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Abstract

This paper presents a theory of developmental mental
architecture primarily for robots. Six types of architecture
are presented, starting with the observation-driven Markov
decision process as Type-1. From Type-1 to Type-6, the ar-
chitecture progressively becomes more complete toward the
necessary functions of the autonomously developing agent.
Properties of each architecture type are presented.

1. Introduction

A computational system can be specified at one of the
four levels of detail: (1) constraint, (2) architecture, (3) al-
gorithm, and (4) program, with increasing order of detail
from one to the next. Studies in psychology often address
issues at the constraint level while many engineering papers
discuss systems at the algorithmic level. This paper deals
with the architecture level. Mental architecture is a very
challenging and important subject, but there have been rel-
atively few systematic (agent-wise) investigations.

Supervised and reinforcement learning, based on the
Markov Decision Process (MDP) architecture (single- or
multi-level), enables a robot to learn autonomously while
the environment (including humans) provides labels [11] or
rewards [7, 13]. However, the MDP architecture, as ex-
plained in the following sections, has fundamental limita-
tions that prevent them to be effective for the developmental
robots described in [18].

Several alternative general-purpose architectures have
been proposed. Major remarkable ones include Soar pro-
posed by Laird, Newell & Rosenbloom [9], ACT-R by An-
derson [2], and the architecture by Albus [1]. Soar and
ACT-R incorporated many useful concepts that are neces-
sary for human intelligence. Albus’ architecture outline is
motivated by neural architecture. The subsumption archi-
tecture proposed by Brooks [3] is a biologically motivated

architecture component well suited for what is now known
as the behavior-based approach.

The architecture models discussed above do not di-
rectly address perception, such as vision and audition.
Neisser [10] pointed out that any model of vision that is
based on spatial computational parallelism alone is doomed
to failure. He proposed a two-stage visual process which
consists of a pre-attentive phase followed by an attentive
phase. Feldman & Ballard [5] proposed a “100-step rule:”
A biologically plausible algorithm for immediate vision
(one that does not involve slower deliberate thinking) can
require no more than 100 steps. John Tsotsos’ study [14] on
the complexity of immediate vision proposed a coarse archi-
tecture for a biologically motivated general purpose vision
system (for immediate vision). All these architectures are
nondevelopmental in the sense that the information proces-
sor is not generated through real-time interactions with the
environment.

Recently, there has been an onset of efforts on computa-
tional studies of autonomous mental development (e.g., the
workshop report in [19]). There is a need of studies on the
developmental mental architecture. This paper deals with
this architecture issue. It does not describe algorithm de-
tails, but it provides citations to publications of experimen-
tal systems with algorithm detail and support the architec-
ture described here. As this is a theoretical study, not all the
capabilities of an architecture have been fully implemented.
On the other hand, studies of actual experimental systems
cannot replace studies on architecture since the former does
not provide the properties of alternative architectures.

The history of studies on mental architecture has shown
that this subject is hard to study and challenging to under-
stand. This paper does not mean to solve all the problems
and answer all the questions about this subject. This work
is just a theoretical step toward the goal. In the following
sections, I introduce a series of architectures, from simple
to complex, along with the associated properties.
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Figure 1. The Type-1 architecture of a multi-sensor multi-
effector agent: Observation-driven Markov decision pro-
cess. Each square in the temporal streams denotes a small-
est admissible mask. The Type-1 architecture takes the en-
tire image frame without applying any mask. The block
marked with

�
is a set of context states (prototypes), which

are clusters of all observed context vectors ������� .

2. Type-1: Observation-driven MDP

We first need some definitions.

Definition 1 The internal environment of an agent is the
brain (or “the central nervous system”) of the agent. The
external environment consists of all the remaining parts of
the world, including the agent’s own body (excluding the
brain).

Definition 2 An external sensor �
	 and an internal sensor
��� are sensors that sense the external and internal environ-
ments, respectively. An external effector �	 and an internal
effector  � are effectors that act on the external and internal
environments, respectively.

