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Abstract

Learning, like any search, is only tractable for situ-
ated, resource-constrained agents if it is tightly focused.
Adaptation is only worth the risks inherent in changing a
complicated intelligence if it is very likely to improve the
agent’s performance on its goal tasks. Modularity is one
tool for providing the information a learning system needs:
it facilitates the use of a specialized representation suit-
able to a particular learning task, and provides for special-
ized perception to inform that representation. This paper
begins by examining why behavior-based artificial intelli-
gence, a well-known modular theory of intelligent design,
has not so-far been used systematically to support such an
approach. It then describes a new design methodology,
behavior-oriented design (BOD), which does. Examples,
drawn from both mobile robotics and models of learning in
non-human primates, show the sorts of information such an
approach can support, including both explicit and implicit
representations.

1. Introduction

Behavior-based artificial intelligence (BBAI) is one of
the best-known modular theories of intelligent design. His-
torically, however, although researchers have sometimes in-
corporated learning modules [e.g. 26, 29], there has been
no systematic incorporation of learning into pure behavior-
based design [though see 17]. Some hybrid systems have
been developed which incorporate both BBAI and tradi-
tional planning and learning, but these lose the full advan-
tages of modularity. Contemporary multi-agent systems
(MAS) are fully modular, but overlook the progress made
by BBAI in organizing distributed systems of complicated
modules.

In this paper I describe how BBAI can be adapted to fully

support modular learning. I begin by reviewing the history
of BBAI. Then I discuss my own methodology, Behavior-
Oriented Design (BOD), and explain how it exploits spe-
cialized learning, with examples drawn from both robotics
and from ALife models of non-human primates. BOD al-
lows a system with standard reactive control to behave in an
adaptive manner, because its control is reliant on modules
containing state, which may reflect current sensor states,
predictions based on learning, or more likely a combination
of both.

2 Behavior-Based Artificial Intelligence

Behavior-Based Artificial Intelligence (BBAI) is a
methodology for constructing intelligent agents which spec-
ifies that the attributes of their intelligence should be de-
composed into semi-autonomous modules. The expressed
behavior of these modules is made coherent through some
system of arbitration between these modules. Both the ar-
bitration system and the individual modules are intended to
require relatively little processing power or time, so that the
agent can respond quickly and appropriately to challenges
and opportunities in a complex dynamic environment.

When BBAI was introduced by Brooks [3, 5], its pri-
mary purpose as a methodology was to provide a means to
create these responsive (orreactive) agents. Creating such
agents is difficult because a rich environment provides so
many things to react to. Any living agent in a complex en-
vironment must choose between a large number of possi-
ble actions, where each action is itself dependent on a large
number of environmental contingencies, and is motivated
by competing, mutually exclusive goals1. Choosing an op-
timal next action is impossible [14]. Even choosing a pretty
good one requires searching an enormous space of possibil-
ities.

1The attributeliving mandates at least the conflicting goals of acquiring
sustenance, avoiding injury, and participating in selective reproduction.



Because an individual agent does not have time for such
a search in real time, most of its decision must be made in
advance of the agent’s active life. However, this does not
remove the complexity of the real decision nor the amount
of search necessary for a pretty-good decision. For ani-
mals, most of this search has been performed by evolution
over a period of billions of years. For animats, the analo-
gous role to evolution’s is further split between the search
conducted by the individual animat designer and that per-
formed by the designer’s culture. Designers must antici-
pate the behaviorally-salient contingencies that their agent
may encounter, and provide rapid ways to recognize and
select the appropriate response. We do this both through
our own analysis and experimentation, but also by exploit-
ing the scaffolding of design knowledge we have previ-
ously learned, which itself relies on intelligence scaffolding
evolved with our species.

BBAI is a piece of design knowledge that significantly
advanced the state of agent design, particularly in the ar-
eas of mobile robotics and virtual reality. I believe that the
primary reasons for this success were:

• the increased emphasis on providing engineered
knowledge thus simplifying the bottom-up processing
necessary for the agent’s sensing and action-selection,
and

• the modular decomposition around individual ex-
pressed behaviors, which exploited the designers’ ex-
isting skills and talents for writing simple programs.

