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Abstract

A developing system must be able to learn new things
without forgetting what it has learned before. It should be
capable of reacting in different way to the same stimuli in
different contexts. Context sensitive reinforcement learning,
which parallels some of the functions of the basal ganglia,
is a learning algorithm that fulfills this requirement when
the context is explicitly given. Here, we extend the algo-
rithm with the ability to identify the relevant features of the
environment that defines the context. It is suggested that this
is a critical component of an architecture for cognitive de-
velopment and we present simulation results that illustrate
the operation of the system.

1. Introduction

A developing system must be able to learn new things
without forgetting what it has learned before. It should also
be capable of reacting in new ways in new contexts. Ide-
ally, what has already been learned should be generalized
to new situations, while new learning should not interfere
in a negative way with previously learned behavior that is
still appropriate.

For this to be possible, it is essential that new and old
contexts can be distinguished in an efficient way. Other-
wise, it would not be possible for the system to know when
behaviors should be modified to fit the new situation or sim-
ply forgotten and relearned.

However, in most cases, there is no individual stimulus
in the environment that signals that the situation is new or
different. This can only be determined by examining sev-
eral cues in combination and even when a single stimulus
indicates a new context, this stimulus has to be attended to
influence learning.

Here, we want to develop a computational system that
can automatically learn to attend to relevant aspects of the
environment and use these aspects to determine when they
should be used as indications of a changed context. The

system takes its starting point in behavioral data on the role
of context in learning and relearning. In addition, the ar-
chitecture of the system is constrained by the anatomy and
physiology of specific brain regions.

It is yet not possible to build a large scale model of the
brain at a detailed physiological level. Too many details are
simply unknown. Instead, we strive for a model that par-
allels the brain at a system level where the different com-
ponents of the model functionally correspond to different
brain regions, but we do not attempt to model how these re-
gions work at a neuronal level. Below, we focus on the basal
ganglia and its role in the production of context dependent
action and in the selection of contextual cues.

A task such as reaching for an object will involve several
serially connected chains of specialized motor structures.
At the same time, information will be processed in a par-
allel organization of multiple cortical, basal ganglia, thala-
mic and cerebellar structures (Salinas et al., 2000). Thus,a
model of the functional role of the basal ganglia in a motor
task must be consistent with a model of the functional role
of other specialized cortical areas which the basal ganglia
interact such as the thalamus, cortex and the cerebellum.
This is not to say that at every stage of modeling we need to
have a complete model of the brain, but that it is necessary
to be aware of the fact that no brain structure works in isola-
tion from other structures. A model of any single structure
must aim at integration with models of the other structures.

In the case of modeling the functions of the basal gan-
glia, besides accounting for their involvement in motor
tasks, such a model should strive to be consistent with their
involvement in non-motor tasks, such as sensory decision
making, motivation, attentional and volitional modulation
of other neural structures.

Further, a model of the basal ganglia would need to be
consistent with data on impairments caused by degenera-
tive illnesses afflicting the basal ganglia, such as Parkin-
son’s disease and Huntington’s chorea. A model of this kind
would be able to provide valuable information on the inter-
action of cognitive and motor impairments of these patients.

There is always the possibility that we will find a mis-



match between a neurocognitive model and experimental
data, human or animal. This, however, need not signal a
drawback. Instead, a mismatch can guide further empiri-
cal research and help improve the model (Hyland, 2000).
A system model of neurocognitive functioning, if based
on neurophysiological and behavioral data, will provide a
powerful instrument for analyzing experimental data and
develop hypotheses for further research. Both the results
from simulations and new experimental data will, in turn,
improve the model.

In the following subsections we describe data and mod-
els from a different perspectives that have something to say
about how learning and attention interacts with context. A
more detailed review can be found in Balkenius (2000).

1.1. Learning in Context

In most models of learning, context does not play a part
at all. In those models where context have a role, it is often
in the form of a dedicated input. Although such a solution
is a step forward, it neglects that in the real world stimuli
and contexts labeled indicating their role in the learning ex-
periment.

Another problem with many learning models where con-
text appears is that it acts in the same was as any additional
stimuli. While this acknowledges that a distinction between
stimulus and context is not always easy to make, it ignores
that in many learning experiments, the roles of stimulus and
context are very different. While initial learning appears
to be mainly context insensitive, relearning makes behavior
context dependent. This has been shown in an important
experiment by Bouton (1991) where learning in one con-
text generalizes to other contexts, but extinguished behavior
reappears outside the extinction context (see also Balkenius
and Morén, 2000). This learning strategy is very power-
ful as it maximizes the generalization of learned behavior
between contexts, while still being able to differentiate be-
havior in different contexts when needed. These results im-
ply that there is a need to distinguish between stimulus and
context.

