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Abstract

What is the difference between processing faces and
other objects such as letters? What makes humans face ex-
perts, and what makes this expertise different from other
identification skills? It is well known that people are very
sensitive to the configural information in faces. How does
the sensitivity to face configuration compare to sensitivity to
configurations of other stimuli? To investigate these issues,
Nishimura et al. (2004) designed a test to contrast two types
of processing using the same stimuli. They primed subjects
to see four blobs as either a “Y” or as a face. Then they
asked the subjects to discriminate pairs of these stimuli that
differed only in small shifts in the blob locations. Although
the stimuli were exactly the same, subjects were more ac-
curate in the face condition than the “Y” condition. With
Nishimura et al., we assumed that the subjects were relying
on their letter recognition networks in the “Y” condition
and their face recognition networks in the face condition to
perform the task. We therefore trained two networks, a face
recognition network and a letter recognition network that
were otherwise identical in structure, and show here that the
internal representations in the letter network for the blobs
were less differentiated than the internal representations for
the blobs in the face network. We argue that this is a natural
consequence of the requirements of the two tasks.

1. Introduction

We have developed a simple neurocomputational model
of face and object recognition that accounts for a number of
important phenomena in facial expression processing, holis-
tic processing and visual expertise [9, 7, 11, 19]. Here, we
investigate the model’s ability to account for a recent exper-
iment that shows differential human sensitivity to configural
information based on priming. Nishimura et al. (2004) con-
structed “blob” stimuli consisting of four gaussian blobs in
the same spatial arrangement as the eyes, nose and mouth

of human faces. The blob stimuli were also constructed to
have about the same variability in location as those features
in human faces. They then primed one group of subjects to
see these blobs as a “Y” and another group to see them as
parts of a face. The first group was less able to discrimi-
nate the blob stimuli than the second group. They suggest
that this is because the face group is using their face recog-
nition system to discriminate the blobs, and present this as
further evidence that face processing utilizes a sensitivity to
configuration that other tasks do not.

Why would subjects show these differential sensitivities?
We first discuss what is known about face processing. Face
processing has long been described asholisticor configural.
Holistic is typically taken to mean that subjects use some
kind of whole-face representation when processing faces.
This is reflected at least two ways. First, subjects have dif-
ficulty recognizing parts of the face in isolation – there is a
whole-face superiority effect. Second, subjects have diffi-
culty ignoring parts of a face when making a decision about
another part. For example, subjects are slower in making an
expression judgement about the top half of a face if the bot-
tom half is displaying an incongruent expression [3]. Our
model of face processing is able to account for this kind of
data because it uses representations that are global; that is,
they are composed of whole-face templates we have called
holons[7, 8]. Inputs that match part of one of these repre-
sentational units cause it to fire. Units later in the processing
stream take this to be a vote for the whole template, so that
the system as a whole responds as if both halves of the face
had been of the type matched.

Configural processing means that subjects are sensitive
to the relationships between the parts, e.g., the distances
between the eyes. Thus, small changes in the spacing of the
eyes cause subjects to see the faces as different people. This
is presumably due to long experience with many people,
and the need to differentiate these faces. This sensitivity
to configuration, however, takes a surprisingly long time to
develop [23].

What kind of processing is required to recognize objects,



and how does it differ from faces? Diamond and Carey [14]
were among the first to discriminate between the types of
processing involved in face and object recognition. They
proposed that first-order relational information, which con-
sists of the coarse spatial relationships between the parts
of an object (e.g. eyes are above the nose), is sufficient
to recognize most objects at the basic level. By contrast,
second-order relational information (e.g. the spacing be-
tween individual features such as the eyes and the mouth), is
needed for face recognition. They found that inverting im-
ages severely disrupted subjects’ ability to discriminate be-
tween faces, and that this effect was stronger for faces than
for dogs and landscapes in naive subjects. However, dog
experts also showed an inversion effect for dogs. These re-
sults suggest that face processing is a kind of expertise, and
that experts become over-tuned to the typical orientation of
the stimuli in their domain of expertise. Their ability to dis-
criminate based upon subtle configural differences is overly
disrupted by inversion. Diamond and Carey [14] suggest
that experience allows people to develop a fine-tuned pro-
totype and to become sensitive to second-order differences
between that prototype and new members of that category
(e.g. new faces).

