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Abstract 

An open question in neuroscience is how animals com-
bine the various attributes of stimuli in their environments 
into coherent perceptual categories and how they dis-
criminate among objects in a scene. Testing a theory of 
visual binding would require  the simultaneous study of 
brain function at many levels of organization. Present day 
electrophysiology only allows the recording of at most 
hundreds of neurons while an animal is performing a 
behavioral task. Because of this limitation and the sheer 
complexity of the nervous system, computational modeling 
has become essential for investigating theories of brain 
function. Accordingly, our group has constructed a series 
of brain-based devices (BBDs); i.e. physical devices with 
simulated nervous systems that guide behavior, to serve 
as heuristic bases for testing theories of brain function. 
Unlike animal models, BBDs permit analysis of activity at 
all levels of its nervous system as the device behaves in its 
real environment. We present a possible solution to the 
binding problem based on synchronous activity across 
neuronal groups brought about by reentrant connectivity. 
We first show the sufficiency of this theory in a laboratory 
setting and then demonstrate that these principles can be 
transferred to a more real-world application: robots 
capable of playing a game of soccer with humans. 

1. Introduction 

Animals effortlessly combine the various attributes of 
visual stimuli to form coherent perceptual categories and 
to discriminate among multiple objects in a scene. Yet the 
visual brain is functionally segregated: Separate cortical 
regions are specialized to respond to features such as 
shape, color, and object motion, and no single region has 
superordinate control. This poses the so-called binding 
problem [1]: How do these functionally segregated re-
gions coordinate their activities to link various features of 
individual objects while distinguishing among different 
objects? Most proposed mechanisms for solving the bind-
ing problem fall into one of two general classes: 1) bind-
ing through the influence of attentional processes, execu-
tive mechanisms, or superordinate maps [2, 3]. 2) binding 

through the selective synchronization of dynamically 
formed neuronal groups [4-6]. Advocates of neural syn-
chrony suggest that binding is an automatic, dynamic, and 
pre-attentive process arising from low-level neural dy-
namics. For example, the linkage of neuronal groups by 
reentry, the recursive exchange of signals across mu ltiple, 
parallel and reciprocal connections [7], can lead to selec-
tive synchronization [8-11]. Synchronization of activity 
among neuronal groups can form coherent circuits corre-
sponding to perceptual categories [8]. A fundamental 
challenge for proponents of neural synchrony is to show 
how such emergent functional circuits contribute to an 
organism’s adaptive behavior, especially in situations that 
require preferential behavior towards one object among 
many in a scene. 

Elucidation of brain mechanisms underlying behavior, 
such as visual binding followed by discriminatory action, 
requires simultaneous measurements across multiple 
levels. The heuristic value of synthetic modeling using 
brain-based devices (BBDs), which are described here, is 
supported by the fact that such types of measurements are 
difficult to obtain and compare in living animals. Given 
the successful construction of BBDs [12-14], we observe 
their overall behavior while simu ltaneously recording the 
state of all components of their simulated nervous sys-
tems. Since our purpose is to test theories of real nervous 
systems in order to arrive at a better understanding of 
brain function, we base the BBD’s organization on real 
neuroanatomy and physiology. 

We argue that a BBD should be constrained by the fol-
lowing design principles: 1) The device needs to engage 
in a behavioral task. 2) The device’s behavior must be 
controlled by a simulated nervous system having a design 
that reflects the brain’s architecture and dynamics. 3) The 
device needs to be situated in the real-world [15, 16]. 4) 
The behavior of the device and the activity of its simu-
lated nervous system must allow comparisons with em-
pirical data. Because of these constraints, BBD simula-
tions tend to require large-scale networks of neuronal 
elements that reflect vertebrate brain architecture and 
dynamics, high performance computing to run the net-
work in real-time, and the engineering of specialized 
physical devices to embody the network. 



BBDs are not programmed by instructions like com-
puters, but instead, like biological systems, they operate 
according to selectional principles that allow them to 
adapt to the environment [7]. Their design, which pos-
sesses neuroanatomical structure and large-scale neural 
dynamics, differs fundamentally from that of robots. Ro-
botic approaches using classical artificial intelligence are 
based on data representation, rule-driven algorithms, and 
the manipulation of formal symbol systems.  

