix over T = 100, 000 time steps for
Optimuse and Optimiss. The fixed values were:
pshift = 0.5, pvalid = 0.75, and Tfix = 4. Average
GFI over 4 runs without standard error for bet-
ter legibility.

higher pvalid), the better and faster the infant learns
gaze following. Thereby, the predictiveness of the care-
giver plays a crucial role, whereas the object’s behavior
is less important.

In the next section we will analyze four new care-
givers and compare them with our two toddlers in com-
bination with two developmental disorders.

3 New Caregiver Models

The caregiver used so far was static and did not
adapt to the infant’s behavior, which certainly repre-
sents a gross oversimplification of a real mother-infant
interaction. One might hypothesize that an adaptive
caregiver would allow the infant to learn gaze follow-
ing faster and more reliable. In order to test this hy-
pothesis, we implemented several caregiver models and
environments and evaluated the gaze following perfor-
mance of normally developing and autistic infants as
well as of children with the Williams syndrome. The
caregivers used are as following:

• Ancestrus: Original caregiver as described in Sec-
tion 2.2.

• Randomus: Random caregiver and object, i.e., at
each time step the object and the caregiver’s gaze
are individually moved to a random location. The
caregiver therefore looks at the infant with proba-
bility 1

N+1 .
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Figure 3. Optimuse’s learning curves for four
different caregiver parameter sets pshift, pvalid,
and Tfix. Average GFI over 10 runs with stan-
dard error, α = 0.075, γ = 0.5, τ = 0.007.

• Careus: This caregiver waits until he can estab-
lish mutual gaze contact with the infant. He then
moves the object to a random location and directs
his gaze to the very same location where he waits
until the infant looks at the object. The caregiver
then returns his gaze to the infant and waits again
for mutual gaze contact.

• Avoidus: Same as Ancestrus, but he never looks
at the infant.

• Boreus: The object and the caregiver’s gaze both
move together, stepwise, and indefinitely from lo-
cation 1 to N and back, one step each Tfix = 4
time steps.

Figure 4 shows Optimuse’s gaze following perfor-
mance vis-à-vis of the five above described caregivers.
One can see that the random caregiver Randomus does
not provide a sufficiently structured environment to
the infant, whereas Ancestrus only allows the infant
to slowly acquire gaze following. Careus performs
best as he adapts to the infant and “guides” his gaze.
Avoidus still allows the infant to learn gaze following
very well, although he never establishes mutual gaze
contact. Similarly, Boreus provides a highly structured
environment because of the deterministic object trajec-
tory and his fully predictive gaze direction. Columns
“N” (normal) of Table 1 summarize the simulation re-
sults for this experiment for both infants. As one can
see, the results are very similar for Optimiss.
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Figure 4. Optimuse’s GFI for the new care-
givers. Average over 10 runs with standard
error, α = 0.075, γ = 0.5, τ = 0.007.

Optimuse Optimiss

avg GFI N A W N A W

Ancestrus 0.44 0.004 0.05 0.41 0 0.38
Randomus 0.04 0 0.05 0.04 0 0.04
Careus 0.5 0 0.5 0.5 0 0.5
Avoidus 0.48 0.27 0.42 0.43 0.05 0.5
Boreus 0.47 0.45 0.24 0.49 0 0.5

Table 1. Summary of the average GFI for the
two toddlers facing the new caregivers. Av-
erage values over T = 300, 000 time steps
and over two runs. N=Normal, A=Autist,
W=Williams syndrome.

3.1 Developmental Disorders
Autistic children show little or no eye contact and

tend to avoid looking at faces whereas children with the
Williams syndrome have an abnormally high preference
for faces. Carlson et al. [6] have demonstrated that
simple changes in the infant’s reward structure can lead
to behaviors reminiscent of autism and the Williams
syndrome. In this paper we used the following reward
structures:

• Autist: Rfrontal = −1, Rprofile = 0 (note that
there seems to exist controversial evidence whether
autists perceive direct gaze as aversive or not);

• Williams syndrome: Rfrontal = 2, Rprofile = 2.

Columns “A” (autist) and “W”(Williams syndrome)
of Table 1 summarize the simulation results for this ex-



periment for both infants. In addition, Figure 5 illus-
trates the GFI of Optimuse as an autist and as a toddler
with Williams syndrome. She faces Ancestrus, Avoidus
for the autist, and Careus for the Williams toddler. As
one can see, gaze following does not emerge with An-
cestrus and the autist, whereas the Williams toddler
only learns it badly. Avoidus, however, helps the autist
to successfully learn gaze following because he avoids
mutual gaze contact (i.e., avoids negative rewards for
the infant), whereas Careus succeeds in “guiding away”
the Williams toddler from staring at his face to the
object.

From Table 1 we can also see that the random care-
giver Randomus is unsuccessful in all situations. Look-
ing at Optimuse, we find that Boreus performs even
better than Avoidus for the autist because he too never
looks at the infant, but provides an even more deter-
ministic behavior. For the same infant with Williams
syndrome, Avoidus performs also very well because he
avoids mutual gaze.

The situation is a little different for Optimiss. In her
autistic version, she really gives a hard time to the care-
gives and prevents from any gaze following to evolve.
However, she does a much better job when acting as a
Williams infant: all caregivers, except Randomus, suc-
ceed in teaching her gaze following. This is somehow
surprising as she was the one who was more sensitive
to the environment. However, this might exactly be
the explanation: she is more likely to be disturbed and
drifted away, which is beneficial for a Williams toddler,
i.e., to shift attention away from the highly attracting
face.

We conclude that, although the presented caregivers
are of course still gross oversimplifications of a real
caregiver, they play a crucial role in the development
of gaze following, especially for toddlers with develop-
mental disorders. A second finding is that no “uni-
versal” caregiver exists: every toddler—whether with a
developmental disorder or not—has its own needs and
requires a particular caregiver. This immediately sug-
gests that the ideal caregiver should itself be a learning
agent that dynamically adapts to the constantly devel-
oping infant and to the environment.

4 Conclusions

We presented a computational gaze following frame-
work as first introduced by Carlson et al. [6] and op-
timized the infant’s parameters by means of an evo-
lutionary algorithm. The outcome were two infants
which performed almost equally well, but used differ-
ent strategies. We then analyzed the original and sev-
eral new caregiver models and showed that they play a
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Figure 5. GFI of disordered Optimuse who
faces caregivers Ancestrus, Avoidus, and
Careus. Average over 10 runs with standard
error, α = 0.075, γ = 0.5, τ = 0.007.

crucial role in the development of gaze following, espe-
cially for virtual infants with developmental disorders.
Further, we conclude that every infant and environ-
ment requires its particular caregiver, which suggests
that the caregiver should be itself a learning agent that
highly interacts with the infant.

This finding might seem intuitively obvious and sim-
ply goes into the direction of developing more realistic
computational models of the emergence of gaze follow-
ing, and eventually shared attention. Nevertheless, the
current simplicity of the model can also be considered
as a strength since it brings the computational essence
of the underlying mechanisms into focus.
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