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Abstract software with respect to its environment and/or function.
However, learning from experience requires that a system
Adaptive and autonomic systems often must be able taremember appropriate responses to sensed environmental
detect and respond to errant behavior or changing condi- context. Perceptual memorya type of long-term memory
tions with little or no human intervention. Decision making for remembering external stimulus patterns [7], plays anim
is a critical issue in such systems, which must learn how portantrole in supporting context-aware, adaptive saiwa
and when to invoke corrective actions based on past experi- The main contribution of this paper is to present a per-
ence. This paper describes the design, implementation ancceptual memory system, called MESQhat applies pat-
evaluation of a perceptual memory system, called MESO,tern classification and clustering techniques [6] to online
that supports online decision-making in adaptive systems.dynamic learning systems. The benefits of MESO include:
MESO uses clustering and pattern classification methodsrapid incremental training, rapid reorganization of arsexi
while addressing the needs of online, incremental learning ing classifier tree, high recall accuracy, lack of dependenc
on a priori knowledge of adaptive actions, and support for
Keywords: adaptive software, decision making, imitateaghing, data compression. Each of these benefits is important to
machine learning, pattern classification, perceptual mgmo constructing a dynamic decision-maker. For instancegincr
mental training enables a system to learn over time, address
ing changing user requirements or environments. Limiting
1 Introduction the impact of a growing population of training patterns can
be addressed using data compression, reducing the mem-
ory and processor requirements needed for managing large

Increasir_lgly, s_oftwa_re needs to adapt to dynamiC ex- a3 sets. We show how MESO can be used to enable soft-
ternal conditions involving hardware components, network | . decision-making by presenting preliminary results of

connections, and changes in the surrounding physical env"experiments with an audio streaming application that can
ronment [5, 10, 23]. For example, to meet the needs of mo-

X i ) imitatively learn[1, 13] how to adapt to changing network
bile users, software integrated into hand-held, portabte a

. o] conditions. Due to space limitations, many details of this
yveara_ble dewf:es must palance se_veral conflicting gon,cernsstudy are omitted here, but can be found in the accompany-
including quality-of-service, security, energy consuioipt

) _ing technical report [15].
and user preferences. Moreover, the promise of autonomic

computing systems [16], that enable software to dynami-
cally self-heal and self-manage, appeals to system’s admin 2 Background and Related Work
istrators and users alike. . _ o
In adaptive applications, future decisions should benefit ~An adaptive software system must include a decision-

from past experience, helping to improve the fitness of the making component to realize adaptive behavior. Learning-
based approaches [11, 22] show substantial promise for ad-
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environment, an application can determine if it is operatin Imitative learning, where a learner acquires skills by ob-
within acceptable limits. For instance, if a network apglic  serving and remembering the behavior of a teacher, has
tion perceives a high packet loss rate, it might interprist th also been studied in the context of providing humanoid
condition as detrimental to quality of service and decide to robots with motor skills. Amit and Mataric [1] used hidden
increase the level of error correction. Once invoked, tis r  Markov models (HMMs) to learn aerobic-style movements.
sponse is evaluated and if acceptable, assimilated into therhe ability of the system to reconstruct motion sequences
decision maker’s experience for possible future use in sim-is encouraging, demonstrating the potential importance of
ilar situations.That is, adaptive systems need to remember imitative learning. Jebar and Pentland [13] conducted imi-
and recall past experience. tative learning experiments using a wearable computer sys-

We explore pattern classification and clustering methodstem that included a camera and a microphone. A human
for associating adaptive responses with observed or sense@ubject was observed by the system during interactions with
data pertinent to application quality-of-service. The em- other people. The observed training data was used for train-
bodiment of this method is elassifier[6] that uses super- ing an HMM. Later the system was allowed to respond
vised learning to produce a model of environmental stimuli. @utonomously when presented with visual and audio stim-
Comprising the operation of a classifier are two basic func- Uli, demonstrating a limited ability to reproduce correst r
tions: training andtesting During training, patterns are SPonses. However, since learning by observing real hu-
added to the classifier, enabling the construction of an in-Man behavior is very complex, even limited recognizable
ternal model of the training data. Each training pattern is response is significant and promising.
an array of continuous, binary or nominal values labeled as  The key hypothesis of our project is that clustering and
belonging to a specific, real-world category. Once the clas-classification methods can be extended to support decision
sifier has been trained, the system can be queried using amaking in adaptive software We focus in this paper on
unlabeled pattern. The classifier then tests this pattedn an applications that operate over lossy wireless networks and
returns a label, indicating the category to which the testedthereby must accommodate periods of high packet loss.
pattern most likely belongs. However, error correction or retransmission often congime