BBDs must have a morphology or body plan that al-
lows for active exploration in a real environment with a 
brain simulation controlling the BBD’s behavior. Changes 
in the nervous system that result in lasting modifications 
of the device’s behavior are realized through a neuro-
modulatory value system that signals the salience of envi-
ronmental cues triggering broad changes to the BBD’s 
nervous system. These features yield a system that gener-
alizes signals from the environment into perceptual cate-
gories and adapts its behavior so that it becomes increas-
ingly successful in coping with its environment. The 
BBDs have been designated the Darwin series of auto-
mata. Over the last 12 years, various Darwin automata 
have been shown to develop perceptual categorization, 
invariant visual object recognition, integration of scenes 
containing multiple visual shapes with overlapping fea-
tures, fusion of different sensory modalities, and learning 
in the form of operant conditioning [12-14, 17, 18]. 

In this paper we describe two recent BBDs that address 
the problem of visual binding, scene segmentation, and 
motor behavior. First, we describe Darwin VIII, a BBD 
that demonstrated visual binding through synchronous 
activity across cortical areas brought about by reentrant 
signalling. Second, we apply the principles of Darwin 
VIII to a novel platform, the Segway Robotic Mobility 
Platform (RMP), in a dynamic environment, namely a 
soccer game. 

2. Visual binding in a laboratory setting. 

Darwin VIII, a BBD incorporating an extensive visual 
cortical neural simulation, demonstrated the ability to 
parse a scene composed of ambiguous visual shapes into 
separate and coherent perceptual categories. It solved the 
so-called binding problem, that is, it linked responses in 
different brain areas and modalities to yield selective 
responses to percepts in the absence of any superordinate 
control from a master or executive brain area [1]. The 
behavior of Darwin VIII exploited interaction between 
neural areas, and revealed that reentrant activity (i.e. on-
going reciprocal excitatory activity brought about by 
connections between neuronal units in different neural 
areas) is sufficient for recognizing and distinguishing 
among multiple objects in a scene. 

Darwin VIII  was designed to demonstrate visual cate-
gorization and selective conditioning in a rich environ-

ment [18]. This BBD had a camera for vision, micro-
phones to pick up auditory cues from the environment, 
and infrared (IR) sensors to detect the boundaries of the 
environment.  

2.1. Experimental Setup 

Figure 1 shows Darwin VIII in its environment, which 
consists of an enclosed area with various shapes hung on 
two walls . Near the walls with visual shapes, infrared 
beams we re set up that control speakers (see Figure 1A). 
When Darwin VIII’s movement broke an IR beam, a tone 
was emitted. Darwin VIII reflexively oriented towards the 
sound source and gradually came to associate the sound 
with the object it saw near the sound source. After condi-
tioning, the sound is no longer necessary; Darwin VIII 
approaches visual objects that have become associated 
with preferred sounds. 

 
Figure 1. Experimental setup for Darwin VIII. A. 
Darwin VIII views objects on two of the walls of 
an arena. The area Darwin VIII explores is con-
strained by a boundary of reflective construction 
paper. Detection of this boundary by infrared 
sensor triggers a reflexive turn. When Darwin VIII 
breaks the beam from the IR emitter to the IR 
sensor, a tone is emitted from the speaker. B. 
Photograph of the experimental environment. 

2.2. Simulated Nervous System  

Darwin VIII’s simulated nervous system contains areas 
corresponding to cortical and sub-cortical areas in the 
vertebrate nervous system (see Figure 2). Specifically, 
Darwin VIII’s brain includes simulated cortical areas of 



the visual system that respond to shape and color 
(V1àV2àV4àIT), a motor system (C), an auditory 
system (Mic-leftàAleft, Mic-rightàAright), and a value 
system (S). Activity in S is analogous to that of ascending 
neuromodulatory systems in that it is triggered by salient 
events, influences large regions of the simulated nervous 
system, and persists for several cycles [19]. Due to its 
projection to the tracking area C, area S has a direct influ-
ence on behavior.  

