
MESO: Perceptual Memory to Support Online Learning
in Adaptive Software

�

E. P. Kasten and P. K. McKinley
Software Engineering and Network Systems Laboratory

Department of Computer Science and Engineering
Michigan State University

East Lansing, Michigan 48824�
kasten,mckinley�@cse.msu.edu

Abstract

Adaptive and autonomic systems often must be able to
detect and respond to errant behavior or changing condi-
tions with little or no human intervention. Decision making
is a critical issue in such systems, which must learn how
and when to invoke corrective actions based on past experi-
ence. This paper describes the design, implementation and
evaluation of a perceptual memory system, called MESO,
that supports online decision-making in adaptive systems.
MESO uses clustering and pattern classification methods
while addressing the needs of online, incremental learning.

Keywords: adaptive software, decision making, imitative learning,
machine learning, pattern classification, perceptual memory.

1 Introduction

Increasingly, software needs to adapt to dynamic ex-
ternal conditions involving hardware components, network
connections, and changes in the surrounding physical envi-
ronment [5, 10, 23]. For example, to meet the needs of mo-
bile users, software integrated into hand-held, portable and
wearable devices must balance several conflicting concerns,
including quality-of-service, security, energy consumption,
and user preferences. Moreover, the promise of autonomic
computing systems [16], that enable software to dynami-
cally self-heal and self-manage, appeals to system’s admin-
istrators and users alike.

In adaptive applications, future decisions should benefit
from past experience, helping to improve the fitness of the�

This work was supported in part by the U.S. Department of the Navy,
Office of Naval Research under Grant No. N00014-01-1-0744, and in part
by National Science Foundation grants CCR-9912407, EIA-0000433, and
EIA-0130724.

software with respect to its environment and/or function.
However, learning from experience requires that a system
remember appropriate responses to sensed environmental
context. Perceptual memory, a type of long-term memory
for remembering external stimulus patterns [7], plays an im-
portant role in supporting context-aware, adaptive software.

The main contribution of this paper is to present a per-
ceptual memory system, called MESO1, that applies pat-
tern classification and clustering techniques [6] to online,
dynamic learning systems. The benefits of MESO include:
rapid incremental training, rapid reorganization of an exist-
ing classifier tree, high recall accuracy, lack of dependence
on a priori knowledge of adaptive actions, and support for
data compression. Each of these benefits is important to
constructing a dynamic decision-maker. For instance, incre-
mental training enables a system to learn over time, address-
ing changing user requirements or environments. Limiting
the impact of a growing population of training patterns can
be addressed using data compression, reducing the mem-
ory and processor requirements needed for managing large
data sets. We show how MESO can be used to enable soft-
ware decision-making by presenting preliminary results of
experiments with an audio streaming application that can
imitatively learn[1, 13] how to adapt to changing network
conditions. Due to space limitations, many details of this
study are omitted here, but can be found in the accompany-
ing technical report [15].

2 Background and Related Work

An adaptive software system must include a decision-
making component to realize adaptive behavior. Learning-
based approaches [11, 22] show substantial promise for ad-
dressing the needs of decision makers. By observing its

1The term MESO refers to the tree algorithm used by the system (Multi-
Element Self-Organizing tree).

environment, an application can determine if it is operating
within acceptable limits. For instance, if a network applica-
tion perceives a high packet loss rate, it might interpret this
condition as detrimental to quality of service and decide to
increase the level of error correction. Once invoked, this re-
sponse is evaluated and if acceptable, assimilated into the
decision maker’s experience for possible future use in sim-
ilar situations.That is, adaptive systems need to remember
and recall past experience.

We explore pattern classification and clustering methods
for associating adaptive responses with observed or sensed
data pertinent to application quality-of-service. The em-
bodiment of this method is aclassifier[6] that uses super-
vised learning to produce a model of environmental stimuli.
Comprising the operation of a classifier are two basic func-
tions: training and testing. During training, patterns are
added to the classifier, enabling the construction of an in-
ternal model of the training data. Each training pattern is
an array of continuous, binary or nominal values labeled as
belonging to a specific, real-world category. Once the clas-
sifier has been trained, the system can be queried using an
unlabeled pattern. The classifier then tests this pattern and
returns a label, indicating the category to which the tested
pattern most likely belongs.