However, after these significant advances, the complex-
ity of the agents being built plateaued before the develop-
ment of animal-level intelligence. Again, I believe there
were two primary causes of this plateau:

1. the fact that at leastsomeexpertise is best developed by
the agent through experience, particularly of the local
variations of its own physical plant (‘body’), and its
own local environment, and

2. the complexity of programming the behavior-
arbitration systems increases exponentially as the
complexity and number of behavior modules in-
creased.

The first point is key to the thesis of this paper: that mod-
ularity presents BBAI with the opportunity to maximally
facilitate individual adaptation through providing special-
ized representations and processes. The second point, al-
though important in the history of BBAI, is really a special
case of the first. Modularizing the process of behavior ar-
bitration and providing it with appropriate representations
can greatly simplify the design process for a behavior-based
agent.

3 A Brief History of Modular AI

This is a brief history of the critical attributes of BBAI
systems I outlined above. More extensive reviews of the
BBAI literature are also available [6, 8].

3.1 Modules for Perception

I will begin with Fodor’s “The Modularity of Mind” [19],
both because it introduces many of the concepts familiar to
BBAI, and because it presents a theory of intelligence de-
composition which is still actively researched in the natural
sciences today [e.g. 16, 31].

Fodor introduces the terms “horizontal” vs. “vertical”
to describe two different sorts of decomposition of intel-
ligence. Horizontal decompositions for Fodor are those
which identify processes (e.g. memory, attention, percep-
tion, judgement) which underlie all of cognition.Vertical
decompositions identify particular skills or faculties (e.g.
mathematics, language, metaphysics) which each have their
own characteristic processes of memory, attention and so
forth. Roughly speaking, evidence for horizontal decompo-
sition is the extent to which performance across domains is
correlated for a particular individual; evidence for vertical
decomposition is the extent to which it is not.

Fodor himself believes thatpart of human intelligence
is decomposed in this vertical sense; that part being per-
ception. In Fodor’s system, a number of semi-autonomous
perceptual modules run simultaneously giving quick, auto-
matic analysis of the perceptual scene. Each module rec-
ognizes its own best input, and effectively trumps the other
modules when it is best utilized. The output of modules is
in the language of thought, which is operated on by a hori-
zontal reasoning system that then produces action.

3.2 Modules as Agents

Another modular theory immediately precursing BBAI
was the “Society of Mind” [18, 27]. Minsky’s proposal is
more substantially vertical than Fodor’s, although it still has
some horizontal elements. An individual’s actions are deter-
mined by simpler individual agencies, which are effectively
specialists in particular domains. Minsky’s agencies exploit
hierarchy for organization, so for example the agency of
play is composed of agencies of block-play, doll-play and
so forth. Arbitration between agencies is also hierarchical,
so the play agency competes with the food agency for the
individual’s attention. Once play establishes control, the
block and doll agencies compete.

Minsky’s agents have both perception and action, but not
memory, which is managed by another network of agencies
of a different sort. Memory (K) agencies are interconnected
both with each other and with the other, actor (S) agents;



each can activate the other. Keeping the whole system
working requires another horizontal faculty: the “B brain”
which monitors the main (A) brain for internally obvious
problems such as redundancy or feedback cycles. Minsky’s
model relates to BBAI mostly as a series of contrasts: it
attempts to account for all of human intelligence, but has
never been fully implemented.

3.3 Modules as Finite State Machines

In contrast, the term “behavior-based artificial intelli-
gence” was invented to describe a simplified but fully-
implemented system used to control multiple, robotic
agents. This was the subsumption architecture [3, 5]. The
subsumption architecture is purely vertical. The modules
were originally finite state machines, and arbitration be-
tween them was conducted exclusively by wires connecting
the modules — originally literally, eventually as encoded in
software. Each wire could connect one module to another’s
input or output wires, the signal of which the first module
could then either monitor, suppress or overwrite.