Neuronal units in Darwin VIII roughly correspond to 
the activity of 100 real neurons over 100 ms. The neu-
ronal units have a firing phase parameter, which specifies 
the relative timing of this activity within each simulation 
cycle (for details, see [8, 18]). This mo deling feature 
provides temporal specificity without incurring the com-
putational costs associated with modeling spiking neurons 
in real time. Simulated synaptic connections follow 
known vertebrate neuroanatomical projections (arrows in 
Figure 2) and include extensive reentrant connectivity 
within and among neural areas. In Darwin VIII, reentrant 
connections among neuronal units encourage phase co-
herence and therefore lead to the emergence of neural 
synchrony. 

Synaptic strengths are subject to modification accord-
ing to a synaptic rule that depends on the phase and activi-
ties of the pre- and postsynaptic neuronal units. Plastic 
synaptic connections are either value-independent (see 
ITàIT in Figure 2) or value-dependent (see ITàS, ITàC 
in Figure 2). Both of these rules are based on a modified 
BCM learning rule [20] in which thresholds defining the 
regions of depression and potentiation are a function of 
the phase difference between the presynaptic and posts y-
naptic neuronal units  (for details, see [18]). Synapses 
between neuronal units with strongly correlated firing 
phases are potentiated and synapses between neuronal 
units with weakly correlated phases are depressed; the 
magnitude of change is determined as well by pre- and 
postsynaptic activities. This learning rule is similar to a 
spike-time dependent plasticity rule [21] applied to jit-
tered spike trains where the region of potentiation has a 
high peak and a thin tail, and the region of depression has 
a comparatively small peak and fat tail [22].     

Value-dependent synaptic plasticity differs from the 
value-independent rule in that an additional term, based 
on the activity and phase of the value system, modulates 
the synaptic strength changes. Synaptic connections ter-
minating on neuronal units that are in phase with the 
value system are potentiated, and connections terminating 
on units out of phase with the value system are depressed. 

2.3. Image Processing and Computation 

The CCD camera sent 320x240 pixel RGB video im-
ages, via an RF transmitter, to a frame grabber attached to 
one of the workstations running the neural simulation. 

The image was spatially averaged to an 80x60 pixel im-
age. Gabor filters were used to detect edges of different 
orientations (45, 90, 135, 180 degrees). The output of the 
Gabor function mapped directly onto the neuronal units of 
the corresponding V1 sub-area. Color filters (red positive 
center with a green negative surround, red negative center 
with a green positive surround) were applied to the image. 
The outputs of the color filters were mapped directly onto 
the neuronal units of V1-Red and V1-Green. V1 neuronal 
units projected retinotopically to neuronal units in V2 (see 
Figure 2). 

Computation in the Darwin VIII simulation was car-
ried out on a Beowulf cluster with 12 1.4 GHz Pentium 
IV processors using MPI. A simulation cycle, in which all 
the neuronal units and plastic synaptic connections were 
updated, took approximately 100 ms. 

 

Figure 2. Global schematic of the regional and 
functional neuroanatomy of Darwin VIII. In the 
version used in the present experiments, the 
simulated nervous system contained 28 neu-
ronal areas, 53,450 neuronal units, and approxi-
mately 1.7 million synaptic connections. The 
gray ellipses denote different neural areas. Ar-
rows between the areas denote projections from 
one area to another. Projections marked with an 
‘X’ are removed during lesion experiments. 
Tracking commands were issued to NOMAD’s 
wheels based on activity in area C. 

When the BBD triggers a speaker as it approaches a 
visual object, the tone emitted by the speaker activates its 
value system. At this time all of the value-dependent 
connections between neural areas (see value-dependent 



projections in Figure 2) are subject to value-dependent 
modification. Specifically, the changes dictated by the 
BCM synaptic change rule are further modulated by the 
average activity of the value system (area S in Figure 2).  

