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Abstract
Any architecture for modeling cognitive development
must have several general characteristics. It must be
possible to learn complex combinations of interacting
cognitive capabilities using information derived from
the same experience stream. Learning must be
bootstrapped from experience with minimal a priori
guidance and limited external guidance during learning,
but in such a way that later learning does not interfere
with earlier learning. Learning must be possible from
single experiences. The architecture must provide an
account for the observed dissociations between the
various types of memory including semantic, episodic
and procedural memory. A connectionist architecture
with these characteristics is described.

1. Introduction
Much recent computational modeling of human

cognition concentrates on accurate modeling of the
phenomenology without regard to plausible matching
between the detailed information processes employed and
neural capabilities. An example is ACT [1], which
provides quantitative modeling of experimental
psychological data in terms of cognitive categories and
processes which are defined by psychological observation
but implemented by computer without regard to
physiology. Another approach which focuses on practical
applications is expert systems [e.g. 12] which capture the
skills of human experts in a computer. These approaches
make no effort to realistically model development of
cognitive skills. Connectionist modeling is the only
approach which makes claims to plausible modeling
both of cognitive learning and of information processes at
the neuron level [2]. However, the types of high level
learning which have been successfully modeled tend to
use restricted input and behavioural domains. For
example, Roy et al [17] model the learning of words
from visual and auditory inputs, but comment that
"…the model is limited in its ability to deal with
complex scenes…". Although Roy et al argue that their
model has the potential for modeling learning of real
cognitive processes, an issue often encountered with
connectionist learning of more complex domains is the
catastrophic forgetting problem [13] in which later
learning sometimes overwrites and obliterates prior
learning.

This paper argues that to be a plausible approach to
modeling cognitive development, a model must
demonstrate the potential to achieve a number of general
characteristics exhibited by human development. A
connectionist architecture which appears capable of these
characteristics is then described. This architecture
employs neural device algorithms with qualitative
differences from conventional connectionist algorithms.
The ability of the architecture to meet the required
general characteristics and the strong dependence of this
ability on the different device algorithms is described. In
particular, the general ability to bootstrap memory and
behaviour from experience and to use the same
information recorded during experience to support
episodic, semantic and procedural memory are described.

2. Criteria for Effective Modeling of
Cognitive Development

There are a number of sometimes overlooked
characteristics of human cognition which must be
effectively addressed by any cognitive architecture which
aims to model human development. Firstly, human
beings learn a complex combination of different types of
behaviour making use of the same experiences. For
example, experimental psychology distinguishes between
episodic, semantic, procedural and working memory and
priming [19]. However, perceptual processing on the
same stream of experience must generate information to
support all these memory types, and information initially
available to one memory type must over time become
available in suitable form to others, while still remaining
available to the original type. Thus episodic memories
can result in semantic and procedural memories while
still being accessible to episodic memory. Secondly,
humans can learn new behaviour types with minimal
interference with existing behaviours. This capability
poses problems for conventional connectionist models,
which tend to exhibit the catastrophic forgetting problem
[13]. Thirdly, humans can bootstrap their cognitive
capabilities from experience with minimal a priori
guidance. For example, genetic guidance would not be
able to specify categories of visual objects, but could
perhaps provide preliminary and general associations
between types of sensory input and types of behaviour
which would need to be corrected  and made much more
specific by experience. The feedback available following
behaviour can be reward or punishment, but not
supervision in the sense of explicit indication of targets



in terms of internal brain information structures as is
required for connectionist supervised learning algorithms.
However, a genetically defined tendency to imitate can
make general reward and punishment feedback more
efficient. Fourthly, humans are capable of significant,
permanent learning from single experiences. For
example, given a few seconds to examine each
photograph in a set of 2500, subjects can later pick the
familiar photograph from pairs in which only one came
from the examined set at an accuracy level of 90% [20].