Fig. 1 illustrates a multi-sensor multi-effector model of
agent. The agent ������� operates at equally spaced discrete
time instances ������������� �!� . We assume that an image is pro-
duced at each time instance by the sensor, independent of
the sensing modality, visual, auditory, touch, etc. Without
loss of generality, we assume that the agent has two exter-
nal sensors and two external effectors. Each external sensor
� 	"� , #$�%�&�(' , senses a random multi-dimensional sensory
frame ) 	 �������*�+) 	�, �����-��) 	". ������� at each time instance � and
the sensed signal is fed into the agent. Each external effec-
tor  	"� , #/�0���1' , receives from the agent an effector frame2 	 �+�����3� 2 	�, �+���4� 2 	�. �+����� at each time instance � . Note that
we change a variable of a vector to its subscript (e.g., change
)5����� to )76 ) when it is convenient.

Definition 3 (Markov Decision Process) The Markov de-
cision process (MDP) is as follows. Suppose � �8 �&�('9��� �!�!��:<; is a set of : predefined symbolic states that is
used to model a part of the world. The state = 6 at time � is
a random variable taking one of the values in � . Its prior
probability distribution is >?��=A@B� . The action 2 6 is the action
of the agent at time � . Let C 6 be the random history from
time �D��� up to time �<EF� :

C 6 � 8 = 6HGI, �1= 6HGJ. ��� �!� �1=�@�� 2 6HGI, � 2 6HGJ. �K�!�!� � 2 @�;&�
If its conditional state transitional probability >?�L=B6NM
CO6��
satisfies

>?�L= 6 MPC 6 �D�Q>?��= 6 MPR 6 �
where RS6 is the short last T frames of the history

R 6 � 8 = 6HG�, �(= 6HGU. �K�!� �!�(= 6HGJV � 2 6HG�, � 2 6HGU. �K�!� �!� 2 6HGJV ;&�
we call the process as the T -th order Markov decision pro-
cess (MDP) [7, 13].

In many applications, the state of the world is not directly
observable by the agent, or observable but with noise.

Definition 4 (Patially Observable MDP) If the state =A6 of
the world is not totally observable to the agent. Instead,
there is an observation )U6 at time � that depends on the state
=�6 by an observation probability >?��)U6�MU=�6�� , the process is
called partially observable MDP or POMDP [7, 13].

In contrast, consider the following observation driven
Markov Decision Process.

Definition 5 (Type-1) Let )76$WYX and Z76$W\[ be the ob-
servations and outcome covariates (i.e., random vectors) at
time � , respectively. Let C]6 be the random vector of the
entire history:

CO6^� 8 )_61��)76HG�,`�K�!� �!��) @ �+Z76HG�,P�K�!� �!�+Z @ ;&�
If its conditional state transitional probability >?�L= 6 M
C 6 �
satisfies

>?�aZ_6bMPCO6��D�Q>?�aZ_6cM`R�6"�
where R+V is the last T observations:

R�6<� 8 )761��)_6HGI,B��� �!� �d)_6HG�V9�+Z76HG�,A��� �!�!�+Z_6HG�Ve;
as shown in Fig. 1, we call the process as the T -th order
Observation-driven Markov Decision Process (MDP)[4].
The Type-1 mental architecture is a T -th order Observation-
driven MDP (ODMDP)).

In the developmental ODMDP, the random observations in
R�6 across time ���f�_�K����� �!�!��� are the source from which the
agent automatically generates states in the form of clusters



RbW � , where
�

consists of all possible observations of the
last contexts

� � 8 RS6 Me�����1; . The predicted consequence
Z 6 consists of predicted action 2 6 and the predicted value � 6 ,
Z 6 � � 2 6 ��� 6 � .

The following are the major differences between a
POMDP[7, 13] (or HMM[11]) and an ODMDP:

1. The POMDP models a part of the world using hand-
designed states. A state corresponds to an object or
event of the modeled part of the world (e.g., a corner).
The ODMDP models observed sensory space. Each
state corresponds to an observation of the environment
(e.g., a view of the corner with other background ob-
jects).

2. The states = 6 of POMDP are hand-designed but the
states of ODMDP can be automatically generated (de-
veloped). With the POMDP, the programmer must pro-
vide a simulation environment in which the meaning of
each state must be hand-designed (for estimating three
probability distributions). In contrast, ODMDP does
not need to require prior probability and all the prob-
ability distribution >?�aZ76 M R�6 � R�� can be estimated
incrementally on-the-fly.

3. In the POMDP, there are two layers of probability:
the state transition probability >?�L=A6 M )_61�(=�6HGI,-� and
the state observation probability >?�+)U6�M�=�6�� , while the
observation-driven MDP has only one layer of proba-
bility: >?� Z76 M/R�6�� , enabling a more efficient learning
algorithm.