Clustering and pattern classification research is an ac-More bandwidth and increases packet delay. Applications
tive field of study. Recently, a number of projects have must balance these concerns while correc.tly choosing a re-
addressed clustering and classification of large dataaets, SPonse for current conditions. By measuring the loss rate,
characteristic of decision making for autonomic software. Pandwidth and other network and system behavior, a pat-
Tantrum et al. [21] consider model-based refractionation f tern can be constructeq that enables a decision maker to
clustering large data sets. Yu et al. [24] use an hierarchi- "@member” an appropriate response.
cal approach to clustering using support vector machines
(SVMs). Kalton et al. [14] address the growing need for 3 MESO
clustering by constructing a framework that supports many
clustering algorithms. Methods for online clustering and
classification have also been explored [4,17]. Such online  As a first step in our study, we developed MESO, a per-
methods might be used as the basis for a perceptual memorgeptual memory system for adaptive software. At a basic
system similar to MESO. level, MESO functions as a pattern classifier, and can be

Like our project, other works have explored the use of used for incrementally classifying environmental stinauli
statistical methods and pattern classification and clingter ~ other data while accomodating very large data sets. Indeed,
techniques in learning systems. Some have umetlop-  in early experiments we used HDR [9] to classify environ-
mental learningalgorithms that enable a system to learn on- mental stimuli related to application quality of servicéneT
line through interaction with the physical world. For exam- insight gleaned from these experiments led to our design of
ple, Hwang and Weng [9] developed hierarchical discrimi- MESO.
nant regression (HDR) and applied it successfully as part of ~ As depicted in Figure 1, a unique feature of MESO's de-
the developmental learning process in humanoid robots. Insign is the use of small agglomerative clusters, cadiea-
addition, Ivanov and Blumberg [11] developed the layered sitivity spheresthat aggregate similar training patterns. In
brain architecture [11], which was used for the constructio adaptive software, training patterns comprise obsematio
of synthetic creatures, such as a “digital dog.” That projec related to quality of service or environmental contextsuc
used clustering and classification methods to construet per as network bandwidth or physical location. The quantity
ceptual models as part of the dog’s developmental learningof training patterns collected while a system executes may
system. A notable aspect of this work is the use of compres-be very large, requiring greater memory and processor re-
sion schemes to limit the impact of large training sets on sources as new patterns are added to the classifier. How-
memory consumption and processing power requirements. ever, many training patterns may be very similar, enabling



their aggregation into a much smaller number of sensitivity partition, defined as a subset of similar spheres. A partition
spheres while helping limit resource consumption. may have one or more children, each comprising a subset of
The size of the sensitivity spheres is determined by athe parent’s sensitivity spheres. plvot spherds selected
¢ value that specifies the sphere radius in terms of dis-for each partition and used to assign other spheres, nearest
tance (e.g. Euclidean distance) from the sphere’s centerto the pivot, as members of the partition. Smaller parti-
A sphere’s center is calculated as the mean of all patterngions provide finer discrimination and better classificatio
that have been added to that sphere. dfeea ceiling value  of test patterns. Moreover, the partitioning of sensiivit
for determining if a training pattern should be added to a spheres produces a hierarchical model of the training data.
sphere, or if creation of a new sphere is required. As with That is, each partition is an internal representation ofta su
many other classifiers, MESO uses a hierarchical data strucset of the training data that is produced by collecting those
ture, or tree, to organize training patterns for efficient re spheres that are most similar to a pivot sphere. At greater
trieval. The MESO tree is built starting with a root node tree depths, parent partitions are split, producing smalle
that comprises a set of all sensitivity spheres. The rooénod partitions of greater similarity. For each partition, clifisa-
is then split into subsets of similar spheres, producinfichi tion proceeds by comparing a test pattern with each child’s
nodes. Each child node is further split into subsets until pivot and following the branch to the child containing the
each child comprises only one sphere. Consolidating simi-pivot that is most similar. In this way, the search continues
lar patterns into sensitivity spheres enables constnuctfo  at each tree depth. At a leaf node, a label is returned in-
a tree using only spheres rather than agglomerating individ dicating the category to which the test pattern most likely
ual patterns at tree nodes. Moreover, many agglomerativebelongs.
custering algorithms construct a tree by agglomerating in-