Brooks initially asserted that most apparent horizontal
faculties (e.g. memory, judgement, attention, reasoning)
were actually abstractions emergent from an agent’s ex-
pressed behavior, but had no place in the agent’s actual con-
trol [5, p. 146–147]. However, his system was rapidly ex-
tended to have learning systems either inside modules or
local to layers of modules [e.g. 4, 26]. Unfortunately, this
promising approach was apparently smothered by the at-
tractive simplicity and radicalism of his deemphasis on rep-
resentation and centralized control.

3.4 Modules as Slaves and Bitmaps

Of the researchers who didnot immediately adopt “no
representation” as a mantra, most attributed the impressive
success of Brooks approach to the fact that he had created
abstracted primitives — the action/perception units. Be-
cause these primitive units could sort out many of the details
of a problem themselves, they made the composition of in-
telligence underany approach relatively easy [25]. Thus
behavior systems were incorporated as a component into
a large variety of AI architectures which still maintained
centralized, logic-based planning and learning systems [e.g.
2, 20]. In fact, due to the difficulty of reasoning about
relatively autonomous components, some systems reduced
behaviors to “fuzzy rules” [23] or vector spaces [1] which
could be easily composed.

Despite the lack of commonality of such approaches
to Brooks’ original ideal, they are still often called either
behavior-based or hybrid behavior-based systems. Further,
by the late nineties, the work of these researchers had so
far outstripped that of the “pure” BBAI researchers that

two significant publications declared this hybrid approach
to have been demonstrated superior to non-hybrid ones
[21, 24].

3.5 Agents as Modules

Given the attributes of BBAI outlined in Section 2, in
some senses multi-agent systems (MAS) are closer to BBAI
than these hybrid behavior-based systems. Each agent per-
forms a particular task, and may have its own private knowl-
edge store and representations which are presumably well
suited to its function. However, to date there are fundamen-
tal differences between a MAS and a single, modular agent.
These differences are due to issues of communication and
arbitration between modules / agents. The MAS commu-
nity is concerned with interoperability between unspecified
numbers and types of agents, and with distribution across
multiple platforms. This creates an administrative overhead
not necessary for a single, modular agent2.

3.6 Summary

In summary, BBAI was originally conceived and imple-
mented as a clean, simple version of modular hypotheses
that were already influential in psychology, linguistics and
AI. It has lead to substantial improvements in real-time AI,
and still has a great deal of influence not only in robotics
[1, 24] but in virtual reality [30, 32]. However, it is fa-
mously difficult to program [30, 34]. This difficulty has
supported the wide-spread acceptance of hybridization be-
tween behavior-based and traditional AI into layered archi-
tectures. These hybrids unfortunately lose many of the ad-
vantages that BBAI initially had to offer. In the next section,
I suggest ways to reclaim the advantages of modularity.

4 Modular Decomposition and Specialized
Learning

In the previous section I explained Fodor’s use of the
terms “horizontal” and “vertical” to describe modular de-
compositions along generic function vs. task specific lines
(respectively.) I also showed that the original behavior-
based AI, the subsumption architecture, used by far the most
strictly vertical modular decomposition. In this section I
describe my own approach to BBAI and modular decom-
position, which is largely determined by variable state for
learning.

2Where MAS are in fact limited to a single platform and a relatively
fixed architecture, I suspect their engineers may in fact be taking the wrong
approach, and should consider them to be modular single agents. But this
is a topic for another paper [9].



4.1 Modules as Objects

My approach to modular decomposition is not entirely
original; it is inspired by object-oriented design [e.g. 15,
28]. Consequently, it is called Behavior-Oriented Design
(BOD). Under BOD, modular decomposition is done along
the lines of specialized representations underlying adaptive
requirements for the agent to be implemented. As it hap-
pens, most of these representations tend to support vertical
abilities, for example representations underlying navigation
or language, but some of them reliably support horizontal
abilities, such as behavior arbitration or smoothing motor
control.

Although this suggestion is simple, I think it brings a
great deal both to BBAI and to the understanding of learn-
ing in intelligent systems. Compared to the original BBAI,
BOD provides for learning while simplifying behavior ar-
bitration. Compared to hybrid BBAI, BOD provides both
a return to full modularity and a reemphasis on facilitating
hand design.