Clustering and pattern classification research is an ac-
tive field of study. Recently, a number of projects have
addressed clustering and classification of large data sets,a
characteristic of decision making for autonomic software.
Tantrum et al. [21] consider model-based refractionation for
clustering large data sets. Yu et al. [24] use an hierarchi-
cal approach to clustering using support vector machines
(SVMs). Kalton et al. [14] address the growing need for
clustering by constructing a framework that supports many
clustering algorithms. Methods for online clustering and
classification have also been explored [4, 17]. Such online
methods might be used as the basis for a perceptual memory
system similar to MESO.

Like our project, other works have explored the use of
statistical methods and pattern classification and clustering
techniques in learning systems. Some have useddevelop-
mental learningalgorithms that enable a system to learn on-
line through interaction with the physical world. For exam-
ple, Hwang and Weng [9] developed hierarchical discrimi-
nant regression (HDR) and applied it successfully as part of
the developmental learning process in humanoid robots. In
addition, Ivanov and Blumberg [11] developed the layered
brain architecture [11], which was used for the construction
of synthetic creatures, such as a “digital dog.” That project
used clustering and classification methods to construct per-
ceptual models as part of the dog’s developmental learning
system. A notable aspect of this work is the use of compres-
sion schemes to limit the impact of large training sets on
memory consumption and processing power requirements.

Imitative learning, where a learner acquires skills by ob-
serving and remembering the behavior of a teacher, has
also been studied in the context of providing humanoid
robots with motor skills. Amit and Mataric̀ [1] used hidden
Markov models (HMMs) to learn aerobic-style movements.
The ability of the system to reconstruct motion sequences
is encouraging, demonstrating the potential importance of
imitative learning. Jebar and Pentland [13] conducted imi-
tative learning experiments using a wearable computer sys-
tem that included a camera and a microphone. A human
subject was observed by the system during interactions with
other people. The observed training data was used for train-
ing an HMM. Later the system was allowed to respond
autonomously when presented with visual and audio stim-
uli, demonstrating a limited ability to reproduce correct re-
sponses. However, since learning by observing real hu-
man behavior is very complex, even limited recognizable
response is significant and promising.

The key hypothesis of our project is that clustering and
classification methods can be extended to support decision
making in adaptive software. We focus in this paper on
applications that operate over lossy wireless networks and
thereby must accommodate periods of high packet loss.
However, error correction or retransmission often consumes
more bandwidth and increases packet delay. Applications
must balance these concerns while correctly choosing a re-
sponse for current conditions. By measuring the loss rate,
bandwidth and other network and system behavior, a pat-
tern can be constructed that enables a decision maker to
“remember” an appropriate response.

3 MESO

As a first step in our study, we developed MESO, a per-
ceptual memory system for adaptive software. At a basic
level, MESO functions as a pattern classifier, and can be
used for incrementally classifying environmental stimulior
other data while accomodating very large data sets. Indeed,
in early experiments we used HDR [9] to classify environ-
mental stimuli related to application quality of service. The
insight gleaned from these experiments led to our design of
MESO.

As depicted in Figure 1, a unique feature of MESO’s de-
sign is the use of small agglomerative clusters, calledsen-
sitivity spheres, that aggregate similar training patterns. In
adaptive software, training patterns comprise observations
related to quality of service or environmental context, such
as network bandwidth or physical location. The quantity
of training patterns collected while a system executes may
be very large, requiring greater memory and processor re-
sources as new patterns are added to the classifier. How-
ever, many training patterns may be very similar, enabling

their aggregation into a much smaller number of sensitivity
spheres while helping limit resource consumption.