dividual patterns into large clusters near the root of te,tr @QQ@@QQQ@
|

and then split these clusters at greater tree depths. In such |

a structure, the tree must be reorganized using the training “ OQ@@ “ “

patterns directly. Conversely, MESO can be reorganized us-
ing only existing sensitivity spheres. The use of sensjtivi ﬁ
spheres enables a MESO tree to be more rapidly reorga-
nized than approaches that require direct consideration of
training patterns.
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5°¢ O%fo' 1 By leveraging this hierarchical structure, a relatively
simple distance metric, even Euclidean distance, can be
used to achieve high recall accuracy. As shown in Sec-
0 ‘ ‘ tion 4, another advantage of this approach is that it require
0 5

15 20 a minimum amount of calculation, enabling rapid classifier
training and testing. In addition, MESO supports incremen-
tal training. Incremental training enables constructiba o
MESO tree by adding one pattern at a time. As such, MESO
can be trained and tested during concurrent interactidm wit
users or other system components.

An important consideration in building an efficient
MESO tree is how to determine an appropriét®r con-

As shown in Figure 2, sensitivity spheres are partitioned structing sensitivity spheres. For each data sef,value
into sets during the construction of a tree. Each node of theneeds to be calculated. dfis too small, training time in-
tree comprises a collection of sensitivity spheres called acreases dramatically. If too large, testing time becomes

Figure 1. Sensitivity spheres for three 2D-
Gaussian clusters.  Circles represent the
boundaries of the spheres as determined by
the current 4.



unacceptable. Moreover, data set compression requires gerceptual memory systems may need to “forget” less in-
propers to balance the tradeoff between compression rateformative training samples in favor of important or novel

and recall accuracy. observations. Compression techniques eliminate training
Since online learning is an incremental process, it is pos- patterns while attempting to minimize information loss.
sible to adjusty incrementally as MESO is trained. Key In MESO, compression takes place on a per sensitivity

to incrementally calculating a goaoilis determining a) sphere basis. That is, rather than trying to compress the en-
growth functionthat balances sphere creation with sphere tire data set using a global criteria, the patterns in each se
growth. That s, rapid growth during early training causes sitivity sphere are compressed separately. Moreover, com-
few spheres, with very largés, to agglomerate many pat- pression is further limited so that all existing patternelsb
terns. Rapid early growth creates a coarse-grained, ineffi-are not eliminated from a sphere. We implemented three
cient tree where most testing time may be spent in a lineartypes of compression, the evaluation of which is discussed
search of a single sphere. However, overly stbgrowth in Section 4.

produces a large number of very small spheres that contain  Means compressioreduces the set of patterns in each
only a few patterns. Having many small spheres is expen-sensitivity sphere to the mean pattern vector for each la-
sive, in terms of both space and time, to organize as a MESQbel. This is the most aggressive and simple of the compres-

tree. MESO'’s) growth function is defined as: sion methods. Moreover, the computational requirements
s are quite low.
grows = (d—-d)5f Spherical compressiois a type of boundary compres-
1+1In(d—6+1)2’ sion [11] that hypothesizes that patterns on the boundaries

between sphere’s are most important to the classification
of test patterns. For each sphere, the feature values are
converted to spherical coordinates. Along a given vector
from the sphere center, only those patterns farthest frem th
sphere center are kept.