3. The Recommendation Architecture
Any system which must learn to perform a complex

combination of interacting features with limited
information handling resources in such a way that new
learning does not interfere with prior learning tends to be
constrained within a set of architectural bounds called the
recommendation architecture [8]. These bounds define
how the operations of the system are separated into
modules, the ways in which modules interact, and the
type of learning algorithms available to modules and
devices. For a detailed description of the design of an
electronic system implemented within these bounds, see
[9].

In the recommendation architecture there is a
primary architectural separation between a modular
hierarchy called clustering and a subsystem called
competition. Clustering defines a population of
conditions within the available sensory information space
and detects the occurrence of any defined condition. A
subset of the conditions detected at any point in time is
communicated to competition. Competition interprets
each such condition as a set of recommendations in
favour of a range of different behaviours, each with a
different weight. Competition adds the weights of each
recommended behaviour across all currently detected
conditions, and implements the most strongly
recommended behaviours. Consequence feedback
following a behaviour can change the recommendation
weights of recently active conditions into recent
behaviours, but cannot change the definition of the
conditions.

Devices in clustering learn and respond in radically
different ways from conventional connectionist device
algorithms. A clustering device permanently records a set
of similar conditions. To be recorded, a condition must
actually occur within the information available to the
device, be similar in an information sense to conditions
already recorded on the device, and at the time it occurs
the device must also be receiving signals encouraging it
to record conditions. These signals come from devices in
other modules within clustering. The device is activated
by the recording of a condition or by any subsequent
repetition of the condition. On activation a device
produces an output which is a series of activity spikes.
The average rate of spike production indicates the
number of its programmed conditions which are currently
present, and a frequency modulation of the spike rate (i.e.
bunching of spikes close to peaks in a regular

modulation frequency)  indicates the input population
within which the condition was detected. In general,
conditions will be detected by a device within a group of
inputs much more strongly if a frequency modulation is
present at the same phase on all the inputs, because
otherwise fewer activity spikes will arrive within the
time interval over which the device integrates its inputs.
As an example of this frequency modulation in practice,
if modulation is imposed on a subset of visual inputs
corresponding with an area within a closed boundary (i.e.
a visual object), only conditions within the object will
be detected and recommended behaviours will be in
response to this object. Frequency modulation also
makes it possible to detect separate populations of
conditions within two different objects in the same
physical set of devices, if different phases  of frequency
modulation are imposed on inputs from the two objects.
For a more detailed discussion of the frequency
modulation mechanism, see [10].

A device in clustering thus records a set of similar
conditions and indicates any repetition of a previously
recorded condition. This device algorithm is in strong
contrast with conventional connectionist device
algorithms, in which devices have inputs with different
weights which can be constantly adjusted, with no
guarantee of response to an exact repetition of a condition
that previously generated a response.

Devices in clustering are arranged in layers in which
the condition defining inputs to one layer come from just
one preceding layer. The first layer receives raw sensory
inputs. This arrangement ensures that all the conditions
detected within one layer are within the same range of
complexity, where the complexity of a condition is  the
number of raw sensory inputs (including duplicates) that
contribute to the condition either directly or via
intermediate conditions. The layering also means that all
the conditions detected at one time within a layer tend to
be present within a system input state at one time (such
as one visual object). Conditions within one range of
complexity may be more appropriate for a particular
behavioural function than conditions in other ranges.

The clustering device algorithm means that tight
management is required over when and where additional
conditions will be recorded. This management of change
is a major role of the modular hierarchy in clustering.
The first level of module above the device is a small area
on one device layer. The next level is a column made up
of a sequence of such areas across several layers. The next
level is an array of such columns and the next level is a
sequential block of such arrays. Each module detects a
set of conditions made up of the sum of the sets detected
by each device in the module. However, most of these
conditions are only communicated within the module
and used for change management within the module,
only a small subset are communicated to other modules.
A column module manages when conditions will be
recorded within the column and within other columns in
the same array. An array module ensures that some
conditions are detected in every input state from a
specific input domain. A block module ensures that the



conditions detected within its constituent arrays are
consistent with each other as indicated by a tendency for
conditions in different arrays to have been active and
recorded at the same time in the past. A block module
then generates outputs in behaviourally useful ranges of
complexity to competition.