In practice, we implemented the regressor � using
the Incremental Hierarchical Discriminant Regression
(IHDR) [17, 16]. Given any observed (last) context Rd����� , the
regressor � produces multiple consequences (primed con-
texts) Z , �+���4�K�!�!� �LZ V �+��� having a high probability:

8 Z , �����4��� �!�!�+Z V �����1;����]�+Rd�������-� (1)

Thus, the regressor � is a mapping from the space of the
last context

�
to the power set of [ :

��� �
	� '� � (2)

� is developed incrementally through the real-time experi-
ence.

Therefore, we need a value system �N����� that selects a
desirable context from multiple primed ones:

�N���]�+Rd�������d�����?� 8 Z , �+���4�LZ . �����4��� �!�!�+Z V �����1;P�D� Z � �+��� (3)

where ��� #�� T and T varies according to experi-
ence. The value function selects the best consequence
Z � �+��� that has the best value � � �+��� in Z � ����� � � 2 � �����-��� � �����d� .
For example, �N� 8 Z�,`�����-�+Z7.e�����-�K�!� �!�+ZJV9�����4;B� � Z7�(����� if # �
arg ����� 8 �&,`�����-���`.e�����4��� �!�!����V��+���1; .

The real-time Q-learning algorithm[15] can be used to
estimate the value of each consequence Z����+��� , # � ���('��K�!� �!�(T ,
and the agent selects the one (action) with the highest value.
Therefore, the value system � is a mapping from the power
set of [ to the space of [ :

���&' � 	� [ � (4)

3. Type-2: Observation-driven Selective MDP

The Type-1 mental architecture is sensory nonselective
in the sense that it is not able to actively select a subpart
of relevant information from the sensory frame (intra-modal
attention) or to attend a particular modality but not the other
(inter-modal attention).

Given a � -dimensional input vector ) , the attention can
be modeled by an attention mask � , where � is a � -
dimensional vector whose elements are either 0 or 1. Sup-
pose that the input vector is ) � �+)�,`��)U.A� and the mask
is � � ��� ,`��� .�� . Then the corresponding attended input
vector is )��D� )���� �3��) , � , �d) . � . � , where � denotes
vector pointwise product. Not all the masks are admissi-
ble. For example, the set of admissible masks consists of
circles with different radiuses � at different center positions
�! �@&�#"4@A� of the image frame. Then, the attention selection
effector has three degrees of freedom: �! A@e�$"4@&���9� .

Without loss of generality in our theoretical discussion,
we may assume, as shown in Fig. 1, that there are only
four addmissible masks for each image frame at time � ,
denoted by the upper attention square, the lower attention
square, and two trivial masks: no square is selected and
both squares are selected, respectively.

Definition 6 (Type-2) The Type-2 mental architecture is a
Type-1 architecture, with the addition of an attention selec-
tor %

�&('*)$� 	�+� �
as shown in Fig. 2, where & is the space of all possible pre-
attention contexts &3� 8 R��+���?MI�,�f�1; , ) � is the space of
all possible attention selections for

%
, and

�
is the space of

attention-masked last contexts.

In order to investigate the properties of different archi-
tectures, we define a concept called higher.

Definition 7 (Higher) Given a set - of tasks, we say that a
developmental architecture � . is higher than another devel-
opmental architecture � , , if given the same teaching envi-
ronment  , the architecture � . requires statistically fewer
teaching examples than � , , expected over the environment
 and over the tasks in - .

As a convention, we regard environment as part of the spec-
ification of a task. For example, a task is more challenging
if the environment of the task execution is uncontrolled.
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Figure 2. Progressive additions of architecture compo-
nents from Type-2 to Type-5. Type-2: adding

�
and ����� .

Type-3: Adding � and � ��� . Type-4: Adding 	 � and
primed sensation. The block marked with 
 is a delay
module, which introduces a unit-time delay. Type-5: De-
velopmental

�
, � , � and � .

Theorem 1 (Existence of higher architecture) There is
at least one class - of tasks and the associated teaching
environment  in which the Type-2 architecture is higher
than the Type-1 architecture.