Orthogonal compressiomemoves all the patterns that are
not used for constructing an orthogonal representation of a
sphere’s patterns. The idea is to keep only those patterns
that are most important as determined by their orthogonal-
ity. Samples that represent parallel vectors in n-dimeradio
space are removed.

where thed term is the distance between the new pattern
and the nearest sensitivity sphere. 'Ignecales the result
relative to the difference between the currérandd. In-
tuitively, the denominator ofirow; limits the growth rate
based on how far the curreditis fromd. That is, ifd is
close tod thend will grow to be nearlyd. However, ifd is
much larger thaid the increase will be only a small fraction
ofd — 4.

The sigmoid-curve activation functioif, inhibits sensi-
tivity sphere growth when the number of spheres is small
compared to the number of patterns. This function is de-

fined as:
Complexity. Table 1 shows the time and space com-
f= 1 4 tanh(%r —3) plexities for MESO and some well-known clustering algo-
2 ’ rithms [12]. In this tablen is the number of patterng, is

spheres ) . ) ) the number of clusters arids the number of iterations to
wherer = J rns @ndcis a configuration parameterinthe - ¢qnyergence. Without compression, MESO has a worst case
range0, 1.0]. Increasing: moves the center of the sigmoid  space complexity of)(n), comparable to the shortest span-
curve to the right, suppressing sphere growth and encouragning path algorithm. MESO’s memory consumption can be
ing the production of new spheres. Ttanh() functionis  significantly reduced with compression. Search complex-
the hyperbolic tangent. ity is O(log, k) + O(3) for a balanced tree, whetgis the

Our grows function balances sphere production with maximum number of children per nodg,is the average
sphere growth, producing good spheres for a wide rangenumber patterns agglomerated by a sensitivity spherek and
of values fore. Only for very large values of is growth  represents the number of sensitivity spheres produced. The
inhibited sufficiently to significantly impact training ten 3 component represents the number of operations required
The grows function promotes the production of trees that to assign a category label once the most similar sensitiv-
are comparable with good choices for fixedalues. ity sphere has been located. Thus, the worst case search
complexity occurs when only one cluster is formed and the

Compression. Adaptive systems often must continue to search algorithm degenerates into a linear searah(ej.
function for long periods while addressing changing user Conversely, a best case search complexit§ @bg, k) oc-
preferences and the sensed environment. Such an enormousirs when one sensitivity sphere is formed for each training
amount of data requires substantial processor and storagpattern.
resources, potentially inhibiting timely response by deci Intuitively time complexity for training can be consid-
sion makers or impacting application performance. Thus, ered in terms of locating the nearest sensitivity sphere to



[ Algorithm | Time ] Space | [ Data Set || Size | Features| Classes]
MESO O(nlog, k) | O(n) Iris 150 4 3
leader O(kn) O(k) ATT Faces 360 10,304 40
k-means O(nkl) O(k) Mult. Feature 2,000 649 10
ISODATA O(nkl) O(k) Mushroom 8,124 22 2
shortest spanning path ~ O(n?) O(n) Japanese Vowel]| 9,859 12 9
single—line O(nz IOg n) O(nZ) Letter 20,000 16 26
complete-line O(n2 Tog 1) O(nz) Cover Type 581,012 54 7

Table 1. Time and space complexities for sev- Table 2. Data set sizes and feature counts.

eral clustering algorithms [12]. set. As such, no understanding of utterance order is re-
tained. Thus, the classification task is to identify the &pea

a new pattern and adding the pattern to that sphere. If aof each utterance independent of its position in a time serie

sufficiently close sphere cannot be found, a new sphere is

created. Locating the nearest sphere iﬂ[’bgq k) op- Experimental Method. We tested MESO using cross-
eration. This search must be completed once for each ofvalidation experiments as described by Murthy et al. [19].
n patterns. Each pattern must also be added to a sensitivThe experiment proceeds as follows:

ity sphere, ande sensitivity spheres must be created and o . ) )
added to the MESO tree. This process yields a complexity 1. Randomly divide the training data intoequal-sized

of O(nlog, k) +O(n) +O(k) + O(k log, k) which reduces partitions.
to a constant multiple o (n log, k). Assuming an appro- 2. For each partition, train the classifier using all the data
priated selection and a data set of significant size, MESO outside of the selected partition. Test the classifier us-
has a time complexity better than the leader algorithm. ing the data in the selected partition.