As a consequence of these anatomical and dynamical 
characteristics, Darwin VIII autonomously approaches 
and views multiple visual shapes containing overlapping 
features (e.g. red squares, red diamonds, green squares 
and green diamonds) and can be trained to prefer one of 
these shapes by associating that shape with a positive-
value tone (see Figure 1). It demo nstrates this preference 
by orienting toward the preferred object.  

2.4. Experimental Results  

When confronted by a pair of these shapes, Darwin 
VIII learns successfully to track towards the preferred 
object, designated the target, and to avoid the other ob-
jects, designated the distracters. At first, this orientation is 
in response to the tone, but after approximately 10-15 
minutes of viewing pairs of objects, the visual pattern 
alone is enough to elicit this preference. 

All subjects successfully track the four different targets 
over 80% of the time (Figure 3A). Successful perform-
ance on this task is not trivial. Targets and distracters 
appear in the visual field at many different scales and at 
many different positions as Darwin VIII explores its envi-
ronment. Moreover, because of shared properties, targets 
cannot be reliably distinguished from distracters on the 
basis of color or shape alone. Thus, the behavior of Dar-
win VIII demonstrates visual categorization and selective 
conditioning in a rich visual environment.  

To investigate the importance of the presence of reen-
trant connections in the model, certain interareal reentrant 
connections were lesioned at different stages of the ex-
perimental paradigm. In one case, previously trained 
subjects were retested after lesioning. In a second, reen-
trant connections were lesioned in both training and tes t-
ing stages . Lesions were applied to a subset of interareal 
excitatory reentrant connections (projections marked with 
an ‘X’ in Figure 2), which had the effect of transforming 
the simulated nervous system into a ‘feed-forward’ model 
of visual proces sing. To compensate for the reduction in 
activity due to these lesions, neuronal unit outputs in areas 
V2 and V4 were amplified. Figure 3B shows that subjects 
with intact reentrant connections performed significantly 
better than either lesioned group. The decrease in per-
formance observed in the absence of reentry indicates that 
reentrant connections are essential for behavior above 
chance in the discrimination task. 

These observations indicate that reentrant connectivity 
is necessary for the reliable discrimination of targets from 
visually similar distracters. In contrast to previous mo dels 
of target selection, which required external intervention or 
an artificial environment [23, 24], Darwin VIII autono-

mously solved the binding problem in a rich environment 
even in the face of self-movement that generated changes 
in the size and location of visual stimuli. 

 
Figure 3. Darwin VIII behavior following condi-
tioning. Three separate Darwin VIII subjects were 
conditioned to prefer one of 4 target shapes (‘rd’ 
= red diamond, ‘rs’ = red square, ‘gs’ = green 
square, ‘gd’ = green diamond). Activity in V2 
areas was used to assess the percentage of time 
for which NOMAD’s visual field was centered on 
a particular visual shape. Bars in both graphs 
represent the mean percentage tracking time 
with error bars denoting the standard deviation. 
A. Darwin VIII subjects with intact reentrant con-
nections tracked the targets (white bars) signifi-
cantly more than the distracters (gray bars) for 
each target shape, averaging over all ap-
proaches (asterisks denote p < 0.01 using a 
paired sample nonparametric sign test). B. Com-
parison of intact subjects with lesioned subjects. 
White bars indicate target tracking performance 
of subjects with reentrant connections intact, 
light gray bars indicate subjects with lesions 
only during testing, and black bars indicate sub-
jects with lesions during both training and test-
ing. Intact subjects tracked significantly better 
than both lesion groups (Asterisks denote p < 
0.01 using the Wilcoxon ranksum test). 

During the behavior of an intact Darwin VIII subject, 
we observed circuits comprising synchronously active 
neuronal groups distributed throughout different areas in 
the simulated nervous system. Multiple objects were dis-
tinguishable by the differences in phase between the cor-
responding active circuits. A snapshot of Darwin VIII’s 
neural responses is given in Figure 4, in which the device 
is approaching a red diamond target and a green diamond 
distracter towards the end of a training session. Each pixel 
in each neural area represents the activity (brightness) and 
phase (color) of a single neuronal unit. The figure shows 
two dynamic neural circuits differentiated by their distinct 
phases which were elicited respectively by the red dia-
mond and the green diamond. As shown in the figure, 
Darwin VIII had not yet reached the beam that triggers 
the speaker to emit a tone. The activity of area S was 



nonetheless in phase with the activity in areas V2 and V4 
corresponding to the target, and is therefore predictive of 
the target’s  saliency or value. Area IT has two patterns of 
activity, indicated by the two different phase colors, 
which reflect two perceptual categories. The increased 
activity in area C on the side of the target is causing Dar-
win VIII to orient towards the target (i.e. the red dia-
mond). 