The size of the sensitivity spheres is determined by a�
value that specifies the sphere radius in terms of dis-

tance (e.g. Euclidean distance) from the sphere’s center.
A sphere’s center is calculated as the mean of all patterns
that have been added to that sphere. The

�
is a ceiling value

for determining if a training pattern should be added to a
sphere, or if creation of a new sphere is required. As with
many other classifiers, MESO uses a hierarchical data struc-
ture, or tree, to organize training patterns for efficient re-
trieval. The MESO tree is built starting with a root node
that comprises a set of all sensitivity spheres. The root node
is then split into subsets of similar spheres, producing child
nodes. Each child node is further split into subsets until
each child comprises only one sphere. Consolidating simi-
lar patterns into sensitivity spheres enables construction of
a tree using only spheres rather than agglomerating individ-
ual patterns at tree nodes. Moreover, many agglomerative
custering algorithms construct a tree by agglomerating in-
dividual patterns into large clusters near the root of the tree,
and then split these clusters at greater tree depths. In such
a structure, the tree must be reorganized using the training
patterns directly. Conversely, MESO can be reorganized us-
ing only existing sensitivity spheres. The use of sensitivity
spheres enables a MESO tree to be more rapidly reorga-
nized than approaches that require direct consideration of
training patterns.

 0

 5

 10

 15

 20

 0 5 10 15 20

Figure 1. Sensitivity spheres for three 2D-
Gaussian clusters. Circles represent the
boundaries of the spheres as determined by
the current

�
.

As shown in Figure 2, sensitivity spheres are partitioned
into sets during the construction of a tree. Each node of the
tree comprises a collection of sensitivity spheres called a

partition, defined as a subset of similar spheres. A partition
may have one or more children, each comprising a subset of
the parent’s sensitivity spheres. Apivot sphereis selected
for each partition and used to assign other spheres, nearest
to the pivot, as members of the partition. Smaller parti-
tions provide finer discrimination and better classification
of test patterns. Moreover, the partitioning of sensitivity
spheres produces a hierarchical model of the training data.
That is, each partition is an internal representation of a sub-
set of the training data that is produced by collecting those
spheres that are most similar to a pivot sphere. At greater
tree depths, parent partitions are split, producing smaller
partitions of greater similarity. For each partition, classifica-
tion proceeds by comparing a test pattern with each child’s
pivot and following the branch to the child containing the
pivot that is most similar. In this way, the search continues
at each tree depth. At a leaf node, a label is returned in-
dicating the category to which the test pattern most likely
belongs.

Figure 2. MESO tree organization. The rect-
angles are partitions and the shaded spheres
are partition pivots. The root partition is split
successively until a leaf is formed where a
partition contains only one sphere.

By leveraging this hierarchical structure, a relatively
simple distance metric, even Euclidean distance, can be
used to achieve high recall accuracy. As shown in Sec-
tion 4, another advantage of this approach is that it requires
a minimum amount of calculation, enabling rapid classifier
training and testing. In addition, MESO supports incremen-
tal training. Incremental training enables construction of a
MESO tree by adding one pattern at a time. As such, MESO
can be trained and tested during concurrent interaction with
users or other system components.

An important consideration in building an efficient
MESO tree is how to determine an appropriate

�
for con-

structing sensitivity spheres. For each data set, a
�

value
needs to be calculated. If

�
is too small, training time in-

creases dramatically. If too large, testing time becomes

unacceptable. Moreover, data set compression requires a
proper� to balance the tradeoff between compression rate
and recall accuracy.

Since online learning is an incremental process, it is pos-
sible to adjust� incrementally as MESO is trained. Key
to incrementally calculating a good� is determining a�
growth functionthat balances sphere creation with sphere
growth. That is, rapid� growth during early training causes
few spheres, with very large� ’s, to agglomerate many pat-
terns. Rapid early growth creates a coarse-grained, ineffi-
cient tree where most testing time may be spent in a linear
search of a single sphere. However, overly slow� growth
produces a large number of very small spheres that contain
only a few patterns. Having many small spheres is expen-
sive, in terms of both space and time, to organize as a MESO
tree. MESO’s� growth function is defined as:

� ��	
 � �
 � � �
� �� � �� �
 � � � ��� �
where the
 term is the distance between the new pattern
and the nearest sensitivity sphere. The

� scales the result
relative to the difference between the current� and
. In-
tuitively, the denominator of� ��	
 limits the growth rate
based on how far the current� is from
. That is, if
 is
close to� then� will grow to be nearly
. However, if
 is
much larger than� the increase will be only a small fraction
of
 � � .

