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Abstract

We present a quantitative investigation on the effects of
a discrete developmental progression on the acquisition of
a foveation behavior by a robotic hand-arm-eyes system.
Development is simulated by increasing the resolution of
the robot’s visual system, by freezing and freeing mechani-
cal degrees of freedom, and by adding neuronal units to its
neural control architecture. Our experimental results show
that a system starting with a low-resolution sensory system,
a low precision motor system, and a low complexity neural
structure, learns faster that a system which is more complex
at the beginning.

1. Introduction

Development is an incremental process, in the sense that
behaviors and skills acquired at a later point in time can be
bootstrapped from earlier ones, and it is historical, in the
sense that each individual acquires its own personal history
[15]. It is well known that newborns and young infants have
various morphological (bodily), neural, cognitive, and be-
havioral limitations, e.g., in neonates color perception and
visual acuity are poor (implying a poor tracking behavior)
[14]; working memory and attention are initially restricted
(giving rise to reduced predictive abilities); motor immatu-
rity is even more obvious, movements have a lack of con-
trol and coordination (producing inefficient and jerky move-
ments).
The state of immaturity of sensory, motor, and cognitive
systems, a salient characteristic of development, at first
sight appears to be an inadequacy. But rather than being
a problem, early morphological and cognitive limitations
effectively decrease the amount of information that infants

have to deal with, and may lead, according to a theoreti-
cal position pioneered by [16], to an increase of the adap-
tivity of the organism. A similar point of view was made
with respect to neural information processing by [4]. For
instance, it has been suggested that by initially limiting the
number of the mechanical degrees of freedom that need to
be controlled, the complexity of motor learning is reduced.
Indeed, an initial freezing (i.e., not using) of degrees of free-
dom followed by a subsequent freeing (i.e., release) might
be the strategy figured out by Nature to solve the degrees of
freedom problem first pointed out by [1], that is, despite the
highly complex nature of the human body, well-coordinated
and precisely controlled movements emerge over time. In
other words, it is possible to conceptualize initial sensory,
motor, and cognitive limitations as an adaptive mechanism
on its own right, which effectively helps speeding up the
learning of tasks, and acquisition of new skills by simplify-
ing the external world of the agent.
The aim of this paper is to provide support for the hypothe-
sis that ”starting small” makes and agent more adaptive, and
robust against environmental perturbations. Other attempts
have shared explicitly or implicitly a similar research hy-
pothesis. [11], for instance, applied a developmentally in-
spired approach to robotics in the context of joint attention.
The authors showed that by having the visual capabilities
of a robot mature over time, the robot could learn faster.
The effect of phases of freezing and freeing of mechanical
degrees of freedom for the acquisition of motor skills was
examined by [8] and [2]. For a detailed review of the field
of developmental robotics see [9]. Although based on the
same research hypothesis, the present study makes at least
two novel contributions: (a) it considers the concurrent ”de-
velopmental changes” in three different systems, i.e., sen-
sory, motor, and neural; and (b) it quantitatively compares a
”developing” system to a ”nondeveloping” system.



Obviously, an understanding of development cannot be lim-
ited to investigate control architectures only, but must in-
clude considerations on physical growth, change of shape,
and body composition, which are salient characteristics of
maturation. Given the current state of technology, however,
it is not easy to construct physically growing robots. We
propose a method to ”simulate” development in an embod-
ied artifact at the levels of sensory, motor, and neural sys-
tem. We use a high-resolution sensory system and a high-
precision motor system with a large number of mechani-
cal degrees of freedom, but we start out by simulating, in
software, lower resolution sensors (i.e. by averaging over
neighboring pixels in the camera image, or by using only
a few pressure sensors) and an increased ”controllability”
(i.e., by freezing most degrees of freedom). Over time, we
gradually increase the resolution of the sensors and the pre-
cision of the motors by successively freeing these ”degrees
of freedom” (i.e. by starting to use the ”frozen” joints) and
added neuronal units to the neural control architecture.
In the following, we present quantitative results demonstrat-
ing how a concurrent increase of sensory resolution, motor
precision and neural capabilities can shape an agent’s ability
to learn a task in the real world, and speed up the learning
process.

In the following section we introduce our experimental
setup, we then proceed to specify the robot’s task in sec-
tion 3. The neural network and how it is embedded in the
robot are described in section 4. The developmental ap-
proach is described in sections 5 and 6. The experiments
performed are described in section 7, and the results are
discussed in section 8. Finally, we point to some future
research prospects in the last section.

