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Abstract 

Many problems in social robotics require a real-time combination of 
incoming sensor information and prior information about likely behaviors 
of the objects in the world. For example, tactile, visual and acoustic 
information may all inform a distribution of beliefs about the location of 
humans with whom the robot may want to interact. When sensory 
information is not available, the uncertainty in this distribution should 
increase in a principled manner to reflect the fact that people are not static 
objects.  
 
Bayesian filtering provides a principled approach to solve these problems 
and has thus become a method of choice in robotics. Most of the Bayesian 
filtering methods applied to robotics rely on analog hypothesis spaces and 
find approximate solutions to the resulting non-linear filtering problem 
using Monte-Carlo approximations (i.e., particle filters). Unfortunately, 
particle-filters tend to be very inefficient, thus greatly limiting the 
applicability of the approach. We propose an alternative approach based 
on digitizing the hypothesis space into a large number of hypotheses (on 
the order of 100,000). The approach has not been tried in the past because, 
in principle, solving the filtering equations requires order n-squared 
operations per time step, where n is the number of hypotheses. This means 
that as the hypothesis space expands, solving the filtering equations 
becomes rapidly prohibitive.  
 
We show that in many problems, one can make use of the spatial-temporal 
structure of the hypothesis space and we propose an algorithm to solve the 
filtering operations in order n operations, vastly reducing the 
computational strain on the system. In practice, this allows handling 
hundreds of thousands of hypothesis in real time. We illustrate how the 
algorithm works for the problem of tracking human faces in real time. In 
this problem, possible object locations and scales (states) arrange in a 
three-dimensional topology (two dimensions for location and one for 
scale). Rectangular convolution kernels capture movement uncertainty 
over scales and locations. Interestingly the resulting architecture resembles 
the functional architecture of primary visual cortex, suggesting 



explanations for the computational role of forward, lateral and top-down 
connections in V1.  