One implication of the Diamond and Carey study is that
the inversion effect (a large reduction in same/different per-
formance on inverted faces, compared to inverted objects)
is based on a relative greater reliance on second-order rela-
tional information, and that perhaps this characteristic dis-
tinguishes face/expert-level processing from regular object
recognition. Farah et al. [15] found that encouraging part-
based processing eliminated the inversion effect, whereas
allowing/encouraging non-part-based processing resulted in
a robust inversion effect. Thus Farah et al. conclude that the
inversion effect, in faces and other types of stimuli, is asso-
ciated with holistic pattern perception. Thus, regular object
classification is thought to use a parts-based representation.

However, our model uses the same kind of representa-
tion for all stimuli. The only difference is the requirements
of the task, between a version of our model that recognizes
faces and one that recognizes objects, such as letters. In face
identification, the model must take similar looking stimuli,
and magnify small differences between them in its internal
representation (see Figure 1, left). On the other hand, in or-
der to recognize letters, the model must take similar looking
things (the same letter in different fonts, for example) and
represent them as the same thing (see Figure 1, right). This
point has been made before [17]; here, we construct models
that automatically implement those differences via learning
the different tasks. Then we may analyze the models in
ways that we cannot analyze human subjects.

Our use of separate networks for these two tasks is mo-
tivated by fMRI experiments that have shown that face-
related tasks and letter-related tasks activate different brain

regions [17, 20, 5]. The fusiform face area tends to be in
right medial fusiform gyrus, whereas there appears to be
a letter form or word form area in the left midfusiform
gyrus [5, 6, 22]. We model this by having two networks,
each trained to do one of the tasks. We hypothesize that the
priming in Nishimura et al.’s experiment causes one of these
networks to be primed, and therefore used for the task. Then
we show how blobs are represented differentially in the two
networks.

Figure 1. Faces are automatically perceived
as different individuals despite the similarity,
while the “F”s are perceived as the same let-
ter. Adapted from [17].

In the following, we describe Nishimura et al.’s experi-
ments and our account of their data. We found that different
encoding due to different tasks in our model could account
for their data, which suggests that the effect in human sub-
jects may come from using the letter system verses the face
system to encode the stimuli. Finally, we discuss plans for
future work.

1.1. Nishimura et al’s Stimuli and Experiments

To compare sensitivity to configural information for
faces and non-faces, Nishimura et al. (2004) created a group
of stimuli that contain 4 blobs located over the eyes, nose
and mouth of configurally different faces (Figure 2). Two
groups of subjects were then primed to see the blobs as
either a face or as the letter “Y”, respectively (Figure 3).
The subjects then performed same/different tasks on differ-
ent pairs of blobs that differed only in their relative loca-
tions. The results showed that when people take these blobs
as faces, they discriminate them better than when they see
them as the letter Y (Figure 4). This suggests that by differ-
ent priming, ambiguous stimuli might be represented differ-
ently. In this work, we concentrate on modelling this using
our neurocomputational model of visual object recognition.

2. A Computational Model of Classification

Our model is a three level neural network that has been
used in previous work (Figure 5). The model takes manu-
ally aligned images as input. The images are first filtered by



Figure 2. 4 blobs are located over the eyes,
nose and mouth of 5 faces used in previous
studies (from [24]).

Figure 3. The blobs are primed as either face
or letter Y. (from [24]).

2D Gabor wavelet filters, which are a good model of simple
cell receptive fields in cat striate cortex [18]. PCA (prin-
cipal component analysis) is then used to extract a set of
features from the high dimensional data. In the last stage,
a simple back propagation network is used to assign a class
to each image. We now describe each of the components of
the model in more detail.

2.1. Perceptual Level

Research suggests that the receptive fields of the striate
neurons are restricted to small regions of space, respond-
ing to narrow ranges of stimulus orientation and spatial
frequency[18]. DeValois et al [13] mapped the receptive
fields of V1 cells and found evidence for multiple lobes of
excitation and inhibition. 2D Gabor filters [12](Figure 6)
have been found to fit the 2D spatial response profile of
simple cells quite well[18]. In this processing step the
image was filtered with a rigid 23 by 15 grid of overlap-
ping 2-D Gabor filters[12] in quadrature pairs at five scales
and eight orientations [11](Figure 7). We thus obtained
23 × 15 × 5 × 8 = 13, 800 filter responses in this level,
which is termed theperceptuallevel [11].

2.2. Gestalt Level

In this stage we perform a PCA of the Gabor filter re-
sponses. This is a biologically plausible means of dimen-
sionality reduction[11], since it can be learned in a Heb-
bian manner. PCA learns features that encode correlations
between features at the previous level. Thus, for exam-
ple, if the Gabor filter responses to the left eye are highly
correlated with the Gabor filter responses to the right eye,

Figure 4. Mean accuracy of the subjects in
the face group was higher than that of those
in the letter group. (from [24]).