The sigmoid-curve activation function,� , inhibits sensi-
tivity sphere growth when the number of spheres is small
compared to the number of patterns. This function is de-
fined as:

� � �� � ���� � ��� � ��� �
where� � !"#� # ! $%%#�& and' is a configuration parameter in the
range() � �*)+

. Increasing' moves the center of the sigmoid
curve to the right, suppressing sphere growth and encourag-
ing the production of new spheres. The���� �� function is
the hyperbolic tangent.

Our � ��	
 function balances sphere production with
sphere growth, producing good spheres for a wide range
of values for'. Only for very large values of' is growth
inhibited sufficiently to significantly impact training time.
The � ��	
 function promotes the production of trees that
are comparable with good choices for fixed� values.

Compression. Adaptive systems often must continue to
function for long periods while addressing changing user
preferences and the sensed environment. Such an enormous
amount of data requires substantial processor and storage
resources, potentially inhibiting timely response by deci-
sion makers or impacting application performance. Thus,

perceptual memory systems may need to “forget” less in-
formative training samples in favor of important or novel
observations. Compression techniques eliminate training
patterns while attempting to minimize information loss.

In MESO, compression takes place on a per sensitivity
sphere basis. That is, rather than trying to compress the en-
tire data set using a global criteria, the patterns in each sen-
sitivity sphere are compressed separately. Moreover, com-
pression is further limited so that all existing pattern labels
are not eliminated from a sphere. We implemented three
types of compression, the evaluation of which is discussed
in Section 4.

Means compressionreduces the set of patterns in each
sensitivity sphere to the mean pattern vector for each la-
bel. This is the most aggressive and simple of the compres-
sion methods. Moreover, the computational requirements
are quite low.

Spherical compressionis a type of boundary compres-
sion [11] that hypothesizes that patterns on the boundaries
between sphere’s are most important to the classification
of test patterns. For each sphere, the feature values are
converted to spherical coordinates. Along a given vector
from the sphere center, only those patterns farthest from the
sphere center are kept.

Orthogonal compressionremoves all the patterns that are
not used for constructing an orthogonal representation of a
sphere’s patterns. The idea is to keep only those patterns
that are most important as determined by their orthogonal-
ity. Samples that represent parallel vectors in n-dimensional
space are removed.

Complexity. Table 1 shows the time and space com-
plexities for MESO and some well-known clustering algo-
rithms [12]. In this table,, is the number of patterns,- is
the number of clusters and. is the number of iterations to
convergence. Without compression, MESO has a worst case
space complexity of/ �,�, comparable to the shortest span-
ning path algorithm. MESO’s memory consumption can be
significantly reduced with compression. Search complex-
ity is / ��01 2 - � � / �34� for a balanced tree, where5 is the
maximum number of children per node,34 is the average
number patterns agglomerated by a sensitivity sphere, and-
represents the number of sensitivity spheres produced. The

34 component represents the number of operations required
to assign a category label once the most similar sensitiv-
ity sphere has been located. Thus, the worst case search
complexity occurs when only one cluster is formed and the
search algorithm degenerates into a linear search of/ �,�.
Conversely, a best case search complexity of/ ��01 2 - � oc-
curs when one sensitivity sphere is formed for each training
pattern.

Intuitively time complexity for training can be consid-
ered in terms of locating the nearest sensitivity sphere to

Algorithm Time Space
MESO 6 78 9:; < = > 6 78 >
leader 6 7=8> 6 7= >=-means 6 78= ?> 6 7= >
ISODATA 6 78= ?> 6 7= >
shortest spanning path 6 78@ > 6 78 >
single-line 6 78@ 9:; 8 > 6 78 @ >
complete-line 6 78@ 9:; 8 > 6 78 @ >

Table 1. Time and space complexities for sev-
eral clustering algorithms [12].

a new pattern and adding the pattern to that sphere. If a
sufficiently close sphere cannot be found, a new sphere is
created. Locating the nearest sphere is anA BCDE F G H

op-
eration. This search must be completed once for each ofI patterns. Each pattern must also be added to a sensitiv-
ity sphere, and

G
sensitivity spheres must be created and

added to the MESO tree. This process yields a complexity
of A BI CDE F G H J A BI H J A BG H J A BG CDEF G H

which reduces
to a constant multiple ofA BI CDE F G H

. Assuming an appro-
priate K selection and a data set of significant size, MESO
has a time complexity better than the leader algorithm.