In terms of understanding learning and anticipation in
intelligent systems, BOD makes explicit the continuum of
adaptivity underlying intelligent behavior. The BOD devel-
opment process [see 8, 12] emphasizes two things:

• increasing the probability of success in learning (or
any other type of search) by providing the agent with
as much information (bias) as possible, and

• maintaining the simplicity of the agent by trading off
complexity between various representations.

4.2 A Module for Behavior Arbitration

BOD particularly emphasizes the tradeoffs to be made
between adaptive state for specialized perception and that
for action selection through behavior arbitration [8]. This
goes back to the notion of whether a module can, on its own,
recognize a situation in which it should operate. I believe
it is more reasonable for a module to recognize when itcan
operate. To recognize when itshouldoperate requires more
information than a largely encapsulated, semi-autonomous
module ought to have access to.

In any particular context, there may well be more than
one module that could or even should operate. This is the fa-
miliar problem ofperceptual aliasing, which was originally
seen as a problem of perception, but is in fact just a charac-
teristic of the world. For example, consider a watch-robot
intended to patrol an office space composed of corridors and
junctions (Figure 1). For some junctions, the direction to go
is entirely determined by either the robot’s history (where it
has most recently been) or its intentions (where it needs to
go next.) Of course, we could try to read the robot’s history
or intentions off of its physical states (such as the direction

Figure 1. A patrolling robot cannot base its
steering decisions entirely on external con-
text and cover the entire maze.

it is pointing) but these can be perturbed by other subtasks
such as avoiding people in the hallway.

The strategy of making behavior arbitration into a spe-
cial, horizontal module allows for a tradeoff between the
complexity of action selection and the complexity of per-
ception. I have argued at length elsewhere that ideally there
should be a structured hierarchical representation under-
lying behavior arbitration, which represents behavior or-
dering and prioritization given a particular context [6, 7].
The advantage of such a decomposition is that it simpli-
fies knowledge acquisition by separating acquisition tasks
that have minimal correlation between them. The behavior-
arbitration module doesn’t need to know how task modules
recognize context or perform their tasks; task modules don’t
need to know what other tasks might be performed in the
same location at the same time, or what their relative prior-
ities are.

4.3 From Perception to Action

I will briefly return to the example domain of mobile-
robot navigation in order to demonstrate the variety of adap-
tation usefully modeled in behaviors in the BOD system.
Although the robot work described here is old [10], I find
that the problems of robot perception and action are the
most clear and intuitive for explaining the different require-
ments for variable state.

Figure 2 shows some behaviors I implemented on a ra-
dially symmetric, 16 sided Nomad 200 robot. These behav-
iors allow the robot choose its speed and precise direction
given that it has already determined an approximate goal
heading. The vertical modules have solid boxes, the hor-
izontal ones (including the robot’s body) are dashed. Be-
ginning at the bottom of the figure, the robot provides four
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Figure 2. The behaviors involved in moving a
robot forward.

types of sensory information relevant to picking a safe path.
A direction behavior will determine the speed and direc-
tion for the robot, based on a 16 value array representing
the approximate distance from each of the robot’s faces to
the next obstacle. This array is maintained byC-sense.

Sonar, infra-red and bumpers all give information about
the location of obstacles. Sonar operates by emitting sound
then listening for it to bounce off obstacles. It can be accu-
rate from about 20cm to 6m, but is subject to a variety of
deflections and interference which can make objects appear
suddenly closer or further away. The behaviorP-Memory
processes this information with a simple 6 item memory
buffer. Each time a new sonar reading is received (about
7 times a second) the reading for each sensor is compared
with those of the previous half minute. If a major discon-
tinuity is perceived in one reading, it is ignored, and a new
one computed based on the previous average value. How-
ever, if the new reading persists for 2 more readings, it is
then “believed” and becomes the new value for that sonar.