Figure 5. Object recognition model (from
[11]).

there will be a principal component that corresponds to both
of these, capturing the redundancy in the Gabor filter re-
sponses. The eigenvectors of the covariance matrix of the
patterns are computed, and the patterns are then projected
onto the eigenvectors associated with the largest eigenval-
ues. At this stage, we produce a 50-element PCA represen-
tation from the 13,800 Gabor vectors.

2.3. Categorization Level

The classification portion of the model is a two-layer
back-propagation neural network. 50 hidden units are used.
A scaled tanh [21] activation function is used at the hidden
layer and the softmax activation functionyi = eai/

∑
k eak

was used at the output level. The network is trained with
the cross entropy error function [1] to identify the images
using localist outputs. Networks trained in this way learn to
produce the conditional probability of the output class given
the input.



Figure 6. A Gabor function is constructed by
multiplying a Gaussian function by sinusoidal
function[12]. We use five scales and eight
orientations.

Figure 7. An image filtered with a rigid 23
by 15 grid of overlapping 2-D Gabor filters
in quadrature pairs at five scales and eight
orientations (from [10]).

3. Modelling Nishimura et al.

We set up two networks, one engaged in face iden-
tity classification and the other in letter classification. Af-
ter training, blobs were fed to these two networks. The
mean discriminabilities were computed respectively and
then compared between the two classifiers. The results
showed that the face network considers the blob stimuli to
be more different than the letter network does.

3.1. The Image Sets

We had 182 face images of 26 individuals (7 images for
each individual). We also used 182 letter images of the
26 upper case letters (7 images for each letter in 7 fonts).
27 blob stimuli were created by manipulating the eye blob
and/or mouth blob’s position.

The FERET database is a large database of facial im-
ages, which is now standard for face recognition from still
images[25]. We used 182 face images of 26 individuals, 7
images each. In [11], where the task was to learn facial ex-
pressions, images were aligned so that eyes and mouth went
to designated coordinates. This alignment removes the con-
figural information which is crucial for our work, because
we are trying to understand how configural processing is

better learned in the face recognition task than in the letter
recognition task. To avoid this negative effect, we required
that the relative spacing between the parts of the face re-
main the same. We formed a triangle from the eyes and
mouth of the original face, and then translated, rotated and
scaled this triangle to be as close as possible to a target tri-
angle in terms of the sum squared differences between the
final eye and mouth coordinates and the target coordinates.1

This manipulation preserves the relative distance between
the features of the face (Figure 8). Thus, a triangle rep-
resented by the eyes and mouth is scaled and moved to fit
closely to a reference location, but the relative sizes of the
sides of the triangle are not changed. The aligned images
were192 pixels by128 pixels.

Figure 8. Two examples of face image normal-
ization. The faces were cropped with the eyes
and the mouth as close as possible to the tar-
get position while keeping the shape of the
triangle among these features the same.

We also used 182 192 by 128 pixel letter images of the
26 upper case letters, 7 images each (Figure 9). The letter
images were aligned so that the ends of the letter Y were
approximately where the eyes and mouth were in the face
stimuli.

Figure 9. Some letter images.

Blob images were generated by setting gaussian blobs
(of width σ = 5 pixels) at left eye(80(±3), 36(±3)),
right eye (80(±3), 92(±3)), nose (115, 65) and mouth
(150(±3), 65) positions. Note the two eye blobs were al-
ways symmetric. Thus3 ∗ 3 ∗ 3 = 27 blob images were
generated.

3.2. Training and Learning

A learning rate of 0.05 and a momentum of 0.5 were
used in the results reported here. Two networks were set

1The objective function for the minimization was (||Eyeright −
targetEyeright||2 + ||Eyeleft − targetEyeleft||2 + ||Mouth −
targetMouth||2).



Figure 10. Some “blob” images.

up for faces and letters respectively. In a pilot experiment,
10 percent of the images were selected randomly as a test
set and another 10 percent as a validation set [10]. Both
networks achieve 80-90 percent accuracy within 50 epochs.
This classification rate was good enough to show that our
model represented the images well.

For the following experiments, we simply trained both
networks on all 182 images, since we are only interested in
obtaining a good representation at the hidden layer. Train-
ing was stopped at the 50th epoch based on the above pilot
experiment. After training, the blob images were presented
to the network. Note for the face network, the blob images
were projected according to the face image eigenvectors in
the PCA level while for the letter network, they were pro-
jected onto those of letters.