4 MESO Assessment

We evaluated MESO as a pattern classifier using several
standard data sets in cross-validation experiments. The re-
sults illustrate the recall accuracy of MESO. We also com-
pare MESO with the IND classifier [3] to provide a bench-
mark for MESO performance.

The Data Sets. Table 2 lists the data sets used to assess
MESO. The number of patterns and features per pattern are
shown for each data set. All but one of the data sets were
retrieved from the UCI [2] and KDD [8] machine learn-
ing repositories. The ATT faces [20] data set was acquired
from AT&T Laboratories Cambridge. Most of these data
sets comprise continuous, integer or binary feature mea-
surements. For instance, the cover type data set contains
continuous features, measuring features such as elevation
or slope, and binary values indicating whether a pattern is a
particular soil type. However, the mushroom data set con-
sists entirely of nominal values encoded as alpha charac-
ters converted to their ASCII equivalent for processing by
MESO. In contrast, the ATT Faces data set comprises en-
tirely of image pixel values of human faces.

The Japanese vowel data set requires further description.
This data set comprises 640 time series blocks where each
block consists of a set of records. Each record comprises
12 continuous measurements of utterances from nine male
speakers. The 9,859 patterns are produced by treating each
record as an independent pattern and randomizing the data

Data Set Size Features Classes
Iris 150 4 3
ATT Faces 360 10,304 40
Mult. Feature 2,000 649 10
Mushroom 8,124 22 2
Japanese Vowel 9,859 12 9
Letter 20,000 16 26
Cover Type 581,012 54 7

Table 2. Data set sizes and feature counts.

set. As such, no understanding of utterance order is re-
tained. Thus, the classification task is to identify the speaker
of each utterance independent of its position in a time series.

Experimental Method. We tested MESO using cross-
validation experiments as described by Murthy et al. [19].
The experiment proceeds as follows:

1. Randomly divide the training data into
G

equal-sized
partitions.

2. For each partition, train the classifier using all the data
outside of the selected partition. Test the classifier us-
ing the data in the selected partition.

3. Calculate the classification accuracy by dividing the
sum of all correct classifications by the total number
of patterns tested.

4. Repeat the preceding stepsI times, and calculate the
mean and standard deviation for theI iterations.

In our tests we divide each data set into 10 equal-sized
partitions and repeat the test 10 times. Thus, MESO is
trained and tested 100 times for each mean and standard
deviation calculated.

Experimental Results. Table 3 shows MESO’s cross-
validation accuracy and standard deviations for each of the
data sets. For comparison, accuracy using the IND classi-
fier is also presented. IND can be used to build a classi-
fier in several modes. Here we include results using CART,
ID3 and Bayesian IND modes. As shown, MESO is com-
petitive with IND, exhibiting better accuracy for most data
sets. Moreover, MESO has good accuracy for data sets of
different size and pattern feature count. The NC designa-
tion indicates that IND could not complete a particular test.
In the case of ATT Faces, lack of memory prevented IND
from completing a data set encoding process, which must
be completed before IND can be trained.

It is noteworthy that MESO shows high accuracy for
the Mushroom data set, since this data set consists entirely
of nominal values. Such pattern values have no compara-
tive numeric value but rather indicate characteristics, such
as cap shape, by name. IND addresses such nominal val-
ues explicitly by designation of some features as nominal.
MESO does not explicitly address nominal values, but still

MESO IND
Data set CART ID3 Bayesian
Iris 95.1%L0.0% 92.8%L0.3% 93.5%L0.7% 94.2%L1.1%
ATT Faces 94.1%L1.0% NC NC NC
Mult. Feature 94.0%L0.6% 93.1%L0.6% 94.2%L0.2% 94.4%L1.1%
Mushroom 100.0%L0.0% 99.9%L0.0% 100.0%L0.0% 100.0%L0.0%
Japanese Vowel 91.9%L0.2% 82.3%L0.3% 84.2%L0.3% 84.7%L0.3%
Letter 90.1%L0.2% 84.4%L0.3% 87.9%L0.1% 88.6%L0.2%
Cover Type 96.0%L0.0% 93.9%L0.9% 95.2%L0.2% 94.4%L0.3%

Table 3. MESO accuracy compared to IND.