1.2. Context and Attention

We have earlier proposed that a context code can be con-
structed from a sequence of attentional fixations (Balkenius,
2000). Balkenius and Morén (2000) describe a computa-
tional model that can automatically generate context codes
from sequences of attentional fixations of features in the en-
vironment. The model binds each environmental feature to
its location before all features are combined into a context
code. The selection of features was controlled by a fixed
mechanism that would scan the features of the environment
in a sequential manner.

In many cases, it would be useful if the selection of the
features that makes up the context could be put under re-
inforcement control. This would potentially allow the sys-
tem to select the critical features that define the context or
task to be accomplished. The initial steps towards such a
mechanism were described by Balkenius (2000), where it
was suggested that attentional shifts should be considered
as any other action and learned in the same way. This prin-
ciple was calledattention-as-action.

An important consequence of this principle is that
learned attention shifts will become context dependent in
the same way as other actions. Since attention controls what
stimuli are treated as parts of the context, this will make the
contexts codes themselves context dependent.

1.3. The Basal Ganglia

Traditionally, the basal ganglia have been considered
to be important for voluntary control and planning of
body movements (Middleton and Strick 1994; Hikosaka,
Takikawa and Kawagoe, 2000). However, through studies
of persons with impairments of the basal ganglia, such as
Parkinson’s disease and Huntington’s chorea, increasing in-
sight into the cognitive functions of the basal ganglia has
emerged. Along with the above mentioned neurodegenera-
tive disorders, research into neurodevelopmental disorders,
such as ADHD, autism and obsessive compulsive disorders
(Bradshaw 2001) has further highlighted the importance of
the basal ganglia in higher cognitive functions.

The basal ganglia operate by exerting tonic inhibi-
tion with phasic disinhibition (Kimura 1995; Hikosaka,
Takikawa and Kawagoe, 2000), i.e., they select appro-
priate behaviors rather than controlling their detailed ex-
ecution. This is probably true for both motor and non-
motor functions controlled by the basal ganglia. An ex-
ample would be the orienting response, which requires in-
tegration of information from several sensory modalities.
From this integrated information an appropriate signal is
selected, probably by processes in the basal ganglia (Red-
grave, Prescott and Gurney 1999; Hikosaka, Takikawa and
Kawagoe, 2000). The actual motor response is controlled
by the superior colliculus (SC), which receives input from
the frontal eye fields (FEF) and areas of the parietal cortex
constituting the neural correlates for selection of saccades
or attention. The role of the basal ganglia is to inhibit the
SC (Hikosaka, Takikawa and Kawagoe, 2000). This is done
though the substantia nigra (SN), which projects to the in-
termediate layer of the SC. The SN, in turn, is inhibited
by the caudate nucleus. Occasionally the SN releases the
inhibition of the SC, which results in a saccade to the con-
tralateral side. Here, the basal ganglia select to produce the
response, but the specific target of the orientation is con-
trolled by the cortical input to the superior colliculus and



not by the basal ganglia.
The output neurons of the SN or GPi show very high

spontaneous activities. In contrast, the projection neurons
of the striatum become active only when the animal per-
forms an appropriate task, and whereas the neurons of the
putamen can be activated by simple motor tasks, complex
behavioral tasks are needed to activate the caudate. This
suggests that the neurons in this region are sensitive to the
behavioral context in which an action should or should not
be selected.

The responses of the neurons in the caudate resembles
the responses of those in the SN but with opposite signs,
changing their activity when the location of the stimuli must
be remembered or attended, or when the saccade uses the
working memory.

The function of the basal ganglia has been linked to be-
havioral learning that is sensitive to reward. The responses
of the dopamine cells appear to code for the temporal differ-
ence error between the expected and actual reward received.
Recently, the responses of dopaminergic cells in the basal
ganglia have been shown to react in a context dependent
way.

1.4. Working Memory

The basal ganglia are also involved in the manipulation
of working memory. In patients with Parkinson’s disease,
the degeneration of dopaminergic neurons projecting to the
basal ganglia leads to a difficulty in manipulating informa-
tion that is stored in working memory (Lewis, Cools et al.
2003; Lewis, Dove et al. 2004). These patients seem to
be able to maintain information over a short time span in
a verbal memory task and then retrieve it in an unmodi-
fied version. However, they seem to have difficulties in ma-
nipulating the same information. According to the authors,
this would correspond to the visuospatial tasks of execu-
tive functioning that are also considered to be particularly
difficult for the PD patients, namely tasks that involve ma-
nipulation of spatial information. One way to investigate
working memory is through continuous performance tests.