Only some arrays target outputs on to competition,
but any column within such an array can target
competition. However, only devices within a column
which detect conditions within a specific range of
complexity (i.e. are located within a specific deviec layer)
can target competition. These devices have sets of
conditions which they detect, and the sum of these sets
for a column is called the portfolio of the column.
Portfolios are important in understanding the processes
which lead to cognition.

4. Definition of Conditions and Portfolios
A vast range of raw inputs containing information

about the external environment and the internal state of
both the brain and the body are available to the brain
from the senses. A somewhat oversimplified way of
understanding the definition of information conditions is
that one condition corresponds with a specific set of these
inputs each being present to an individually specified
degree. Because conditions cannot be specified a priori,
there is a random element to the definition of conditions,
and because conditions are not changed after being
recorded, any one condition or portfolio is perceptually,
cognitively and behaviourally ambiguous. Unambiguous
meanings are only achieved in competition across
populations of conditions. However, conditions with
complexities of the same order of magnitude as visual
object perceptions will tend to be less ambiguous with
respect to categorization of visual objects than conditions
on other levels of complexity, athough no conditions on
any level correlate unambiguously with such categories.

This simple view of conditions is made
considerably more complex because a column portfolio
can be activated not only by the presence of its
conditions within sensory inputs, but also indirectly by
two other types of mechanism. One mechanism is that it
can be activated if a number of other columns are already
active which have often been active in the past at the
same time as the column. The other mechanism is that
columns can be activated if a number of other columns
are already active which have recorded conditions at the
same time in the past as the column. These indirect
activations are behaviours which must be recommended
by the already active columns into competition and
accepted. When there is simultaneous activity or
condition recording in two columns, there is a strong
recommendation weight created in competition in favour
of the activity of one column activating the other, but
this recommendation weight declines fairly rapidly with
time. However, if an indirect activation actually occurs in
the course of generating a behaviour which is followed by
positive consequences, the decline is reduced, and
frequent such occurences stabilize or increase the weight.

These indirect activation mechanisms can be viewed
as supplementing the conditions present in current
sensory inputs with other conditions which have a
significant probability of being relevant to determining
the most appropriate current behaviour. For example,
conditions which have been active in the past at the same
time as currently present conditions may contain
information about the current environment which cannot
currently be observed [7, 11].

A newly recorded condition is made up of a set of
currently active component conditions. Some of these
component conditions may be combinations of currently
present sensory inputs, and some could have been
activated by one of the two indirect mechanisms. Both
the definition of conditions in terms of sensory inputs
and the relationship between sensory inputs and the
resultant pattern of condition activation can therefore
become very complex.

Learning occurs by permanent addition of conditions
to modules on many levels including device, column,
array and block. Conditions are defined heuristically, and
there is no a priori knowledge of which higher level
modules such as arrays will require many column
portfolios, or which column portfolios will need many
device level portfolios and which devices will require
inputs from which other devices etc. Hence assignment of
column and device resources must be performed
heuristically on the basis of need. A resource
management function must therefore assign provisional
conditions to devices, devices to columns and columns
to arrays on the basis of current need.

Resource management requires two components.
One is a map of resources identifying which are
unassigned, the other is a process for identifying
appropriate connectivity [6]. Resource management is
then a periodic process during which requirements for
new resources are identified, resources are assigned, and
appropriate provisional connectivity provided.
Connectivity to support indirect portfolio activation on
the basis of simultaneous condition recording could be
efficiently provided via the resource map, at least
initially. Connectivity to support indirect portfolio
activation on the basis of prior or subsequent condition
recording would for efficiency reasons tend to continue to
be dependent on the map.