 
Figure 4. Snapshot of Darwin VIII’s neuronal 
unit activity after approximately 10 minutes of 
conditioning. Darwin VIII is approaching a red 
diamond target (left) and a green diamond dis-
tracter (right) towards the end of a training se s-
sion. Darwin VIII has not yet broken the beam 
that triggers the sound from the speakers lo-
cated on the left side of the floor. The panels 
next to Darwin VIII show the activity and phase 
of selected neural areas (top row; V2-red, V2-
green, V2-vertical, V2-diagonal, second row; V4-
red, V4-green, V4-vertical, V4-diagonal, third row 
(to the right of Darwin VIII); IT, fourth row (to the 
right of Darwin VIII); C and S). Each pixel in the 
selected neural area represents a neuronal unit; 
the activity is normalized from no activity (black) 
to maximum activity (bright colors), and the 
phase is indicated by the color of the pixel (col-
ors were chosen from a pseudocolor map, there 
is no connection between the color of the stimu-
lus object and the color representing the phases 
of neuronal responses). The neuronal units re-
sponding to the attributes of the red diamond 
share a common phase (red-orange color), 
whereas the neuronal units responding to the 
green diamond share a different phase (blue-
green color). 

Object recognition and perceptual categorization were  
unsupervised. The simulated nervous system of a given 
subject developed distinct patterns of activity for each 
object it observed based on its own experience. Because 
images of the visual objects varied considerably in size 
and position as Darwin VIII explored its enclosure, suc-

cessful discrimination required invariant object recogni-
tion. Darwin VIII’s response to objects was position and 
scale invariant; it responded reliably to target images 
which appeared within ±20-degrees of the center field of 
view (the range of the visual field was approximately 
±35-degrees) and as the apparent target size ranged from 
8-degrees to 27-degrees of visual angle. This invariance 
was achieved due to generalization of a continuous stream 
of input due to self-movement. 

The key mechanisms incorporated into Darwin VIII 
are reentrant connections within and among areas, neu-
ronal units with a mean firing rate and a relative firing 
phase, and a value system modulating synaptic plasticity. 
The operation of these mechanisms, in conjunction with 
the sensorimotor correlations generated by self-motion, 
enable Darwin VIII to categorize visual objects, bind the 
features of visual objects, segment a scene, and demo n-
strate selective behavior in a rich real-world environment. 

Our results are consistent with the hypothesis that vis-
ual binding results from the dynamic synchronization of 
neural activity mediated by reentrant connections among 
many dispersed neural areas. The performance of Darwin 
VIII suggests that specific timing relations and firing rates 
can act in a complementary mode to regulate behavior, 
and that synchrony among groups of neurons, as distinct 
from synchrony between pairs of individual neurons, may 
play a significant role in adaptive neural function. 

3. Brain-Based Device Playing Soccer  

Recently, we applied the visual binding and scene 
segmentation model of Darwin VIII to a BBD that can 
play soccer in both indoor and outdoor environments 
under varying lighting conditions and surfaces . The plat-
form for this device is  based on a modification of the 
Segway balancing technology and allows people on Seg-
way Human Transporters (HT) to interact with Segway 
RMP robots (http://www.segway.com/segway/rmp/). The 
rules for this game are currently under development (see 
[25]) and a new league based on the Segways will be 
proposed for RoboCup 2005 (http://www.robocup.org). 
The rules will dictate that the BBD have the ability to 
both catch and kick a ball and also that that all sensing, 
actuating, and computing are local to the device (see Fig-
ure 5). 