Continuous performance tests are frequently used in as-
sessments of sustained attention (Lin 1999; Oades 2000).
The CPT-AX is a continuous performance test that puts
high demands on working memory. Frank et al. (2001)
have developed an even more demanding version of the task
(Fig. 1). In the original version, the subject is presented with
a sequence of letters and is expected to respond to the letter
X if the previous stimulus was an A. In the extended ver-
sion, the subject has to respond to the X preceded by an A
within a context defined by the number 1. If the number 2
instead defines the context, the subject has to respond to the
letter Y if preceded by a B.

This calls for rapid updating of working memory, i.e., an

Figure 1. The 1-2-AX task.

incoming stimulus has to be encoded. Furthermore, the con-
text 1 or 2 has to be maintained stably while interference oc-
curs from processing of targets and distracters. Finally, the
task calls for selective updating of working memory, where
the context 1 or 2 remains stable, while the sequence of let-
ters is continuously updated.

The thalamus is tonically inhibited by the GPi/SNr and
phasically disinhibited by the firing of striatal neurons. This
functions as a gating mechanism, enabling but not causing
other functions to occur, though as mentioner earlier, the
context of the action is not defined by the disinhibition by
the striatum. Frontal neurons react momentarily to irrele-
vant stimuli, returning to the task-relevant stimuli and main-
taining these after the irrelevant stimuli have disappeared.
This intrinsic maintenance is important for working mem-
ory and robust maintenance of task-relevant stimuli.

Disinhibition by striatal firing will modulate the intra-
cellular switch of the frontal neurons, leading to an update
of current and maintained information. Thus, according
to Frank et al. (2001) stimuli will activate corresponding
frontal representations and they will be maintained if they
trigger the intrinsic maintenance switch. Those stimuli that
do not have this intracellular switch activated will decay
quickly, but will be maintained by recurrent excitation until
other stimuli are presented. This latter function is important
for learning what will be relevant to maintain.

Striatal neurons fire for a specific conjunction of environ-
mental stimuli and internal context representations through
descending projections from the cortex. Thus, striatal neu-
rons would fire in response to the encoding of a frontal rep-
resentation of the task 1-2-AX together with the incoming
of some stimulus (1 or 2) and the encoding of the sequence
of letters, enabling the response to the letters x and y when
appropriate.

2. Toward a Model

Taken together, the data presented above suggest that the
basal ganglia is a central structure in the learning of con-



text sensitive behavior dependent on reward contingencies
whether the actions be external, such as orienting move-
ments, or internal, such as manipulations of working mem-
ory. We now turn to a computational model that attempts to
cover the central ideas described above. These include the
need for a context code that can be adapted to the task the
ability to put attention under reinforcement control.

Below we describe

2.1. Context Sensitive Reinforcement Learning

Like most on-line learning algorithms, the standard rein-
forcement learning algorithms are sensitive to catastrophic
forgetting (cf. French, 1999). If it first learns one task and
then another, the second learning experience is likely to in-
terfere with the first. This is especially the case when a
look-up table is used to store the value of each stimulus-
response association.

For a developing system, it is essential that new tasks
can be learned without erasing older ones. Balkenius and
Winberg (2004) developed a novel context sensitive rein-
forcement learning algorithm, ContextQ, that overcomes
this problem by using an additional input that codes for the
context in addition to the input that codes for the current
stimulus or state. The algorithm is an extension of the pop-
ular Q-learning algorithm (Watkins and Dayan, 1992) and
uses a function approximator to estimate the function,

Q(c, s, a),

which assigns a value to each actiona in states and context
c. The algorithm starts out with a zero value for all actions
and as long as the received reinforcement is larger than pre-
dicted by the Q-function, learning increases the weight of
a linear mapping between the stimulus and response. This
learning is not influenced by the context and will allow the
system to automatically generalize all learning to new con-
texts. This part of the algorithm is identical to what Sut-
ton and Barto (1998) called LAQ. The difference compared
the LAQ algorithm occurs during extinction, i. e. when
the received reinforcement is lower than expected. In this
case, the linear associator is unaffacted. Instead, a shunting
inhibition from the context to the active stimulus-response
association increases. This will make behavior learned dur-
ing extinction context sensitive. Optionally, the two modes
of learning can be mixed such that both acquisition and ex-
tinction involves both the stimulus and the context but to a
different extent.

A detailed description of ContextQ can be found in
Balkenius and Winberg (2004), where it was shown how the
algorithm could learn a number of cognitive experiments
including task-switching, a version of the Wisconsin Card
Sorting Test, and context sensitive categorization. In Balke-

nius and Björne (2004), it was applied to an attention switch
task to model impairments in attention switch in autism.