5. Behavioural Interpretation of Portfolios
Competition is made up of devices which total the

excitatory and inhibitory weights of currently active
inputs from a range of sources, and produce an output if
the total exceeds a threshold. The devices adjust their
input weights in response to consequence feedback.
Unlike the device algorithms used in clustering, these
algorithms are generally similar to the perceptron type
algorithms used in conventional connectionist networks.

The competition system is made up of components
corresponding on a one-for-one basis with all possible
system behaviours. Each component is a device or group
of devices. Some components correspond with



behaviours which are “atomic” in the sense that the
system can implement the behaviour or not implement
it, can vary the speed and perhaps the degree with which
the behaviour is performed, but cannot change the nature
of the behaviour. An atomic behaviour could be the
contraction of an individual muscle, or genetically
programmed groups and sequences of such contractions.
Other components correspond with higher level
behaviours such as groups and sequences of atomic
behaviours, and yet higher behaviours which are groups
and sequences of such groups. At the highest cognitive
levels, behaviour is achieved by outputs from clustering
driving a sequence of competition components which in
turn activate more specific competition components. Any
very frequently occurring sequence or set of behaviours
will tend to result in a new component in competition
which receives most of the inputs from clustering and
drives behaviour more directly into atomic behaviours.

The outputs of a component are the outputs of
specific devices within the component. Because of the
use of consequence feedback within competition, such
outputs cannot have operationally complex meanings.
Only two types of operational meaning are possible. One
is a recommendation to perform the behaviour
corresponding with the component. If such an output
exits competition, it becomes a command to perform the
corresponding behaviour. Otherwise it is directed at a
range of components corresponding with more detailed or
specific behaviours within the recommended type, and
increases the probability of such behaviours being
accepted. These more detailed components could also
receive inputs directly from clustering.

The other type of operational meaning is a
recommendation against performing any behaviour other
than the component behaviour. Such outputs are directed
at competition components corresponding with different
behaviours. A high proportion of these outputs are
directed at peer components, in other words components
corresponding with different behaviours on roughly the
same level of detail.

When a condition is recorded in clustering, it can
immediately acquire a range of different behavioural
meanings either directly through recommendation
weights in competition or indirectly by incorporation in
other conditions with such recommendation weights.
Any subsequent change to the condition would therefore
result in a wide range of uncontrolled behavioral side
effects. The restrictions that conditions cannot change,
and devices can only add similar conditions, limits these
side effect much more effectively than perceptron type
algorithms [9].  

6. An electronic system with the
recommendation architecture

An electronic system with the recommendation
architecture has been implemented, and demonstrated the
capability to define portfolios from experience with no a
priori guidance, and to associate different combinations of
portfolios with different behaviours using only reward

and punishment feedback. The ability to learn with
minimal interference  with prior learning has also been
demonstrated [8, 9]. Processes within the electronic
implementation which strongly resemble cognitive
processes including category learning, learning to
activate appropriate visual information in response to
words, and activation of mental images have been
observed [9].

7. The Recommendation Architecture
cognitive model

In the recommendation architecture, information can
be accessed by four qualitatively different mechanisms.
Firstly, the actual presence of a condition within current
sensory inputs activates the substrate on which the
portfolio containing the condition is recorded. Secondly,
an activated portfolio can recommend activation of other
portfolios which have often been active at the same time
in the past, and the recommended portfolio will activate
if adequate recommendation strength is present. A variant
of this mechanism is activation of portfolios which were
often active somewhat before or somewhat after activity
in the active portfolio.

 

Block 1a    ~ visual elements Block 1b  ~ phonemes

Block 2a    ~ visual features
Block 2b  ~ phoneme 

sequences 
or letters

 Block 3a    ~ visual objects
                   (≡ word meanings)

Block 4     ~ groups of visual objects (≡ phrase meanings)

 Block 5     ~ groups of groups of visual objects 
(≡ sentence meanings)

Block 3b    ~ word sounds

Figure 1. Architecture to support cognitive processes.
Block modules detect conditions on five different levels of
complexity, with condition defining information passing
sequentially from top to bottom. The outputs of a block
indicate the detection of conditions within the same range of
complexity as the indicated cognitive category (features,
objects, groups of objects etc.) but conditions do not
correlate unambiguously with such categories. The
subdivision of levels 1 through 3 reflects different input
domains within which conditions are detected.