Infra-red sensors do not have the non-linearities of sonar,
but have a far more limited range (approximately 0-24cm),
and are also influenced by the color of the reflected surface.
Infra-red sensors must be used for delicate maneuvers such
as passing through doorways which require obstacle detec-
tion within the blind zone of the sonars. However, some
things will not be detected by either long-range system, and
are instead detected by the robots bumpers. Thebump be-
haviors each represent one such past event. Since a bump
is only detectable at the time and location of the event, the
robot must compute the bumps approximate location after
having disengaged from the obstacle in order to avoid it.
This computation is based on odometric data. However,
odometry accumulates errors rapidly, so bump events are
forgotten after the robot has moved a few yards.
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Figure 3. Additional behaviors for map learn-
ing.

4.4 State as Knowledge

The robot thus brings a diverse array of “knowledge” to
the continuous task of choosing a new speed and direction
at any given instant.Direction andAction Selectionwork
in concert for determining whichdirection controls these
variables. Direction stores the current intended direction,
while Action Selectiondetermines the behavioral context
(e.g. going forward normally toward a goal direction, or
backing up after a collision). Eachdirection contains a
template for determining discounts on the importance of
the values of the array inC-sound pertaining to whether
the particular array value is directly in front, mostly to the
side, or behind the direction of motion before thatdirec-
tion’s face. The value of the discounts in thedirection be-
haviors was learned off-line by the developer. The values
in theC-soundarray are determined anytime, based on the
most recent infra-read reading, the last half second of sonar
readings, and perhaps a few minutes of bumper readings.

None of this adaptation would be considered “learning”
in the common usage of the term, because it does not change
state permanently for the lifetime of the agent. Never-
theless, all this knowledge may be considered predictions
which lead to adaptive behavior. For example, the state
recording the last direction of motion is used to predict the
next one, which in turn determines what values are used
in computing the robot’s velocities. Similarly, the historic
sonar readings are treated as more predictive of the true dis-
tance to obstacles than any one current sensor reading. In
essence, the only reason to have adaptive state in the robot
is because the past can be used to predict the present, and
can do so more reliably than sensors on their own.

The same general arrangement was used for map learn-
ing (see Figure 3, described further in [8, Section 7.6.3]).
Heredecision points— locations where the robot suddenly
has a choice of direction (e.g. when it enters a room or
encounters a doorway in a hall) are stored along with the



decisions that were made at them, possibly after soliciting
advice. Thus the robot can create a crude map, or in this
case the British-English term ofplan for map might be more
appropriate. This particular robot does not learn a complete,
connected 2-D representation of the world, but rather a set
of cues that can be read from the environment in order to
make future decisions autonomously.

5 Generic Types of Specialized State

The key observation about the robot example above is
that BOD has been used to produce a reactive system which
can operate well in a dynamic environment. It does this by
exploiting a variety of types of information:

• Engineering, provided by the developer (or evolution),
which does not change over the lifetime of the agent.
This includes both fixed program code and parameters
set by off-line tweaking and experimentation.

• Reactive plans, which keep track of the robots current
decision context and focus its attention on particular
behaviors. These are the basic representation underly-
ing the Action Selection module.

• Learned values of variable state. Variable state is at
the heart of the vertical / task modules. The ‘learning’
may persist only as very-short-term perceptual mem-
ory, as medium-term working memory, or for the life-
time of the agent.

This decomposition can also be found in real animals
[13]. The engineered information is roughly equivalent to
genetic predispositions, though notice that in real animals,
it is more difficult to separate development from learning,
since development has evolved to rely on ubiquitous fea-
tures of the environment as an information source. Reactive
plans play a similar role to the behavior of the forebrain in
mammals at least, which, when working correctly, selects,
sequences and inhibits behavior expression, though again
note that in animals this can be more plastic than it is in
BOD. Finally, the vertical behaviors I would equate with
various sorts of cortical activation and plasticity. Notice
that BOD doesn’t currently discriminate between plastic-
ity from activation levels and plasticity through long-term
changes in connectivity.

These three types of information are not entirely disjoint:
the reactive plans are hand coded, and are run in a spe-
cial action-selection module. Reactive plans are themselves
a very elaborate form of specialized variable state. They
encode both engineered information in the form of contin-
gencies the designer anticipates the agent will encounter,
and variable state indicating recent decision-making con-
text, which constrains choices in the immediate future in
order to provide persistence and reduce search.