(a) (b)

Figure 1. Experimental setup consisting of six degrees of free-
dom robot arm, four degrees of freedom color stereo active vision
system, and a set of tactile sensors placed in the robots gripper.

2 Experimental setup

We performed our experiments by using the experimen-
tal setup shown in Figure 1. It consisted of the following
components:

• Robot arm. An industrial robot manipulator (Mit-
subishi MELFA RV-2AJ) with six degrees of freedom
(DOF). As can be seen in the Figure 1b, jointJ0
(”shoulder”) was responsible for the rotation around
the vertical axis, jointJ2 (”elbow”), joint J1 (”shoul-
der”) and jointJ3 (”wrist”) were responsible for the
up and down movements; jointJ4 (”wrist”) rotated
the gripper around the horizontal axis. The additional
DOF came from the gripping manipulator.

• Color stereo active vision system. Two frame grabbers
were used to digitalize images with a resolution of
128x128 pixels, down sampled at a rate of 20Hz.

• Sensory-motor control board. The communication
between the computer and the motor control board
that drives the active vision system and gets the tactile
information was via a USB controller based on the
Hitachi H8 chip.

• System architecture. The system architecture was
composed of two computers Pentium III/600 MHz and
the robot arm controller connected together in a private
local area network based on the TCP/IP protocol, one
computer controlled the robot arm and the other ac-
quired the tactile input as well as the visual input from
the active vision system.

Figure 2. Robotic setup performing an experiment moving an
object from the bottom-left corner of its visual field to the center
of it. The observer’s perspective can be seen on the left side, while
the robot’s perspective is shown on the right side.

3 Task specification

The task of the robot was to learn how to bring a colored
object from the periphery of the visual field to the center of
it by means of its robotic arm. It is important to note that
although it would have been possible to program the robot
directly to perform this task, our aim here is to quantify



the effects of developmental changes on the learning perfor-
mance. We are not seeking biological plausibility, but bio-
logically inspired mechanisms of adaptive and autonomous
behavior.
At the outset of each experiment the active vision system
was initialized looking at the center of the visual scene(xc,
yc) and the position of its motors were kept steady through-
out the operation. The robot arm was placed at a random
position at the periphery of the robot’s visual field and a
colored object was put on its gripper. Once the object was
detected by the pressure sensors the robot started to learn
how to move the arm in order to bring the object from the
periphery of the visual field(x0, y0) to the center of it(xc,
yc). In other words, the eyes should teach the robot arm to
solve the task, the object was the visual stimulus and the
way to solve the task was the movement of the robot arm.
A typical experiment is shown in Figure 2. For more details
see [5, 6].

Figure 3. Neural structure and its connections to the robot’s
sensors and motors. Neuronal areas: (a) RedColorField. (b) Red-
MovementToRightField. (c) ProprioceptiveField. (d) RedMove-
mentToLeftField. (e) NeuronalField. (f) MotorField. (g) MotorAc-
tivites.

4 Neural control architecture

The components of the neural structure and its connec-
tions to the robot arm are depicted in Figure 3.

4.1 Sensory field

• Color information. Three receptor types are consid-
ered: red (r), green (g), and blue (b). A ”broadly”
color-tuned channel was created for red:

R = r − (g + b)/2 (1)

This channel yields maximum response for the fully
saturated red color, and zero response for black and
white inputs. The negative values were set to zero.
Each pixel was then mapped directly onto the 8x8 neu-
ronal units of areaRedColorField(see Figure 3a). The
activitySi of the i-th neuron of this area was calculated
as:

Si =
{

1.0 : if Ri > θ1

0.0 : otherwise
(2)

WhereRi is the value of the red color-tuned channel
for the i-th pixel; andθ1 is a threshold value.

Figure 4. Motion detection. (a) Movement was detected from
right to left. (b) Movement was detected from left to right. (c)
and (d) Motion detectors reacting only to red objects moving in the
environment.

• Motion detection. Motion detectors were created to
detect movements of red objects in the environment.
These motion detectors are based on the well-known
elementary motion detector (EMD) of the spatio-
temporal correlation type [10], a description of the
model implemented, can be found in [7]. Motion
detectors reacting to red objects moving to the right
side of the image were mapped directly to neuronal
units of the areaRedMovementToRightField(see
Figure 3b) and the motion detectors reacting to red
objects moving to the left side of the image were
mapped directly to neuronal units of the areaRed-
MovementToLeftField(see Figure 3d). Both neuronal
areas have a size of 8x8. The activities of the neurons
in these areas were calculated as:

Si =
{

1.0 : if |EMDOutputi| > θ2

0.0 : otherwise
(3)

Where Si is the activity of the i-th neuron;
EMDOutputi is the output of the motion de-
tector at position i-th; andθ2 is a threshold value.