Thirdly, an activated portfolio can recommend
activation of other portfolios which recorded conditions
at the same time in the past. A variant of this mechanism
is activation of portfolios which recorded conditions
somewhat before or somewhat after an episode of
condition recording in the active portfolio. Indirectly
activated portfolios can in turn recommend activation of



yet other portfolios. The fourth mechanism is
comparison of recommendation weights. The weights of
all active behaviours into each recommended behaviour
are totaled, and the behaviours with the strongest
weights are implemented.

The simplest arrangement of clustering blocks able
to support complex cognitive behaviour is illustrated in
figure 1, and examples of competition subsystems
associated with one block are illustrated in figure 2. In
figure 1, outputs from block 2a to competition indicate
the detection of portfolios with a complexity comparable
with visual features. Outputs from block 3a indicate
portfolios comparable with visual objects, outputs from
block 4 indicate portfolios comparable with groups of
objects, and outputs from block 5 indicate portfolios
comparable with groups of groups of objects. Block 4
will therefore detect portfolios in a sequence of perceptual
objects, and block 5 will detects portfolios incorporating
information derived from several area 4 outputs, in other
words portfolios containing information derived from all
members of the sequence.

Clustering 
Block

Competitive subsystems 
recommending portfolio 
activations or 
behavioural types

information 
gates

Competitive 
subsystems 
recommending 
specific 
behaviours

 Figure 2  Competitive components receiving outputs from
one sequence module. Different behavioural interpretations
are placed upon the same clustering outputs by different
components. There is competitive inhibition between and
within competitive components to limit selected behaviours
to a small, consistent set. In some cases the behaviour
accepted by a competitive subsystem is release of the
outputs from clustering which correspond with the
behaviour to either the next clustering level or to a more
detailed competition subsystem. This release behaviour is
indicated by the information gates. In other cases
competition outputs drive their corresponding individual
behaviours, either external (e.g. eye movements) or internal
(e.g. prolonging the activity of clustering neurons in
specific modules).

Ten types of competition component corresponding
with ten types of behaviour which could be
recommended by a clustering area are as follows: prolong
the activity of some currently active portfolios (for
example of a group recommending a sequence of
behaviours until the sequence is complete); activate
portfolios active at the same time in the past as the
currently active portfolio; activate portfolios containing
conditions recorded at the same time in the past as some
conditions in the currently active portfolio; activate
portfolios containing conditions recorded just before or
just after some conditions in the currently active

portfolio; synchronize the activity (i.e. phase of
modulation frequency) of several different groups of
currently active portfolios; perform a general sequence of
attention behaviours; perform a specific sequences of
attention behaviours; perform an individual attention
behaviour; speak a word; and say a phrase.

Competition receives outputs from portfolios
currently being detected by clustering. If a portfolio has
been present in the past at the same time as the
performance of a number of different behaviours, it will
have acquired recommendation weights in favour of or
against those behaviours in the component corresponding
with the behavior, depending on the consequence
feedback from those behaviours. Competition adds the
weights of all currently recommended behaviours and
selects the behaviour with the largest weight. New
portfolios are given an initial weight similar to the
weights of the most similar previously existing
portfolios, or genetically defined initial weights. If
portfolios are new and no significant recommendation
strength has been assigned in these ways, a behaviour
can be selected randomly. Such random selection can be
limited to behaviours within a behaviour type which has
already been selected. Alternatively, a behaviour can be
selected by imitation of an externally observed
behaviour.