Due to the limit of space, here only a sketch of proof is pro-
vided. Construct a set - of tasks whose goal is to classify
sensory information in set  (e.g., human body). Without
loss of generality, assume that at any time, only one of the
attention squares of sensor � 	�, contains an element (e.g.,
human body) in  and the other window does not (e.g., nat-
ural background that is free of human bodies). The Type-2
architecture enables the teacher to teach the agent to pay
attention to �
	�, , but the Type-1 architecture cannot.

It is not true that a higher architecture can learn faster
than a lower architecture in any setting for any tasks. If the
environment is such that the entire input vector ) ����� con-
tains only elements in  and nothing of the natural back-
ground (which is very rare in reality), then the attention se-
lection mechanism enabled by the Type-2 architecture does
not help to reduce the number of training examples.

4. Type-3: Observation-driven Selective Re-
hearsed MDP

The Type-2 architecture does not have a motor mapping�
. Therefore, it cannot autonomously rehearse an action

sequence to evaluate its consequences without actually car-
rying out the action sequence. The rehearse is autonomous

in that there is no pre-defined program segments that spec-
ify when and how to rehearse.

Definition 8 (Type-3) The Type-3 mental architecture is a
Type-2 mental architecture, with the addition of an action
releaser

�
: � �P[�'*)$� 	� [ �

as shown in Fig. 2, where [ is the space of all possible
predicted consequences, ) � is the space of all possible at-
tention selections for

�
.

The action releaser
�

is a special case of the more general
motor mapping (corresponding to the motor cortex) which
also generates representation for frequently practiced ac-
tion sequences (e.g., using the principal component anal-
ysis PCA or independent component analysis ICA) so that
smooth action sequences can be generated.

With a traditional MDP with hand-designed states, it is
possible to compute all the possible next states and perform
planning. The Q-learning method uses the estimated action
value �?�L=&� 2 � of action 2 at state = to select the best action2�� � �������������?�L=&� 2 � , from the set � of all the possible
actions. This best next action 2�� maximizes the expected
rewards in the future. This kind of approach has two fun-
damental problems. First, the value system is rigid. No
matter what value model is used (finite horizon, time dis-
count model, etc.), the agent cannot autonomously change
the way the value is determined[7, 13]. For example, if the
time discount model is used, the agent is short-sighted. It
prefers small rewards in the near further to faraway but im-
portant reward. Second, the agent is not able to learn to
predict events (not just value) using the learned experience.
For example, fed well and sleep well can be a reasonable
goal for a human infant, but a human adult has a more so-
phisticated value system.

The Type-3 architecture does not suffer from these limi-
tations. However, as long as the predicted action (e.g., drop
a cup) is released, the effect that it causes to the external
world will result (the broken cup). Can we design an ar-
chitecture that enables the robot to “consider” and “plan” a
significant amount of time ahead before it releases the ac-
tion?

5. Type-4: Observation-driven SASE MDP

Type-4 architecture is Self-Aware and Self-Effecting
(SASE). The term “self” here means the brain, instead of
the body of the agent.

Definition 9 (Awareness) The awareness of a task � in an
(internal and external) environment  by an agent � is the
capability of the agent to (1) sense various context states =
of task � from  and (2) recall the predicted multiple con-
texts (primed contexts) Z ���]�L=B� using the regressor � .



By definition, the agent must use its sensors, the entry
point of its sensory architecture (the input of

%
), to sense

the contexts. In the above definition for awareness, we con-
sider a particular � and an environment  . This is because
any awareness has a scope. A person who is aware of the
boiling temperature of water in a domain (e.g., in a normal
environment) may not necessarily be aware of the boiling
temperature of water in another domain (e.g., lower in a
low pressure environment). With the above definition, we
are ready to address the issue of self-awareness and self-
effecting.

Theorem 2 (Necessary conditions of self-awareness)
Suppose an agent is aware of its mental activities (sen-
sations and actions) about a task � in an environment  .
Then the following must be true: (1) It senses such mental
activities using its sensors. (2) It feeds the sensed signal
into its perceptual entry point just like that for external
sensors.

Proof: Point (1) is true because, according to the definition
for the awareness of an object, the agent must sense the ob-
ject using its sensors. Point (2) is true because the status
of the object must be sensed and fed into the entry point
for sensors for proper perception and recall of the primed
contexts.

�

Based on the last two theorems, let us examine the issue
of self-awareness more closely. If an agent runs a learning
algorithm (e.g., the Q-learning algorithm to be explained
later) but it does not sense the voluntary decision process
using its sensors which are linked to its entry point for sen-
sors, the agent is not aware of its own algorithm. For the
same reason, humans do not sense the way their primary
cortex works and, therefore, normally they are not aware of
their own earlier visual processing. However, the voluntary
part of the mental decision process does require a conscious,
willful decision.