3. Calculate the classification accuracy by dividing the
4 MESO Assessment sum of all correct classifications by the total number

of patterns tested.

Repeat the preceding stepsimes, and calculate the

- . 4.
We evaluated MESO as a pattern classifier using several mean and standard deviation for théterations.

standard data sets in cross-validation experiments. The re
sults illustrate the recall accuracy of MESO. We also com- | our tests we divide each data set into 10 equal-sized

pare MESO with the IND classifier [3] to provide a bench- hatitions and repeat the test 10 times. Thus, MESO is

mark for MESO performance. trained and tested 100 times for each mean and standard
deviation calculated.

The Data Sets. Table 2 lists the data sets used to assess
MESO. The number of patterns and features per pattern aré&experimental Results. Table 3 shows MESO's cross-
shown for each data set. All but one of the data sets werevalidation accuracy and standard deviations for each of the
retrieved from the UCI [2] and KDD [8] machine learn- data sets. For comparison, accuracy using the IND classi-
ing repositories. The ATT faces [20] data set was acquiredfier is also presented. IND can be used to build a classi-
from AT&T Laboratories Cambridge. Most of these data fier in several modes. Here we include results using CART,
sets comprise continuous, integer or binary feature mea-ID3 and Bayesian IND modes. As shown, MESO is com-
surements. For instance, the cover type data set containgetitive with IND, exhibiting better accuracy for most data
continuous features, measuring features such as elevatiogets. Moreover, MESO has good accuracy for data sets of
or slope, and binary values indicating whether a pattern is adifferent size and pattern feature count. The NC designa-
particular soil type. However, the mushroom data set con-tion indicates that IND could not complete a particular.test
sists entirely of nominal values encoded as alpha characdn the case of ATT Faces, lack of memory prevented IND
ters converted to their ASCII equivalent for processing by from completing a data set encoding process, which must
MESO. In contrast, the ATT Faces data set comprises en-be completed before IND can be trained.
tirely of image pixel values of human faces. It is noteworthy that MESO shows high accuracy for
The Japanese vowel data set requires further descriptionthe Mushroom data set, since this data set consists entirely
This data set comprises 640 time series blocks where eactof nominal values. Such pattern values have no compara-
block consists of a set of records. Each record comprisestive numeric value but rather indicate characteristicshsu
12 continuous measurements of utterances from nine maleas cap shape, by name. IND addresses such nominal val-
speakers. The 9,859 patterns are produced by treating eaches explicitly by designation of some features as nominal.
record as an independent pattern and randomizing the dattESO does not explicitly address nominal values, but still