The neural simulation constructed for segmenting a 
soccer scene used the same principles of image process-
ing, visual categorization, reentrant signalling and value-
dependent learning as our previous Darwin automata. A 
high-level schematic of the neural architecture is given in 
Figure 6.  

 



 

Figure 5. Brain-based soccer playing device 
based on the Segway RMP balancing platform. 
The BBD neural simulation receives sensory 
input from a CCD camera, IR sensors used for 
ball detection and obstacle avoidance, and 
odometry from the RMP. The simulation outputs 
to a camera pan-tilt unit, solenoids to capture the 
ball, solenoids to kick the ball, and motor com-
mands to the RMP wheels.  

Since many of the key elements of the soccer scene 
were pre -specified by the rules, certain neural areas were 
dedicated to responding to objects such as the ball, goal 
post, and teammate. Each of these areas had neuronal 
units that responded selectively to attributes of the object 
(e.g. Goal neuronal units were active when pre-synaptic 
neuronal units with similar receptive fields in areas V2-
Green, V2-Yellow, and V2-Horizontal neuronal units were 
active). Activity in these object detection areas triggered 
motor actions (e.g. activity in Goal triggered kicking the 
soccer ball). 

Because the mapping from visual ball recognition to 
the Segway RMP wheel motions was non-linear and com-
plex, value-dependent plasticity was used to learn this 
mapping (see value-dependent learning projections in 
Figure 6). A form of temporal difference learning was 
developed in which value was increased when the number 
of active neuronal units in the Ball neural area increased 
and the activity of Ball neuronal units that respond to the 
center of device’s field of view increased. This learning 
rule had the effects of potentiating BallàM and MECàM 
connections when a motor movement brought the ball 
closer to the device or of depressing connections due to 
erroneous movements away from the ball (see Figure 6). 

Training the BBD to effectively track a soccer ball 
through value-dependent plasticity took approximately 
three minutes. In the first twenty seconds, movements 
were slow and the device’s camera did not stay centered 
on the ball. By the final twenty seconds, ball tracking was 
fast and the device’s camera stayed fixated on the ball. 
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Figure 6. Schematic of the neural simulation 
architecture used for the Brain-base d soccer 
playing device. Visual areas and their connec-
tivity are similar to that of Darwin VIII. Neural 
areas Ball, Goal, and TeamMate respond specifi-
cally to those key objects on a soccer field and 
cause reflexive motor actions such as moving 
the Segway RMP or capturing and kicking the 
soccer ball. Ball tracking was achieved via plas-
tic connections from the Ball and motor effer-
ence copy (MEC) areas to the motorneurons (M). 

 

 

 

 
Figure 7. Goal shooting sequence. In the top 
panel, the BBD recognizes and acquires the soc-
cer ball and then centers its gaze between the 
two goal posts. In the bottom two panels, the 
BBD kicks the ball between the goal posts.  

Kicking to a teammate or the goal was achieved by the 
device recognizing the appropriate object, centering the 
object on its camera, and then kicking the ball (see Figure 
7). Reentrant connections between neural areas facilitated 
dynamic synchronization, and color constancy [26];  al-



lowing the BBD to recognize objects in a noisy environ-
ment under non-uniform lighting conditions (see Figure 
8). 

 
Figure 8. Snapshot of the BBD’s camera input 
and selected areas in the neural simulation just 
prior to passing to a teammate. The camera input 
is sub-sampled to 60x80 pixels before process-
ing. The activity and phase  representation in the 
neural areas is the same as depicted in Figure 4.  

The soccer playing BBD has successfully performed 
key elements of soccer playing; ball chasing, passing back 
and forth between itself and a human teammate on a Seg-
way HT, and goal kicking. Video clips of the devices 
soccer playing capabilities can be found at: 
http://www.nsi.edu/nomad/segway.  