The traditional model of agent has a fundamental flaw.
The model is for an agent that perceives only the external
environment and acts on the external environment. It does
not sense its internal “brain’s” activities. In other words,
its internal decision process is neither a target of its own
cognition nor a subject for the agent to explain when the
agent is sufficiently mature.

The human brain allows the thinker to sense what he is
thinking about without performing an overt action. For ex-
ample, visual attention is a self-aware and self-effecting in-
ternal action (see, e.g., Kandel, et al.[8], pp. 396 - 403).
Motivated by neuroscience, the mathematical model of the
self-aware and self-effecting (SASE) agent is defined as fol-
lows.

Definition 10 A self-aware and self-effecting (SASE) agent
has internal sensors �I� and internal effectors  � for this

External
sensors

External
effectors

Brain

Agent body

Internal
sensors

Internal
effectors

Internal environment

   External environment

Figure 3. A self-aware self-effecting (SASE) agent. It
interacts with not only the external environment but also its
own internal (brain) environment: the representation of the
brain itself.

internal (brain) environment, in addition to its external sen-
sors � 	 and external effectors  	 for its external environ-
ment (outside brain). The regressor � takes signals from � �
and �I	 and generates internal and external actions for ��
and  	 , respectively.

Fig. 3 shows the illustration of a SASE agent.
The major design principles for a SASE agent include:

1. A SASE agent must have a sensor for each of its vol-
untary external effectors, so that it can sense what each
effector is doing. For example, the muscle spindles
sense the tension of human muscles to tell the position
of the arms.

2. A SASE agent must have internal effectors and inter-
nal sensors for its voluntary internal effectors. For ex-
ample, it needs a set of internal attention effectors to
select the most relevant part of sensory information for
later processing, which eventually leads to voluntary
actions for attention selection.

3. A SASE agent needs pre-motor areas, where it stores
information about the control of the effectors, but the
signal in the pre-motor area is not sent to the effectors
unless an action release signal is issued. The effec-
tor signals in the pre-motor areas are also sensed by
internal sensors so that the robot can “talk to itself”
internally.

It is important to note that not all the internal brain rep-
resentations are sensed by the brain itself. Early processing
actions are typically not sensed.

Definition 11 (Type-4) The Type-4 mental architecture is
a Type-3 mental architecture, but additionally, the internal
voluntary decision is sensed by the internal sensors �5� and



the sensed signals are fed into the entry point of sensors,
i.e., the entry point of the attention selector

%
. In order

to recall the effects of the voluntary actions, not only the
expected reward value is estimated by the value system, but
also the primed context which includes not only the primed
action, but also the primed sensation.

The architecture illustrated in Fig. 2 is a Type-4 archi-
tecture. Two voluntary internal actions are modeled by ��S,
for attention selection, and by  �!. for action release. Both
internal actions are sensed by the internal (virtual) sensors
����, and �I� . , respectively. The rehearsed external action (not
released) is sensed by the virtual internal sensor �5� � .

The regressor � maps each attended context R W � to a
set of multiple primed contexts, from which the value sys-
tem selects a single primed context Z W [ . In other words,
the composite function of � followed by � gives a map-
ping: ��� � � � 	� [ . With a SASE agent, both external
context (sensed by � 	 ) and internal context (sensed by � � )
are available in R .

Through a consecutive time series � � �&�('9��� �!�!�(T , the
composite function ��� � performs a series of reasoning,
represented by the the regression sequence:

= � �d�+R+,`�+Z�,-�4�A�+RS.��+Z7.A�4��� �!� �A�+R�V �LZUV`�d� (5)

where each regression pair �+R � �LZ � � is an input-output pair of
the composite function ��� � , Z � ����� �]�+R � � , # � �&�('��K�!� �!�(T .
The link between two consecutive regression pairs can be
realized by two paths, the external path and the internal
path, denoted by � and # respectively. Symbolically, the
reasoning process can be represented by the following com-
posite reasoning sequence:

= �
�

�+R+,`�+ZJ,K�4��� �P,
#�,
	 ���+RS.��+ZU.��4��� �B.