MESO IND
Data set CART | ID3 | Bayesian
Iris 95.1%+0.0% | 92.8%t0.3% | 93.5%+0.7% | 94.2%t1.1%
ATT Faces 94.1%+1.0% NC NC NC
Mult. Feature 94.0%t0.6% | 93.1%t0.6% | 94.2%+0.2% | 94.4%t1.1%
Mushroom 100.0%t0.0% | 99.9%+0.0% | 100.0%+0.0% | 100.0%t0.0%
Japanese Vowel] 91.9%t0.2% | 82.3%+t0.3% | 84.2%+0.3% | 84.7%+0.3%
Letter 90.1%+0.2% | 84.4%+t0.3% | 87.9%+0.1% | 88.6%t0.2%
Cover Type 96.0%t0.0% | 93.9%t0.9% | 95.29%+0.2% | 94.4%t0.3%
Table 3. MESO accuracy compared to IND.
| Data set [[ Uncompressed Means Spherical Orthogonal
Iris Accuracy% 95.1%+0.0% | 95.7%Et1.0% | 96.0%t1.3% | 96.2%+2.27%
Compression% 0.0% 0.02%+0.0% | 0.0%+0.0% | 1.9%+0.07%
ATT Faces Accuracy% 94.1%t1.0% | 93.2%t1.1% | 93.7%Et1.5% | 93.9%Et1.7%
Compression% 0.0% 0.0%+0.0% | 0.0%+0.0% 0.0%+0.0%
Mult. Feature Accuracy% 94.0%+0.6% | 94.2%+0.6% | 94.3%t0.5% | 94.2%+0.5%
Compression% 0.0% 0.3%+0.0% | 0.3%+0.0% 0.3%+0.0%
Mushroom Accuracy% 100.0%t0.0% | 99.9%+0.0% | 99.7%+t0.0% | 99.9%+0.0%
Compression% 0.0% 90.3%t+0.0% | 71.9%+0.5% | 90.1%0.0%
Japanese Vowedl  Accuracy% 91.9%+£0.2% | 81.0%+0.4% | 90.1%+t0.5% | 80.6%+0.7%
Compression% 0.0% 93.9%+0.1% | 26.5%+1.3% | 93.9%+0.0%
Letter Accuracy% 90.1%+0.2% | 87.8%+£0.3% | 90.2%+t0.4% | 87.5%+0.4%
Compression% 0.0% 88.9%+0.2% | 22.0%+1.0% | 89.0%+0.2%
Cover Type Accuracy% 96.0%+0.0% | 82.5%+0.7% | 95.1%+0.0% | 82.1%+0.3%
Compression% 0.0% 98.2%+0.2% | 48.0%2-0.9% | 98.3%0.1%

Table 4. Results when using compression.

accurately classifies these nominal patterns. The high retionary workstation transmits an audio data stream to a mo-
call accuracy may be due to MESO'’s ability to capture n- bile receiver over a wireless network. Our goal is to enable
dimensional structure. Determining how MESO addressesthe mobile device to adapt to the wireless packet loss en-
nominal and mixtures of nominal and continous values war- countered as a user roams about a wireless cell. One way to
rants further exploration. address the high loss rates of wireless channels is to insert
redundant information into the data stream, enabling a re-

Compression. Table 4 shows MESO results using the ceiver to corregt some_losses without contacting the sender
for retransmission. This study focusesemsuresof pack-

three data compression methods described earlier. All e ats. An o, k) block erasure cod§18] convertsk source

sults were ger_1erate<_j using cross-yalldatlon. Means Com_packets intaw encoded packets, such that @&ngf then en-
pression provides high compression and good accuracy:.

This result can be attributed to applying compression on aCOded packets can be used to reconstruck ree pack-

per sensitivty sphere basis. As such, the ability of MESO ets.

to capture the n-dimensional structure of the training data The XNetApp’s decision maker uses MESO for “re-

can be leveraged to limit information loss during compres- membering” user preferences for balancing packet loss
sion. For all compression methods, small data sets are comWith bandwidth consumption. By autonomously modify-

pressed very little. Limited compression is expected shce ing (n,k) settings and packet size, the decision maker can
growth is inhibited during early training, and spheres con- adapt the XNetApp based on current environmental condi-
tain 0n|y afew 5amp|es_ However, since processor and Stor.tions. In our experiments, the decision maker learns about
age usage is low for small data sets, compression is of lim-2 user’s preferences through imitative learning. Thus, a
ited importance. Larger data sets are compressed signifiliser shows the XNetApp how to adapt to a rising loss rate

cantly while recall accuracy remains high. by selecting anr{,k) setting with greater redundancy. If
the perceived loss rate then drops to an acceptable level,

the user reinforces the new configuration (e.g., by press-
ing a particular key), and the XNetApp “remembers” the
sensed environment and current configuration by storing it
We explored the use of MESO to support learning in using MESO. When operating autonomously, the decision
adaptive software by applying it to the implementation of maker senses current environmental conditions and calcu-
an audio streaming network application, called XNetApp, lates time-sampled and Fourier features, constructing-a pa
that can adapt to packet loss over a wireless network. A sta-tern. Using this pattern, the XNetApp queries MESO for