ContextQ, like ordinary Q-learning, is an off-policy al-
gorithm, which means that it does not need to follow its
own policy during learning (Sutton and Barto, 1998). This
is a very important property when the reinforcement learn-
ing system is used as a component in a larger architecture.
Since many different subsystems can suggest actions, it is
not always the output of the reinforcement learning system
that is used, but it should still learn the consequences of
such actions. For example, reflex actions can be triggered
directly by external stimuli and the reinforcement learning
system could listen-in to these associations and learn to pro-
duce them voluntarily.

2.2. Learning to Attend

ContextQ as described above requires that the current
context is explicitly given as input. Here, we extend the
model with the ability to learn when to select a stimulus for
attentive processing (Fig. 2). In order to achieve this, we
add a single output to the ContextQ model that tells the sen-
sory system to attend to the stimulus. When this happens,
the currently attended stimulus will be included as a part of
the context code.

We now need to consider what properties the combined
stimulus selection and context system should have. A sim-
ple example will show some of the fundamental require-
ments of the system. Assume that the system encounters
a stimulus sequence A, B, B. The task is to learn that a B
preceded by an A is to be ignored, while when preceded
by another B, a B should evoke a response. Using only A
and B as inputs, a reinforcement system would behave as if
responses to B were rewarded half of the time. With Con-
textQ, the correct behavior would be learned if the forego-
ing stimulus is used as context. In this case the reaction to
B would be extinguished in the context of A. The solution
to use the previous stimulus as context is clearlyad hocand
something more is needed in the general case.

Now assume that the sequence also contains other stim-
uli but the same rule holds: X Y Z A X Z B Y X Z B X.
In this case, to store the preceding stimulus will no longer
work. We now put the context system under reinforcement
control by allowing ContextQ to select a stimulus. It is clear
that if A is attended, and hence becomes a part of the con-
text, it can be used to influence whether the system reacts to
B or not regardless of how many stimuli occur in between.
Since the engagement of attention is controlled in the same
way as other actions, it too is under contextual control. It
thus becomes possible to learn more complicated relations
between stimuli.

Since the system must select A to be stored in working
memory several time steps before the reinforcement is re-
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Figure 2. The Model

ceived, it is necessary that the reinforcement can influence
behaviors that occurred earlier in the chain. To make this
possible, the ContextQ algorithm was extended with an el-
igibility trace that makes earlier responses eligible for rein-
forcement. This extension is done in the same way as the
ordinary Q-learning algorithm.

So far, we have assumed that the context consists of a
single stimulus that is remembered. This is obviously a sim-
plification. A straight forward extension is to allow several
stimuli to make up the context, but this raises a new prob-
lem. When should stimuli be removed from the context?
There appear to exist two solutions. The first, which was
used in Balkenius and Morén (2000) is to reset the context
code when something unexpected occurs. The second is to
let each stimulus that is a part of the context decay over
time, possibly as a consequence of new stimuli being made
part of the context. Here we opted for the second alterna-
tive.

3. Preliminary Simulations

To test the ability of the model to learn to pay attention to
stimuli that would change the reward contingencies of ac-
tions, we run three simulations with different conditions.In
the first simulation, the system was required to learn to re-
spond to an B except when preceded by an A. As described
above, the previous stimulus was used as context. As ex-
pected, the model quickly learned this task and began to
distinguish between the two contexts.

In the second simulation, different distractor stimuli
where placed between the A and B. In this case, it is nec-
essary to keep the A in memory even when the distractor
appeared in the input. We first tested this task with a tapped
delay-line as context. Although the model could easily learn
this task it is sensitive to the exact timing of the stimulus A
and B. If the inter-stimulus interval changes, it has to re-
learn the task again. Another drawback of using a tapped
delay-line is that in a more realistic situation, the amountof

stimulus data to store becomes intractable.
Finally, we added a working memory system that could

be controlled by a second output from the ContextQ mod-
ule. In this case, learning progresses much more slowly, but
the system is eventually learns to attend to the A and use it
as a contextual stimulus. The increased learning time is a
consequence of all the initial attentional shifts that disrupts
the learning in the initial phase.

4. Discussion

We have extended an earlier model of context sensitive
reinforcement learning with the ability to control attention
and working memory. Preliminary simulations shows that
the extended architecture is able to used its control of at-
tention to explicitly store the appropriate stimuli in working
memory and use them as contextual cues.

The main component of the system was inspired by
the function of the basal ganglia in working memeory and
one future goal is to bring the model closer to the actual
physiology of the basal ganglia. Another goal is to apply
the model to developmental disorders (cf. Balkenius and
Björne, 2001, 2004).
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