#".�	 �K�!�!� �A�+R�V �LZUVP�4��� �PV
#�V�	�
(6)

where � �B�
#"��	 ��#<� �&�('9��� �!�!�(T

represents the parallel external and internal paths. Whether
the result of external and internal paths are taken into ac-
count at any time � by the regressor depends on the attention
selection in

%
.

Definition 12 (External and external reasoning process)
There are three types of reasoning processes, external,
internal, and mixed, corresponding to the attention in
which the attention module

%
attends to external, internal

or both, respectively.

From the above discussion, we have the following sum-
mary:

� Type-1 through Type-3 architectures allow the agent to
perform external reasoning processes, but not internal
reasoning as defined above.� A Type-4 architecture is able to execute external, inter-
nal, and mixed reasoning processes.

Theorem 3 The Type-4 architecture allows internal rea-
soning to realize the following kinds of learning (1) nonas-
sociative learning, (2) classical conditioning, and (3) in-
strumental conditioning.

Proof: First we prove the nonassociative learning[12]. The
nonassociative learning occurs when the agent is exposed
to stimulus because of the history of similar or dissimilar
stimuli. Sensitization and habituation are two well known
examples of nonassociative. In Eq. (6), the nonassociative
learning can be accomplished by the link �LR � �+Z � � realized
by the composition of regression � and the value system:
Z � � ��� �]�LR � � . The value system plays a central role. For
example, the action (e.g., looking at another direction) that
is predicted to generate more novel stimuli then alternative
action (e.g., continue looking after repeated exposure to the
similar stimuli), the former action is selected by the value
system � from the alternative actions predicted by � .

Next, we prove the case for classical conditioning. In
classical conditioning, a conditional stimulus CS (e.g., tone)
is repeatedly paired with unconditional stimulus US (e.g.,
food) that elicits unconditional response UR (e.g., saliva-
tion). In this case, R�� � CS, RS���5, � US, and Z7���5, �
salivation, for all the time instances # where the event oc-
curs. The Q-learning used by the value system � back-
propagates repeatedly the primed action Z����5, through time
# , so that R � primes Z � � salivation even in the absence of
R ��� , .

Finally, we establish the case for instrumental condition-
ing. When RS� stimulus is present, two actions 2 , and 2 . are
predicted, � 2 ,P� 2 .A� � �]�+RS��� . According to past experience,2 , has a low value and 2 . has a higher value, using, e.g.,
Q-learning by the value system � . Thus, 2 . is selected by
� .

�
.

For a realization of the nonassociative learning, the clas-
sical conditioning, and the instrumental conditioning, using
the Type-4 architecture, see Huang & Weng [6], Zhang &
Weng [20], and Huang & Weng [6], respectively. The in-
strumental conditioning has been known as reinforcement
learning in the machine learning community and has been
very widely studied using the traditional MDP architecture
[7] [13]. A major novelty here is that a single architecture
realizes all three types of learning.

There are many more complex internal mental activi-
ties. We addresses a typical complex activity known as au-
tonomous planning. Planning has been conducted exten-
sively using the traditional MDP architecture, based on the



Q-learning mechanism (i.e., time discounted value propaga-
tion) [15]. However, Q-learning based planning has a ma-
jor drawback: It prefers immediate small rewards to future
large rewards. One can program the planner in such a way
so that only the final goal produces a reward and interme-
diate goals do not. However, such a task-specific setting is
too inflexible for the general setting of mental development,
where various rewards are generated from the real world at
different stages and it is impossible for the programmer to
write a different program for a different planning task (due
to the task non-specific nature of autonomous mental devel-
opment Weng et al. [18].)

Theorem 4 The Type-4 architecture allows internal rea-
soning to realize autonomous planning.

Proof. Autonomous planning requires first an accumulation
of experiences so that alternative condition-action pairs are
learned. Suppose that there are two plans according to the
experiences: The execution path of the plan (a) is recalled
as:

�LR+,P�LZ � � ,-�4���LR�� � .&�+Z � � .K�4��� �!� �A�+R�� � �d�+Z � � �L�d�
and that of the plan (b) is recalled as:

�LR+,B�+Z � � ,-�4�A�+R � � .`�LZ � � .��-�K�!� �!���LR � � � �+Z � � � �d�4�
Both lead to a completion of the task. Both plans are re-
called sequentially using only the internal path, # path in-
stead of � in Eq. (6). Finally the value of Z � � � is compared
with that of Z � � � . The value system decides which value
is better and so chooses the corresponding plan (a) or (b).
The association of 2 to the primed action in Z � � , and � with
that in Z � � , is represented by “talking to itself:” For exam-
ple, the selected plan in Z � � � as part of the last context in R ,
which primes the first action in Z � � , . The similar process
takes place for plan (b).