Data set Uncompressed Means Spherical Orthogonal
Iris Accuracy% 95.1%L0.0% 95.7%L1.0% 96.0%L1.3% 96.2%L2.27%

Compression% 0.0% 0.02%L0.0% 0.0%L0.0% 1.9%L0.07%
ATT Faces Accuracy% 94.1%L1.0% 93.2%L1.1% 93.7%L1.5% 93.9%L1.7%

Compression% 0.0% 0.0%L0.0% 0.0%L0.0% 0.0%L0.0%
Mult. Feature Accuracy% 94.0%L0.6% 94.2%L0.6% 94.3%L0.5% 94.2%L0.5%

Compression% 0.0% 0.3%L0.0% 0.3%L0.0% 0.3%L0.0%
Mushroom Accuracy% 100.0%L0.0% 99.9%L0.0% 99.7%L0.0% 99.9%L0.0%

Compression% 0.0% 90.3%L0.0% 71.9%L0.5% 90.1%L0.0%
Japanese Vowel Accuracy% 91.9%L0.2% 81.0%L0.4% 90.1%L0.5% 80.6%L0.7%

Compression% 0.0% 93.9%L0.1% 26.5%L1.3% 93.9%L0.0%
Letter Accuracy% 90.1%L0.2% 87.8%L0.3% 90.2%L0.4% 87.5%L0.4%

Compression% 0.0% 88.9%L0.2% 22.0%L1.0% 89.0%L0.2%
Cover Type Accuracy% 96.0%L0.0% 82.5%L0.7% 95.1%L0.0% 82.1%L0.3%

Compression% 0.0% 98.2%L0.2% 48.0%L0.9% 98.3%L0.1%

Table 4. Results when using compression.

accurately classifies these nominal patterns. The high re-
call accuracy may be due to MESO’s ability to capture n-
dimensional structure. Determining how MESO addresses
nominal and mixtures of nominal and continous values war-
rants further exploration.

Compression. Table 4 shows MESO results using the
three data compression methods described earlier. All re-
sults were generated using cross-validation. Means com-
pression provides high compression and good accuracy.
This result can be attributed to applying compression on a
per sensitivty sphere basis. As such, the ability of MESO
to capture the n-dimensional structure of the training data
can be leveraged to limit information loss during compres-
sion. For all compression methods, small data sets are com-
pressed very little. Limited compression is expected sinceM
growth is inhibited during early training, and spheres con-
tain only a few samples. However, since processor and stor-
age usage is low for small data sets, compression is of lim-
ited importance. Larger data sets are compressed signifi-
cantly while recall accuracy remains high.

5 The Network Application

We explored the use of MESO to support learning in
adaptive software by applying it to the implementation of
an audio streaming network application, called XNetApp,
that can adapt to packet loss over a wireless network. A sta-

tionary workstation transmits an audio data stream to a mo-
bile receiver over a wireless network. Our goal is to enable
the mobile device to adapt to the wireless packet loss en-
countered as a user roams about a wireless cell. One way to
address the high loss rates of wireless channels is to insert
redundant information into the data stream, enabling a re-
ceiver to correct some losses without contacting the sender
for retransmission. This study focuses onerasuresof pack-
ets. An (N O P) block erasure code[18] convertsP source
packets intoN encoded packets, such that anyP of theN en-
coded packets can be used to reconstruct theP source pack-
ets.

The XNetApp’s decision maker uses MESO for “re-
membering” user preferences for balancing packet loss
with bandwidth consumption. By autonomously modify-
ing (N,P) settings and packet size, the decision maker can
adapt the XNetApp based on current environmental condi-
tions. In our experiments, the decision maker learns about
a user’s preferences through imitative learning. Thus, a
user shows the XNetApp how to adapt to a rising loss rate
by selecting an (N,P) setting with greater redundancy. If
the perceived loss rate then drops to an acceptable level,
the user reinforces the new configuration (e.g., by press-
ing a particular key), and the XNetApp “remembers” the
sensed environment and current configuration by storing it
using MESO. When operating autonomously, the decision
maker senses current environmental conditions and calcu-
lates time-sampled and Fourier features, constructing a pat-
tern. Using this pattern, the XNetApp queries MESO for

a system configuration that most likely addresses current
conditions. Then, the decision maker emulates the user’s
actions and adapts the XNetApp, changing the configura-
tion to match that returned from MESO.