In fact, all modules mix engineering with variable state.
What makes the reactive plans special is that both their rep-
resentation and the code that exploits it are used in all BOD
agents. Extensive research has lead me to believe the BOD
reactive plans are simply the best way to do behavior arbi-
tration in a modular single agent [6, 7, 11]. Obviously it
would be useful to find other such generically useful repre-
sentations, since reusing solutions reduces the development
time on an agent. In the rest of this section, I will discuss
three other biologically-inspired types of learning or plas-
ticity, two of which I am currently developing under BOD.

5.1 Drives and Emotions

Because the reactive plans underlying BOD action se-
lection are relatively fixed, they do not represent well the
sorts of variation that the brain represents chemically such
as drives for food or sleep, or emotional states such as anger
or fear. The correct way to encode these sorts of variation
in BOD is as behaviors. However, these “behaviors” are so
stereotyped, and have such simple state (essentially a single
drive level) that they are effectively their own type.

I have developed a class,variable-drive-memory, which
has five variables:

• total: the level of the drive, which is normally raised
by one per time-increment (time-increment is an ad-
justable value, which allows for varying simulation
speed during debugging and experiments.)

• last-update-time: total isn’t actually updated at every
time increment, but rather when it is observed. The
new value is computed using total, this value and the
current real time.

• latch: a binary value for whether this drive will cur-
rently affect behavior; aids persistence. directly as
well.

• trigger-time: when total gets to this value,latch is
turned to true. If total gets to 0,latch is turned to false.

• gratifactor: only one value (total) is used to represent
the level of the drive, but satiating the drive may take
longer than activating it (as in hunger) or shorter (as
may be true in anger, though see below.) This is the
standard rate at which a gratifying action reduces the
drive level.

The class also has methods for increasing or decreasingto-
tal, which might happen acutely or at accelerated rates. For
example, if an agent is attacked it might get angry suddenly,
or if it is running it might get hungry faster than the default
rate. Another method allows switching the value oflatch if
total is currently betweentrigger-timeand 0. This allows



an agent to engage in a consummatory action for a drive
opportunistically. For example, an agent that isn’t hungry
enough to actively seek food may eat some if it is offered in
a social setting.

To date I have used this type of behaviors to create a sim-
ulation of a primate colony who’s members have two drives:
one for grooming and one for wandering alone (a stand-in
for foraging.) I have been using this model to explore the
impact of adding simple social behaviors (such as tolerance
of grooming) on the time spent by the group as a whole pur-
suing their goals [9]. We are currently extending the model
to include emotions such as anger and happiness.

5.2 Task Learning

The fact that BOD reactive plans are engineered bars
BOD agents from doing something else real animals do:
learn new tasks or new vertical modules. Again though, the
extent to which animals have this capacity tends to be ex-
aggerated in folk psychology. For example, pigeons can’t
learn to flap their wings for food or to peck to avoid shock,
although theycan learn to flap their wings to avoid shock
or to peck to get food. Dogs can learn a large number of
tricks, but not how to unwrap a leash they are tethered to if
they have wound it around a pole.

_ _ _ _Â

Â

Â

Â
_ _ _ _

Action
Selection

apparatus
test-board

reward

board-only, hand, buzzer, give-peanut, new-test,

no-test, finish-test, save-result, rewarded
oo

monkey
visual-attention

hand

grasping,noises,
grasp-seen, hand

OO

tester
tests, test-phase

criteria
num-correct

pending-test, set-test
criteria UUUUUUUUUUUUUUUUUU

jjUUUUUUUUUUUUUUUUUUUUU
pop-test

OO

sequence
seq

sig-dif
weight-shift

make-choice,

learn-from-reward
//

rule-learner
*attendants
*rule-seqs

current-focus
current-rule

target-chosen, focus-rule, pick-block,
priority-focus, rules-from-rewardMMMMMMMMMMMMMMMMMMMMMMM

ffMMMMMMMMMMMMMMMMMMMMMMMMM

look-atWWWWWWWWWWWWWWWWWWWWW

kkWWWWWWWWWWWWWWWWWWWWW

Figure 4. Behaviors used for an artificial life
model of transitive inference learning. No-
tice that this single BOD agent represents two
real-world agents, a monkey and a testing ap-
paratus.