4. DISCUSSION 

Higher brain functions depend on the cooperative ac-
tivity of an entire nervous system, reflecting its morphol-
ogy, its dynamics, and its interaction with the phenotype 
and the environment. BBDs are designed to incorporate 
these attributes to allow tests of the self-sufficiency of 
such theories of brain function. We have demonstrated 
that BBDs can address many difficult tasks, without in-
struction or intervention, such as invariant object recogni-
tion [14], visual binding of objects in a scene [18], and 
texture discrimination using whiskers [17]. Like the brain, 
these BBDs operate according to selectional principles 
through which they form categorical memory, associate 
categories with innate value, and adapt to novel environ-
ments. These devices may provide the groundwork for the 
development of intelligent machines that follow neurobio-
logical rather than computational principles in their con-
struction. 

We designed BBDs to simultaneously test parallel 
brain functions that could not presently be examined in 
any single animal in the laboratory. The BBDs were de-
signed to yield data, in the form of neuronal activities in 

different brain regions that could be directly compared 
with experimental data. Equally important in the design is 
that a BBD must demonstrate adaptive behavior and this 
behavior must be measurable by an observer. The BBD’s 
neural model, by necessity, is developed at a systems 
level, in which the structure of the brain and its different 
regions gives rise to adaptive behavior. Although the 
devices are still too simple to make direct comparisons to 
neurophysiology, they can make predictions about the 
neuroanatomical and dynamical constraints that subserve 
adaptive behavior.  

Any model of brain function must not only take into 
consideration the structure of different brain regions, but 
must also pay attention to the connectivity within and 
between these brain areas. Brain function is more than the 
activity of disparate regions; it is the interaction between 
these areas that is crucial, as we have shown in Darwin 
VIII and the soccer playing BBD using the Segway. Thus, 
brains are defined by a distinct neuroanatomy in which 
there are areas of special function, which are defined by 
their connectivity to sensory input, motor output, and to 
each other.  

Brains do not function in isolation; rather are tightly 
coupled to the organism’s morphology, history, and envi-
ronment. Therefore, our brain models are embodied in a 
physical device and explore a real as opposed to a simu-
lated environment. The real environment is required for 
two reasons. First, simulating an environment can intro-
duce unwanted and unintentional biases in a model. For 
example, a computer generated object presented to a vi-
sion model already has its shape and segmentation de-
fined by the mo deler and is directly presented to the 
model, whereas a device that views an object hanging on 
a wall has to discern the shape and figure from ground by 
segmentation based on its active vision. Second, real 
environments are rich, multimodal, and noisy. An artifi-
cial design of such an environment would be computa-
tionally intensive and difficult to simulate. All these inter-
esting features of the environment come for “free” when 
we place the BBD in the real world. The modeler is freed 
from simulating an environment and can concentrate on 
the development of a device that can actively explore the 
real world. 

The advantage of a synthetic model is that these meas-
urements can be carried out in every neuron and synapse 
of the BBD’s nervous system during the acquisition and 
recall of a behavior. To be effective,  researchers using 
synthetic models need to analyze their data in such a way 
that they can compare their results to empirical data. By 
analyzing the neural dynamics of the model (i.e. spike 
rates, correlations between areas, neural dynamics and 
prediction), and choosing a behavioral paradigm similar 
to those used when studying behaving animals (i.e. mazes, 
conditioning paradigms, decision-making tasks, etc.), the 
modeler can directly compare the BBD’s behavior with 



the results of psychological and neurophysiological ex-
periments. This places the burden on modelers to include 
sufficient complexity in their models so that these psycho-
logical and physiological metrics can be compared. 

We have obtained a number of insights and made sev-
eral predictions based on the results of experiments with 
BBDs. In Darwin VIII, the model suggests that synchrony 
between widely separated neural areas may play a key 
role in solving the binding problem and demonstrates the 
importance of reentrant connections in facilitating binding 
through synchrony. The observed behavior demonstrates 
that binding through synchrony is feasible in an unlabeled 
real-world environment in which objects are constantly 
changing in size and position. 

The development of adaptive and autonomous behav-
ior by BBDs is novel in its neurally based approach and 
has implications for the construction of intelligent ma-
chines. The design and construction of such behaving 
devices based on principles of nervous systems may have 
much to offer to basic understanding and practical appli-
cations. 
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