As shown in Table 5, 56 environmental features are
sensed or calculated and used as input to the decision mak-
ing process. The first 4 features are instantaneous measure-
ments. Perceived features are observed from the applica-
tion’s viewpoint. That is, perceived packet loss represents
the packet loss as witnessed by the application following er-
ror correction, while real packet loss is the number of pack-
ets actually dropped prior to error correction. For each of
the first four features, 7 time-sampled measurements and 6
Fourier spectrums are calculated.

Feature Description
1–4 Instantaneous measurements: bandwidth, per-

ceived packet delay, perceived loss and real loss.
5–32 Time-sampled measurements: median, average,

average deviation, standard deviation, skewness,
kurtosis and derivative.

33-56 Fourier spectrum of the time-sampled measure-
ments: median, average, average deviation, stan-
dard deviation, skewness and kurtosis.

Table 5. Features used for training and testing
the XNetApp.

6 Results

For testing, we studied the ability of the XNetApp to
autonomously balance real packet loss and bandwidth con-
sumption. The IP multicast protocol was used for transmis-
sion of the data stream. Data was collected as a user roamed
about a wireless cell carrying a notebook computer running
an XNetApp receiver.

We experimented with the XNetApp using a 1.5GHz
AMD Athlon workstation for data transmission. A 500MHz
X20 IBM Thinkpad notebook was used as a mobile receiver.
All systems run the Linux operating system. We tested atop
an 11Mb 802.11b wireless network as a user roamed about a
wireless cell. The XNetApp was trained using an emulated
loss rate in the rangeQR S R TUV

.
Figure 3 shows a comparison of real versus perceived

loss observed as the user roamed about the cell. The XNe-
tApp was able to adapt to changing real loss rates, and min-
imize application loss. The center plot depicts the redun-
dancy ratio, defined asWXYZ[X , showing the responsiveness
of the XNetApp on a real wireless network. Greater re-
dundancy is required during periods of high loss. How-
ever, this redundancy consumes greater network bandwidth.
The XNetApp did not simply choose a high (\ S]

) ratio, but
changed parameters to correspond with the changing real
loss rate.

0.0

0.5

1.0

0.0

0.5

1.0

Lo
ss

 r
at

e

0.0

0.5

1.0

0 400 800
Testing time (seconds)

Figure 3. Comparison of real loss (top), re-
dundancy ratio (center) and perceived loss
(bottom).

Uncompressed Accuracy% 94.1%̂ 0.2%
Compression% 0.0%

Means Accuracy% 87.7%̂ 0.2%
Compression% 91.8%̂ 0.1%

Spherical Accuracy% 92.4%̂ 0.7%
Compression% 5.8%̂ 0.2%

Orthogonal Accuracy% 87.3%̂ 0.4%
Compression% 91.8%̂ 0.1%

Table 6. XNetApp results with and without
compression.

Table 6 shows results from running cross-validation tests
using the data acquired during XNetApp training. This
data was produced during training for autonomous XNe-
tApp operation on a real wireless network. The final train-
ing set contained 32,709 patterns in 10 classes. This table
shows recall accuracy, with and without compression, help-
ing quantify how well the XNetApp can be expected to imi-
tate a user. In all cases, the XNetApp was highly accurate at
“remembering” a user’s preferences for balancing loss rate
with bandwidth consumption.

7 Conclusions

We have presented a perceptual memory approach,
called MESO, that uses pattern classification and cluster-

ing techniques while addressing issues important to sup-
port online developmental learning. We showed that, when
used as a pattern classifier, MESO can accurately classify
patterns from standard data sets. We also implemented an
application that imitatively learns how to make decisions
through interaction with a user. Preliminary results show
that the imitative learning approach, used by the XNetApp,
has promise. We postulate that such software, which can be
trained to make good decisions, may simplify the integra-
tion of software into new or pervasive computing environ-
ments.

Further information. A number of related papers and
technical reports of the Software Engineering and Network
Systems Laboratory can be found at the following URL:
http://www.cse.msu.edu/sens.

Acknowledgements. The authors would like to thank
Professor Juyang Weng, Xiao Huang and Dave Knoester
at Michigan State University for their contributions to this
work.