8. Bootstrapping of memory and behaviour
Behaviours can be defined heuristically with limited

a priori guidance. Such definition will be illustrated by
describing a possible process for acquisition of simple
speech, with careful attention to the nature of the a priori
(genetic) guidance needed. Learning goes through a series
of steps generally consistent with observation of how
humans learn to speak and understand words, but the
purpose of this section is not to offer a formal model for
speech acquisition but rather to demonstrate that speech
can be acquired in the recommendation architecture
model with only limited and plausible genetic guidance.

Genetic information specifies creation of a set of
detailed competition components which drive muscle
movements contributing to sound generation. Every
possible such movement has a corresponding genetically
specified competition component, and activation of the
component results in the movement. Genetic information
also specifies the existence of intermediate competition
components which activate randomly selected sequences
of detailed components and therefore generate sounds.
Learning proceeds in a series of partially overlapping
steps.

The first step is creation of an array of portfolios in
clustering blocks 1b and 2b of figure 1 in response to
hearing sounds, at different levels of condition
complexity. Because speech is somewhat different from
other sounds, there will be a tendency for speech related
portfolios to be somewhat separate from the portfolios
created in response to other sounds. This tendency could
be reinforced by genetically determined connectivity
biases within clustering.



The next step is generation of sounds using
intermediate competition components. Initially a
component is randomly selected after any activation of a
portfolio population in the array of sound related
portfolios in levels 1 and 2. A positive consequence
feedback is genetically programmed to be generated if the
portfolios activated in response to hearing an external
sound (i.e. not self generated) are similar to the portfolios
activated shortly afterwards in response to hearing a self
generated sound. One effect of this consequence feedback
is that the sequence of detailed components activated by
the intermediate component is fixed long term. In other
words, the presence of a sound in the environment results
in production of that sound becoming instantiated in an
intermediate component. If there is no feedback within
some period of time, the intermediate component is
reconfigured with a different randomly selected sequence
of sound generating muscle movements, or deleted. The
second effect of the consequence feedback is that the
activated portfolios acquire recommendation strength in
favour of activating the intermediate component. In other
words, the behaviour of imitating sounds which are heard
is acquired.

The next step in learning is that portfolios are
created in area 3b of figure 1 in response to sequences of
sequences of sounds which are heard. These portfolios
will correlate partially (or ambiguously) with frequently
heard sequences, and therefore with words which are
heard. Higher level competition components are defined
which activate randomly selected sequences of
intermediate components. If a self generated sound
sequence activates a portfolio population in area 3b
similar to an immediately prior population activated by
an external sound sequence, a genetically defined
consequence feedback results in the higher level
component being fixed and the active portfolios acquiring
recommendation strength in favour of activating it. Thus
the behaviour of imitating words which are heard is
acquired.

The next step utilizes a genetically programmed
tendency for the portfolios created in level 3b in response
to sequences of sounds to have recommendation strength
in favour of activation of portfolios created in level 3a in
response to visual experiences, if the visual experience
portfolios are often active at the same time as the sound
sequence portfolios. The effect is that hearing the word
will tend to activate a partial visual image of the type of
object often seen when the word was present in the past.
The portfolios making up a visual image will also
recommend any other behaviours which have become
associated with the object. In addition, the visual
experience portfolios acquire recommendation strength in
favour of activating the higher level component which
tends to be activated by the sound sequence portfolios.
The effect is that seeing the object will tend to result in
speaking the corresponding word. Consequence feedback
associated with the perceived behavior of adults in
response to activating a higher level component (i.e.
speaking a word) will affect the recommendation

strengths of active portfolios in favour of the word just
spoken.

Thus a set of genetically defined tendencies result in
relatively efficient acquisition of simple speech
behaviours. Learning does not require a priori internal
definition of cognitive categories. Genetic information
provided three types of information. Firstly, it indicates
the available range of detailed muscle movements.
Secondly, it biases initial connectivity in favour of the
types of sensory inputs and portfolio condition
complexity ranges which will most effectively drive
those behaviours. Thirdly, it defines in general terms the
circumstances in which consequence feedback will be
generated and the effects of such feedback.