5 The Network Application



a system configuration that most likely addresses current 1.0
conditions. Then, the decision maker emulates the user's
actions and adapts the XNetApp, changing the configura-

tion to match that returned from MESO. 05 1
As shown in Table 5, 56 environmental features are

sensed or calculated and used as input to the decision mak- A

ing process. The first 4 features are instantaneous measure- 0.0 t }

ments. Perceived features are observed from the applica- 1.0

tion’s viewpoint. That is, perceived packet loss represent
the packet loss as witnessed by the application following er
ror correction, while real packet loss is the number of pack-
ets actually dropped prior to error correction. For each of
the first four features, 7 time-sampled measurements and 6

Loss rate
o
(03]
T

Fourier spectrums are calculated. 28
[ # || Feature Description |
1-4 Instantaneous measurements: bandwidth, per-
ceived packet delay, perceived loss and real loss. 05 b

5-32 Time-sampled measurements: median, average,
average deviation, standard deviation, skewngss,

kurtosis and derivative. 0.0
33-56 || Fourier spectrum of the time-sampled measure- ' 0 400 300

ments: median, average, average deviation, stan- Testing time (seconds)
dard deviation, skewness and kurtosis.

Table 5. Features used for training and testing Figure 3. Comparison of real loss (top), re-
the XNetApp. dundancy ratio (center) and perceived loss
(bottom).
6 Results Uncompressed  Accuracy% 94.1%+0.2%
Compression% 0.0%
Means Accuracy% 87.7%t£0.2%

For testing, we studied the ability of the XNetApp to Compression%| 91.8%k0.1%

autonc_)mously balancg real packet loss and bandwidth con- Spherical Accuracy% 92 4%E0.7%
sumption. The IP multicast protocol was used for transmis- Compression%| 5.8%+0.2%
sion of the data stream. Data was collected as a user roamed Orthogonal Accuracy% 87.3%+0.4%

Compression%| 91.8%+0.1%

about a wireless cell carrying a notebook computer running
an XNetApp receiver.

We experimented with the XNetApp using a 1.5GHz
AMD Athlon workstation for data transmission. A 500MHz
X201BM Thinkpad notebook was used as a mobile receiver.
All systems run the Linux operating system. We tested atop ~ Table 6 shows results from running cross-validation tests
an 11Mb 802.11b wireless network as a user roamed about &/sing the data acquired during XNetApp training. This
wireless cell. The XNetApp was trained using an emulated data was produced during training for autonomous XNe-
loss rate in the rand®, 0.6). tApp operation on a real wireless network. The final train-

Figure 3 shows a Comparison of real versus perceiveding set contained 32,709 patterns in 10 classes. This table
loss observed as the user roamed about the cell. The XNeshows recall accuracy, with and without compression, help-
tApp was able to adapt to changing real loss rates, and mining quantify how well the XNetApp can be expected to imi-
imize application loss. The center plot depicts the redun-tate a user. Inall cases, the XNetApp was highly accurate at
dancy ratio, defined a=h) showing the responsiveness “rgmemberi_ng" a user’s p_references for balancing loss rate
of the XNetApp on a real wireless network. Greater re- With bandwidth consumption.
dundancy is required during periods of high loss. How-
ever, this redundancy consumes greater network bandwidth/ Conclusions
The XNetApp did not simply choose a high, ) ratio, but
changed parameters to correspond with the changing real We have presented a perceptual memory approach,
loss rate. called MESO, that uses pattern classification and cluster-

Table 6. XNetApp results with and without
compression.



ing techniques while addressing issues important to sup-[11] Y. A. lvanov and B. M. Blumberg. Developmental learning

port online developmental learning. We showed that, when

used as a pattern classifier, MESO can accurately classify
patterns from standard data sets. We also implemented an
application that imitatively learns how to make decisions [12]

through interaction with a user. Preliminary results show
that the imitative learning approach, used by the XNetApp,

has promise. We postulate that such software, which can bd13]

trained to make good decisions, may simplify the integra-

tion of software into new or pervasive computing environ-
ments.

Further information. A number of related papers and

technical reports of the Software Engineering and Network

Systems Laboratory can be found at the following URL:
http://ww. cse. nsu. edu/ sens.
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