• Proprioceptive information. The movements of each
joint of the robot arm were encoded using eight neu-
ronal units. During the experiments the size of the
neural areaProprioceptiveField(see Figure 3c) was in-
creased. The minimum size was 8x1 when it encoded
the joint: J0, it had a medium size of 8x2 when it en-
coded the joints:J0 andJ2, and it had a maximum
size of 8x3 for encoding the joints:J0, J1, andJ2.
JointJ0 had a range of movements from -60 to 60 de-
grees, jointJ1 moved in a range from -25 to 25 de-
grees, and jointJ2 moved in a range from 0 to 100
degrees.

4.2 Neuronal field and motor field

The size of the neuronal areaNeuronalField(see Figure
3e) was 8x8 and its neuronal units had a sigmoid activation
function.
During the experiments the size of the neuronal areaMotor-
Field (see Figure 3f) was increased. The minimum size was
4x4 and the maximum was 16x16 and its neuronal units had
a sigmoid activation function whose outputs were passed di-
rectly to theMotorActivities(see Figure 3g) for controlling
the joints of the arm:J0, J1 andJ2. The size of the neu-
ronal areaMotorActivitieswas 6x1.

4.3 Synaptic connections

Neuronal units in the areasRedColorField, RedMove-
mentToLeftField, andRedMovementToRightFieldwere con-
nected retinotopically to the neuronal units in areaNeu-
ronalField. The neuronal units in the areaProprioceptive-
Field were fully connected to the neuronal units in areaNeu-
ronalField. The neuronal units in areaNeuronalFieldwere
fully connected to the neuronal units in areaMotorField,
which in turn were fully connected to theMotorActivities.

4.4 Learning Mechanism

The active neurons controlling the robot arm were ”re-
warded” if the movement of the arm brought the colored
object closer to the center of the visual field and ”punished”
otherwise. In this way the synaptic connections between
the neuronal areasNeuronalField(see Figure 3e) andMo-
torField (see Figure 3f) were changed. A learning cycle
(i.e., the period during which the current sensory input is
processed, the activities of all neuronal units are computed,
the connection strength of all synaptic connections are com-
puted, and the motor outputs are generated) had a duration
of approximately 0.35 seconds. For more details see [3] and
[5, 6].

5 Simulating development in a real robot

Because we are dealing with embodied systems, there
are two dynamics, the physical one or body dynamics and
the control one or neural dynamics. There is the deep and
important question of how the two can be coupled in opti-
mal ways. It has been hypothesized that given a particular
task environment, a crucial feature of adaptive behavior is
a balance between the complexity of an organism’s sensor,
motor, and control system (this is also referred to as princi-
ple of ecological balance) [13] and [12]. Here, we extended
this principle to developmental time, and attempted to com-
ply to it by simultaneously increasing the sensor resolution,
the precision of the motors, as well as the size of the neu-
ral structure. Such concurrent changes are thought to sim-
plify learning processes providing the basis for maintaining
an adequate balance between the complexity of the three
sub-systems, which reflects the development of biological
systems.

5.1 Increasing the motor capabilities of the robot

The development of the robot’s controllability was
achieved by an initial freezing of mechanical degrees of
freedom and gradual releasing of them. At the beginning
only joint J0 was used, during the second developmental
stage two joints were used (i.e.,J0 andJ2) and during the
third developmental stage three joints were used (i.e.,J0,
J1, andJ2).

Figure 5. Gradual Increase of the sensory resolution. From left
to right the image develops from blurred to high resolution.



5.2 Increasing the sensory capabilities of the robot

Increasing the resolution of the cameras was achieved by
means of a gradual increase of the sharpness of a Gaussian
blur lowpass filter applied to the original image captured
by the cameras (see Figure 5(right)). Figures 5(left) and
5(center) show the result of applying a 5x5 and a 3x3 Gaus-
sian kernel to the original image respectively.
The number of pressure sensors mounted on the gripper of
the robot was also increased over time.

Figure 6. Gradual increase of the neural structure to cope with
more sensory input and with more degrees of freedom of the motor
system.