3.3. Modelling Discrimination

Hidden unit activations were recorded as the network’s
representation of images. In order to model discriminability
between two images, we present an image to the network,
and record the hidden unit response vector. We do the same
with a second image. We model similarity as the correla-
tion between the two representations, and discriminability
as one minus similarity [11]. The pairwise average within
the blob image set was taken as the measure of the net-
work’s ability to discriminate the blob images. For both the
face network and the letter network, the average of the dis-
criminabilities was computed over 50 networks which were
all trained in the same way, but used different initial random
weights.

The results (Figure 11) showed that the face network bet-
ter discriminates the difference between blob images than
the letter network (F = 24.72, p < 0.001). I.e. the rep-
resentations of blob images in the face network were more
differentiated (further apart) from one other than those in
the letter network.

To visualize this difference, we extracted the principal
components of the hidden layer representations and then
projected their activations onto the first three principal com-
ponents (the ones that represent most of the variance of the
activations) (Figure 12). Notice the hidden layer represen-
tations of the blobs in the face network are better separated,
which suggests that the face network is especially sensitive
to configural differences.

Figure 11. Mean discriminability of the blobs
in the face network was higher than that in
the letter network ( F = 24.72,p < 0.001).

Figure 12. The projection of the hidden activ-
ities onto the first 3 principal components.

3.4. Inverted blobs

While Nishimura et al. did not present inverted blobs to
their subjects, it is theoretically interesting to see what sub-
jects would do with inverted stimuli if they are perceiving
them as letters or as faces. If they see them as faces, then
one expects that there should be an “inverted blob effect.”
This is easy to do with the networks. The same set of the
blobs were inverted and then presented to the two types of
networks. We expect that the face network should show a
greater loss of discrimination than the letter network. The
results, plotted along with the original data from Figure 11
for comparison, are shown in Figure 13. As expected, there
is an inverted blob effect for the face network, while the let-
ter network shows a slight increase in discriminability for
the blobs. As there is no human data for this case, this is a
prediction of the model.

4. Discussion

Our results qualitatively match those from human sub-
jects. In the two networks, the difference in the discrim-
inability of the same stimuli comes from the different en-



Figure 13. Discriminability results for the let-
ter and face networks when the blobs are pre-
sented upright and inverted. There is no dif-
ference between the networks on the inverted
stimuli ( F = 3.11,p = 0.0808), but there is a sig-
nificant difference between the face network’s
ability to discriminate the inverted blobs over
the upright blobs ( F = 21.9,p < 0.001). There
is a small but significant increased discrim-
inability for the letter networks ( F = 4.3,p =
0.0407).

coding in the two tasks. Note that because all the faces share
the same first-order relational features, the categorization
need to be carried out at finer level. The face network needs
to spread out similar face images to categorize individuals,
while the letter network needs to squeeze different fonts of
the same letter to a letter prototype. So the face network
tends to magnify small differences in face images while the
letter network tends to ignore such variability. This is con-
sistent with our previous results with faces, objects and let-
ters [19, 26]. Thus the configural differences between the
blob stimuli are better noticed by the face network. Con-
sidering our separate face and letter networks to be analo-
gous to the separate face and letter processing systems in
the brain, we can apply the reasoning derived from our net-
works to the brain, as follows. The face processing system
learns to pay attention to small differences such as config-
ural changes in faces while the letter processing system ig-
nores them. Thus, when the blobs are perceived as faces,
the differences are more present in the inner representation
by the face system, while when the blobs are perceived as
letters, the differences are less present in the inner represen-
tation by the letter system.

Our model makes a prediction concerning an inverted
blob effect. We have previously shown that our face net-
works show an inverted face effect – they are poorer at dis-
criminating upside down faces [27]. We also showed that
configural differences take the biggest hit in discrimination
when compared with featural changes between the stimuli

to be discriminated. The configural effect generalizes to the
blobs. Interestingly, the letter network does not show this
effect – its discriminability scores increase slightly when
the stimuli are inverted. Possibly this is because it is poor at
discriminating the upright stimuli that all match a particular
letter “Y”. In the inverted case, we speculate that the blobs
fall in regions where it may have to discriminate slight dif-
ferences between letters (e.g., “R” and “A”).

How might these effects vary with development? As the
participants were undergraduates [24], we would expect a
lower strength of this effect in young children since sensi-
tivity to configuration is lower in children [16, 23]. Further-
more, if the inverted blob effect is found in adults, as pre-
dicted by our model, we would expect that children would
not show this effect. This is because developmentally, chil-
dren show either no inversion effect, or less of an inversion
effect, depending on their age [4, 2]. We are currently ex-
ploring adding a developmental component to our model in
order to account for these developmental changes.
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