9. Different Types of Memory
It has been argued that there are a number of different

memory systems in the brain, based on the observed
dissociations between different memory phenomena [19].
These sytems include semantic, episodic, procedural and
working memory. The following discussion will focus
on semantic, episodic, and procedural memory, working
memory is discussed in detail in [10].

There are two mechanisms by which information can
be recorded in the recommendation architecture. One is
permanent recording of conditions in clustering, the other
is adjustment to recommendation weights in
competition. The permanent recording of conditions
means that the system has the capability to learn  from
single experiences. In the model there will be a level of
condition recording in response to every experience, with
higher levels for experiences with higher levels of novelty
[6]. This higher level of recording in response to novelty
accounts for the high human capability to detect the
novelty or otherwise of an experience. For example,
subjects exposed briefly to a set of several thousand
photographs could a few days later distinguish between
photographs in or not in the set with 90% accuracy[20].

As discussed earlier, there are four mechanisms by
which information can be accessed in the
recommendation architecture. The use of different
combinations of these mechanisms can account for the
phenomena and dissociations between semantic, episodic
and procedural memory.

10. Episodic Memory
Episodic memory is memory of the past with a

context of what else happened at the time, in contrast
with semantic memory in which memories of facts are
detached from memories of where those facts were learned
[21]. Various types of recall experiments measure
episodic memory.

In targeted recall subjects are asked to recall
particular past events [14]. In cued recall, subjects are
given a cue which may be a word [16] or a type such as
"vivid memories" [18]. In involuntary recall, some
specific environmental stimulus such as a smell or a taste
brings a memory to mind unsought [3].



The starting point for targeted recall in the
recommendation architecture model is hearing words
which describe an event. Portfolios are activated which
contain conditions within the sounds of the words.
Secondary populations of portfolios containing
conditions which occurred within visual and other
sensory inputs are activated on the basis that the
secondary portfolios have often been active in the past at
the same time as the primary "auditory" portfolios. A
significant proportion of the portfolios in these secondary
populations were also active during the event, and a
somewhat smaller proportion recorded conditions during
that event. Because of the words used, the proportions
are larger for the target event than for any other event.

All active portfolios have recommendation strengths
in favour of activating other portfolios which recorded
conditions at similar times in the past. Active
populations at higher levels derived from the presence of
words like "recall" have recommendation strength in
favour of accepting these types of recommendations.
Because the target event has the highest proportion of
activated portfolios in the secondary population,
acceptance of such recommendations will tend to result
in an active tertiary population with an even higher
proportion of portfolios which recorded conditions during
the target event. This process is self reinforcing,
especially if a large number of conditions were recorded
during the target event. The resultant population will be
experienced as a general re-perception of the original
event, although in general the portfolios closest to input
from the senses are not reactivated. The activated
portfolios in this population have recommendation
strength in favour of, for example, generating verbal
descriptions of the event. Use of recommendation
strength in favour of activating portfolios which recorded
conditions somewhat before or somewhat after condition
recording in currently active portfolios allows the re-
perception to be set at the beginning of the event and to
be moved through the event.

Recommendation strengths will always also be
present in favour of activating portfolios on the basis of
simultaneous past activity and simultaneous past
recording during other events. The activated population
is therefore unlikely to be an exact match for the original,
although in general the higher the level of condition
recording during the event, the greater the probability of
a close match.

Cued recall operates in a very similar fashion.
However, the initial secondary population may contain
portfolios which recorded conditions during a number of
past events. In the absence of specific indication of one
event in the verbal cue, the tertiary population will
evolve towards the event which happened to be
represented by the highest degree of condition recording
in the initial population. Events which resulted in a high
degree of condition recording across many portfolios will
tend to be the end points of this process.