5.3 Increasing the complexity of the neural struc-
ture

In Figure 3 an overview of the neural network and its
connections to the sensory-motor system is given. The neu-
ral network was gradually enhanced to cope with more sen-
sory input and with more degrees of freedom of the motor
system by (a) adding eight neuronal units to the areaPro-
prioceptiveField(see Figure 3c) in order to encode another
DOF and (b) making the size of the neuronal areaMotor-
Field (see Figure 3f) four times larger. The new weights
were initialized randomly and the old weights were kept at
their current values in order to preserve the previous knowl-
edge acquired by the robot. The process is shown in Figure
6 and summarized in Table 1.

6 Developmental schedule

Development, in contrast to mere learning, implies on
the one hand changes in the entire organism (not only

Figure 7. Configuration of the sensory, motor and neural com-
ponents of the robot through the developmental approach. From
top to bottom: DS-1 (immature state), DS-2 (intermediate state)
and DS-3 (mature state).

the neural system) over time, and on the other hand a
long-term perspective. The robot’s movements were con-
tinuously shaped by the aforementioned learning mecha-
nism, and “developmental” changes were triggered by the
robot’s internal performance evaluator (see definition of in-
dex “P” for the robot’s task performance in Section 7). Such
changes consisted in advancing the present developmental
stage (DS-i) to the next one. We defined a set of three dif-
ferent developmental stages (DS) in which the robot ”grew
up” as follows:

6.1 Developmental stage number 1 (DS-1)

At this stage, the sensory input to the robotic agent’s
neural structure consisted of a blurred, low resolution
image (a 5x5 Gaussian kernel was applied to the original
image captured by the cameras, see Figure 5(left)), and the
activity of one pressure sensor. The neural network had
286 neuronal units and 13,920 synaptic connections, and
controlled one single degree of freedom (i.e., jointJ0).
This developmental stage corresponds to the ”immature”
state of the robot. See Figure 7(DS-1).

6.2 Developmental stage number 2 (DS-2)

At this stage the robotic agent consisted of a medium
level blurred image (a 3x3 Gaussian kernel was applied
to the original image captured by the cameras, see Figure
5(center)), two pressure sensors, two DOF (i.e., joint
J0 and J2), and the neural network had 342 neuronal



units and 17,792 synaptic connections. This corresponds
to the ”intermediate” state of the robot. See Figure 7(DS-2).

6.3 Developmental stage number 3 (DS-3)

At this stage the robotic agent consisted of the full high
resolution image from the cameras (see Figure 5(right)),
four pressure sensors, three DOF (i.e.,J0, J1 and J2),
and the neural network had 542 neuronal units and 31,744
synaptic connections. This corresponds to the ”mature”
state of the robot. See Figure 7(DS-3).

6.4 Control setup

The control setup had the same configuration of the fully
matured robotic agent at stage number 3.

The schedule on how the robot was changed over time
was determined by the learning mechanism, every time that
the robot was considered to have learned to solve the task its
configuration was changed moving from one developmental
stage to the next one. This was achieved as follows:

• The resolution of the camera image was increased.

• one or two pressure sensors were added.

• another degree of freedom came into operation and the
size of the neuronal area: ”ProprioceptiveField” (see
Figure 3c) was increased in 8 neuronal units.

• the size of the neuronal area: ”MotorField” (see Figure
3f) was increased by a factor of four, the new weights
were initialized randomly and the old weights were
kept at their current values in order to preserve the pre-
vious knowledge acquired by the robot.

Figure 7 presents a summary of the configuration of the
robot at each developmental stage. The number of neuronal
units in each neuronal area at each developmental stage can
be found in Table 1.
Through this simulated development (from DS-1 to DS-3)
the initial setup with reduced visual capabilities, noisy mo-
tor commands, low number of degrees of freedom, a few
pressure sensors and a neural control architecture with a
reduced number of neuronal units, was converted into an
experimental setup with good vision, larger number of de-
grees of freedom, larger number of pressure sensors and a
neural control architecture with a sufficient number of neu-
ronal units.
At developmental stage number 3, the robotic agent reaches
the same sensory, motor and neural configuration than the
control setup. At this point, their performances could be

Table 1. Neural structure at each developmen-
tal stage

Neuronal
Area stage 1 stage 2 stage 3

RedColorField 64 64 64
RedMovementToRightField 64 64 64
ProprioceptiveField 8 16 24
RedMovementToLeftField 64 64 64
NeuronalField 64 64 64
MotorField 16 64 256
MotorActivites 6 6 6

Total neuronal units 286 342 542

compared to see whether the learning was affected or not
by the developmental approach described above.