References

[1] R. Amit and M. Matari. Learning movement sequences
from demonstration. InProceedings of the 2nd International
Conference on Development and Learning, pages 165–171,
Boston, MA, June 2002.

[2] C. L. Blake and C. J. Merz. UCI
repository of machine learning databases.
http://www.ics.uci.edu/_mlearn/MLRepository.html,
1998.

[3] W. Buntine. Tree classification software. InThird National
Technology Transfer Conference and Exposition, Baltimore,
MD, December 1992.

[4] K. Crammer, J. Kandola, and Y. Singer. Online classification
on a budget. InProceedings of Advances in Neural Informa-
tion Processing Systems (NIPS), Cambridge, MA, 2003.

[5] Proceedings of the distributed auto-adaptive and reconfig-
urable systems (DARES’04), held in conjunction with the
24nd international conference on distributed computing sys-
tems ICDCS’04, March 2004.

[6] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classifi-
cation, Second Edition. John Wiley and Sons, Incorporated,
New York, NY, 2001.

[7] J. M. Fuster.Memory in the Cerebral Cortex: An Empirical
Approach to Neural Networks in the Human and Nonhuman
Primate. The MIT Press, Cambridge, MA, 1995.

[8] S. Hettich and S. D. Bay. UCI KDD archive.
http://kdd.ics.uci.edu, 1999.

[9] W.-S. Hwang and J. Weng. Hierarchical discriminant regres-
sion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(11), November 2000.

[10] Proceedings of the international conference on autonomic
computing (ICAC’04), May 2004.

[11] Y. A. Ivanov and B. M. Blumberg. Developmental learning
of memory-based perceptual models. InProceedings of the
2nd International Conference on Development and Learn-
ing, pages 165–171, Boston, MA, June 2002.

[12] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering:A
review. ACM Computer Surveys, 31(3):264–323, September
1999.

[13] T. Jebara and A. Pentland. Statistical imitative learning from
perceptual data. InProceedings of the 2nd International
Conference on Development and Learning, pages 191–196,
Boston, MA, June 2002.

[14] A. Kalton, K. Wagstaff, and J. Yoo. Generalized clustering,
supervised learning, and data assignment. InProceedings of
the 7th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 299–304, San Fran-
cisco, CA, August 2001.

[15] E. P. Kasten and P. K. McKinley. MESO: Perceptual mem-
ory to support online learning. Technical Report MSU-CSE-
04-15, Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI, April 2004.

[16] J. O. Kephart and D. M. Chess. The vision of autonomic
computing.IEEE Computer, pages 41–50, January 2003.

[17] J. Kivinen, J. J. Smola, and R. C. Williamson. Online learn-
ing with kernels. InProceedings of Advances in Neural
Information Processing Systems (NIPS), Cambridge, MA,
2002.

[18] A. J. McAuley. Reliable broadband communications using
burst erasure correcting code. InProceedings of ACM SIG-
COMM, pages 287–306, September 1990.

[19] S. Murthy, S. Kasif, and S. Salzberg. A system for induction
of oblique decision trees.Journal of Artificial Intelligence
Research (JAIR), 2:1–32, 1994.

[20] F. Samaria and A. Harter. Parameterisation of a stochastic
model for human face identification. InProceedings of 2nd
IEEE Workshop on Applications of Computer Vision, Sara-
sota, FL, December 1994.

[21] J. Tantrum, A. Murua, and W. Stuetzle. Hierarchical model-
based clustering of large datasets through fractionation and
refractionation. InProceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pages 183–190, Edmonton, Alberta, CA, July 2002.

[22] J. Weng and W.-S. Hwang. An incremental learning algo-
rithm with automatically derived discriminating features. In
Proceedings Asian Conference on Computer Vision, pages
426–431, Taipei, Taiwan, January 2000.

[23] Proceedings of the ACM workshop on Self-Healing, Adap-
tive and self-MANaged Systems (SHAMAN), held in con-
junction with the 16th annual ACM international conference
on supercomputing, June 2002.

[24] H. Yu, J. Yang, and J. Han. Classifying large data sets using
SVMs with hierarchical clusters. InProceedings of the 9th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 306–315, Washington, D.C.,
August 2003.