Involuntary recall is the result of strong condition
recording in portfolios activated in response to a sensory
stimulus (for example, a novel smell or taste) at the same

time as strong condition recording in other portfolios in
response to some event. A later repetition of the sensory
stimulus activates the portfolios which originally
responded to that stimulus. These portfolios in turn
activate portfolios which recorded conditions at the same
time in the past, resulting in a re-perception of the event.

11. Semantic Memory
A typical way of measuring semantic memory in the

laboratory is sentence and category verification. Sentence
verification experiments measure the time for subjects to
respond with the correctness of sentences like “Is a robin
a bird” or “Is a penguin a bird”. Category verification
experiments are essentially equivalent and measure such
times for simple category-exemplar pairs like bird-robin
or bird-tree. It is found that for different members of the
same category paired with the correct category, responses
are faster for more typical category exemplars. For
example, the response to bird-robin is faster than to bird-
chicken. However, responses to clearly incorrect
category-exemplar pairs like “Is canary an animal” is
also fast [15].

The recommendation architecture model for category
verification experiments can be understood by
considering the portfolio populations activated in
response to the words indicating category and exemplar.
The portfolios activated in response to hearing the name
of the category are portfolios which have often been active
in the past when the category name was also present.
Hence they will be portfolios also present when
exemplars of the category were present, since this is the
way the category is learned. Hence the active population
is the set of portfolios which have most often been
present when different category exemplars have been
present. There will therefore be an overlap between the
population activated in response to the name of the
category and that activated in response to the name of the
exemplar. This overlap will be greater for more typical
exemplars, and very small if the exemplar is not a
member of the category. The degree of overlap is itself a
condition which can be detected and recommends for or
against identifying the exemplar as a category member. If
the exemplar is typical, overlap is substantial and its
detection is rapid. Atypical exemplars have more
moderate overlap, and more time may be required to
expand the portfolio populations to include portfolios
active at the same time in the past but slightly less often
to achieve an overlap adequate to generate the appropriate
verbal response. However, objects which are not in any
way members of the category will have negligible
overlap which again is detected rapidly. The model is
therefore in agreement with the observations of [15].

In contrast with the spreading activation model of
Collins & Loftus [4], there are no units which
correspond with concepts like categories or the features of
categories. Portfolios are groups of conditions in which
there has been a degree of randomness in the definition of
individual conditions, but conditions within one
portfolio have some similarity with each other and have



tended to occur at similar times in the past. A portfolio
may therefore have a probabilistic correlation with many
different features and categories, with the probabilities
expressed, for example, as recommendation weights into
naming the features or categories.

12. Procedural Memory
Procedural memory is defined as the ability to

acquire skills. Observations of amnesics indicate that
such memory is at least partially dissociated from
semantic memory, since amnesics can acquire such skills
at apparently normal rates. Thus amnesics can acquire
motor skills such as mirror tracing tasks [5].

In the recommendation architecture model for
learning a skill, portfolios activated within clustering in
environments where the skill is relevant must acquire
weights in competition associated with skilled
behaviours. These portfolios will generally include both
new information elements resulting from novelty in the
environments and information elements recorded in prior
experiences. Although the new elements may be
particularly useful for recommending the new behaviours,
some skill learning would be possible using only
previously recorded elements which happen to occur in
the new environments. Thus skill acquisition could
proceed in the absence of condition recording.

13. Conclusions
The recommendation architecture cognitive model

demonstrates the general capabilities to learn complex
combinations of capabilities utilizing information drawn
from a common experience stream, to bootstrap learning
from experience with minimal and genetically plausible a
priori guidance and limited and plausible external
guidance during experience. The catastrophic interference
between new and prior learning found in other
connectionist architectures can be avoided. Significant,
permanent learning is possible in response to single
experiences. The information recording and access
mechanisms of the recommendation architecture can
provide an account for the phenomena of and disociations
between semantic, episodic and procedural memory. The
recommendation architecture thus has considerable
advantages as a starting point for modeling cognitive
development.
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