�
.

I expect that early demonstration of autonomous plan-
ning is possible in a restricted (simplified) natural setting.
Anywhere any-time planning in uncontrolled natural set-
tings is possible after a significant amount of “living ex-
perience.”

One might think at this point that the internal process
looks like “thinking.” However, the internal process de-
fined here is not equivalent to autonomous thinking that is
fundamental to human intelligence. A necessary piece for
thinking is development.

6. Type-5: Developmental observation-driven
SASE MDP

Definition 13 (DOSASE MDP) The developmental
observation-drive SASE MDP (DOSASE MDP) has an
architecture Type-4 or higher, that satisfies the following
requirements:

1. During the programming time, the tasks that the agent
will learn are unknown to the programmer.

2. The agent ������� starts to run at � �f� under the guid-
ance of its developmental program >�� . After the birth,
the brain of the agent is not accessible to humans.

3. Human teachers can only affect the agent ������� as a
part of its environment through its sensors and effec-
tors recursively: At any time � � ���d� �3�&�K�!� � , its ob-
servation vector at time � is the last context R������ . The
output from ���+��� at time � is its selected primed con-
text Z5�+����W [ . ���+�DEY�A� is updated to ���+��� , including%

, � (and � ),
�

, and � .

In contrast with the traditional MDP, the DOSASE MDP
�+� �����4�(>��P� is developmental in the sense that the developing
program >�� does not require a given estimate of the a priori
probability distribution >?�+RL� for all R^W � , nor even a given
set of states. Consequently, >�� does not require a given
estimate for the state observation probability >?�LR�6 M<R�6HGI,-�
nor that for the state observation probability >?��)J6bMPR�6�� .

When the number of states is very large, it is practi-
cally sufficient to keep only track of the states that have
a high probability, instead of estimating probability of all
the states, which is too computationally expensive to reach
the real-time speed. In HMM, this technique is called beam
forming.

7. Type-6: Multi-level DOSASE MDP

The Type-5 architecture has only one sensorimotor level,
although each mapping

%
, � , and

�
have multiple levels

in their own internal structure. We call it a sensorimotor
level because the pathway from

%
through � up to

�
cor-

responds to a pathway from sensory input to motor output.
The primed context of such a level can be fed into another
sensorimotor level for the following reasons:

1. Abstraction. While a low level is tightly linked to fine
time steps, the higher levels become more “abstract,”
in the sense that the higher level clusters of context
states are coarser in temporal granularity and grouped
more according to actively attended events.

2. Self-generated context: Allow voluntarily generated
motor actions to serve as context input to the higher
level. Thus the agent is able to “talk to itself” at a
more abstract level.

3. Enabling a higher degree of sensory integration. It is
not practical to integrate all the receptors in a human
body by a single attention selection module

%
, because

otherwise, e.g., the attention is too complex.
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Figure 4. The Type-6 architecture.

Definition 14 (Type-6) The Type-6 mental architecture is
composed of several levels of Type-5 architecture. The
primed contexts from a lower-level system is fed into the
sensory input of the higher-level system.

Fig. 4 illustrates the Type-6 architecture. The input to the
attention selector

% � .�� at level 2 includes the primed context
Z5����� � ��)����+���4� 2 �������d� from level 1, where )�������� and 2 �9�+���
are primed sensation and primed action, respectively. One
or multiple levels can feed their primed contexts into the
next higher level for sensory integration.

We have systematically introduced six types of archi-
tectures. Although the order at which new capabilities are
added to the previous type is primarily a design choice, the
order used here is motivated by a relatively large payoff in
capability with a minimal addition of the architecture com-
plexity.

8. Conclusions

The observation-driven MDP (Type-1), seems more
suited for autonomous mental development than the tra-
ditional MDP. This paper provides Type-1, through Type-
5 (DOSASE MDP), up to Type-6 (multilevel DOSASE
MDP). A DOSASE MDP can perform nonassociative learn-
ing, classical conditioning, instrumental conditioning and
planning. The realization of higher capabilities has yet to
be demonstrated.
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