7 Experiments and results

Figure 8 shows a typical experiment where the robot
learned to move the object from the periphery of its visual
field to the center of it by means of its robotic arm. To
evaluate the change of the robot’s task performance over
time, at each time stepi, we computed the cumulated
distance covered by the center of the object projected onto
one of the robot’s cameras (xi, yi):

Ŝ =
N−1∑

i=0

√
((xi+1 − xi)2 + (yi+1 − yi)2) (4)

Thus, (x0, y0) is the initial position of the object as per-
ceived by the robot, and (xN , yN ) = (xc, yc) is the center
of the robot’s visual field (assuming that the robot learns to
perform the task).
The shortest possible path between (x0, y0) and (xc, yc) is
defined as:

S =
√

((x0 − xc)2 + (y0 − yc)2) (5)

By usingS andŜ, we defined an index for the robot’s task
performance:

P =
S

Ŝ
(6)

The closerP is to 1, the more straight the trajectory, and
therefore the better the robot’s behavioral performance.

Figure 9 shows how the robot’s behavior improved over
time for the last part of the experiment number 1 (see Figure
8 interval d.) and gives the performance measure over time.



(a) (b)

(c) (d)

Figure 8. Experiment number 1. Learning to move a colored
object from the upper left corner of the visual field to the center of
it. Position of the center of the object in the visual field during the
learning cycles in the interval (a) [1, 400]. (b) [401, 800]. (c) [801,
1200]. (d) [1201, 1602].

A total of 15 experiments were performed with two types
of robotic agents: one subjected to developmental changes
(i.e., DS-1, then DS-2 and finally DS-3), and one fully de-
veloped since the onset (control setup). The results clearly
show that the robotic agents that followed a developmen-
tal path took considerably less time to learn to perform the
task. These robotic agents started with the configuration
of the developmental stage number 1 and learned to solve
the task during the learning cycle483 ± 70 (where± indi-
cates the standard deviation), then they were converted to
robotic agents with a configuration as described by the de-
velopmental stage number 2 which subsequently learned to
solve the task around the learning cycle1671± 102 and fi-
nally they become to be in the developmental stage number
3 (with the same configuration than the control setup) and
solve the task around the learning cycle4150± 149 (this is
a cumulative value).
The control setup agents with full resolution camera images,
four pressure sensor, three DOF (i.e.,J0, J1 andJ2), and
a neural network with 542 neuronal units (randomly initial-
ized synaptic connections) learned to solve the task around
the learning cycle7480± 105.
In other words, a reduction of about 44.5 percent in the
number of learning cycles needed to solve the task can be
observed in the case of robotic agents that followed a de-

(a) (b) (c)

(d) (e) (f)

Figure 9. Robot’s internal performance evaluator“P” during
the learning cycles in the interval (a) [1232, 1266],P=0.2898; (b)
[1313, 1340],P=0.3574; (c) [1370, 1393],P=0.5114; (d) [1438,
1455], P=0.5402; (e) [1502, 1519],P=0.6569;(f) [1565, 1582],
P=0.9176. (see Figure 8d).

velopmental approach when compared to the control setup
agents.

8 Discussion and conclusions

We set out to investigate if the immaturity of sensory,
motor, and neural system, which at first sight appears to be
an inadequacy, might speed learning and task acquisition.
In other words, we hypothesize that rather than being a
problem, immaturity might effectively decrease or even
eliminate excessive information and its potentially detri-
mental effects on learning performance.
This might be indeed the case as shown by the results
presented in this paper. A system starting with low res-
olution sensors and low precision motor systems, whose
resolution and precision are then gradually increased during
development, learns faster than a system starting out with
the full high resolution high precision system from scratch.
For this particular case, by employing a developmental
approach the learning was speeded up by 44.5 percent. To
our knowledge this is the first time that this point is actually
shown in a quantitative way.
There is a trade-off between finding a solution following a
developmental approach and the potentially better solution,
when starting out from the full high resolution high preci-
sion system from scratch.
Important is to keep in mind that the motor abilities should
be increased gradually with the sensor abilities, since this
significantly reduces the learning problem.



9 Future research

We will add proprioceptive information about the posi-
tion of each motor of the active vision system and one pos-
sible task for the robot would be to not only bring the object
to the center of the visual field, but also to normalize the size
of the object in the camera image (i.e., a big object would
be presented by the arm to the cameras further away than
a smaller one) providing the robot with an ”Embodied con-
cept of size”. In a future set of experiments we will put the
developmental schedule under the control of an Artificial
Evolutionary System.
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