I have built a model that learns what is effectively one
component of a reactive plan within a particular context.
The context is a model of transitive inference learning as
performed by animals and children [8, 33]. The model
shows simultaneous learning of both context / action pairs,
and a set of prioritizations between the different contexts.
These prioritizations determine when more than one con-
text applies, which action should be taken. This amounts to
a reactive plan — a prioritized set of context / action pairs.

To date we have demonstrated that this models both hu-
man and non-human primate learning of transitive infer-
ence. I am currently working to extend the model further
to model non-human primate learning of other tasks. In
this model I anticipate learning not only the context / ac-
tion pairs and their priorities, but also when new contexts or
actions need to be discriminated, and how this impacts the
task representation as a whole. The performance context the
agent believes itself to be in will determine the set of things
it might learn as well as the things it might do.

This sort of learning mechanism also has a biologi-
cal correlate: the hippocampal learning system. I do
not, however, expect that such a general-purpose horizon-
tal hippocampal-learning module would become a typical
component of real-time BOD agents. This sort of learn-
ing takes a great deal of time even when heavily biased,
so defies the BOD principle of guaranteeing successful and
timely learning. However, it is necessary for true mam-
malian learning.

5.3 Phenotype Swaps

Finally, I’d like to describe a very different form of natu-
ral plasticity. Hofmann and Fernald [22] have shown that
both physical characteristics and expressed behavior can
change extremely rapidly (within minutes) following a sin-
gle traumatic (whether positive or negative) social event.
The representations underlying these changes seem to be
phenotypicin nature, with concurrent changes of gene ex-
pression in large numbers of neural synapses. The pheno-
types in question determine whether a male Cichlid fish fol-
lows a behavior pattern of simple schooling, feeding and
growth, or one of aggressive mating and territory defense
which does not allow much time for growth. Male cichlid
apparently alternate between these phenotypes. Not only
behavior, but coloration change immediately after a deci-
sive social event (a fight outcome), while gonad and overall
size and shape gradually shift during the following weeks.

I have no immediate plans to model this sort of behavior,
but it could be fairly easily done by implementing more than
one action-selection plan hierarchy per agent, plus a special
arbitration mechanism dedicated to swapping between these
two plans. Since top-down expectations influence which
behaviors are actively utilized by a BOD agent, this would
effectively (though not actually) excite or inhibit other rele-
vant behavior modules.

Whether this sort of adaptation can even be called learn-
ing is a somewhat murky question. The representation is not
a mental structure, and could not be used or manipulated in
any other way. Yet an event (the result of a fight) has been
used to select a set of behavior which is only cost effective
if that outcome serves to predict a reasonable period of suc-
cess in near-future events of the same kind. The fish will



only receive payoff for the hard work of defending a terri-
tory if it does so long enough to reproduce and protect its
progeny. Thus this might be a sort of learning, the learning
of a new social rank.

6 Conclusions

In this paper, I have described how modularity can be
used to facilitate specialized learning for a situated agent.
I have described the advantages of the modular approach
taken by Behavior-Based Artificial Intelligence (BBAI),
and suggested that its greatest strengths lie in its empha-
sis on the design process for creating intelligent agents, and
its decomposition along task lines, which again makes for
easier programming. I have argued that progress in this field
has been hampered by the difficulty of designing behavior
arbitration under early architectures, and by not exploiting
the opportunity within a modular system to create special-
ized representations and learning systems. I have also pro-
posed my own system, Behavior-Oriented Design (BOD)
as an alternative model for moving BBAI forward. BOD
does exploit specialized representations and provides for a
simplified form of behavior arbitration in a single behav-
ior module. As such, it is a useful methodology both for
creating interesting artifacts and for modelling natural in-
telligence.
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