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1. Overview of Approaches
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How We Came Along?

 Turing test and dreams of AI

 Knowledge based approach
 Book “Computers and Thought”

 CYC, WordNet

 Marr’s primal sketch

 Expert systems

 Work in vision, such as stereo and motion
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Learning-Based Approaches
 Turing’s imaginary “child machine”

 Pre-designed representation for a given task

 Some undetermined parameters in the
representation
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Neural Networks

 Numeric representation

 Learning as a regression problem

 Feed forward network: state less

 Recurrent network: with state

 Supervised learning and reinforcement
learning

 Most incremental

 System example: ALVINN by Dean Pomerleau
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A Model by James Albus
(James Albus)

 Symbolic representation

 Belongs to behavior-based approach

 Four-element module:
Sensory processing (SP), world modeling (WM),
value judgement (VG) and behavior generation (BG)

 Hierarchy in sensory space and behavior space

 Not meant for automatic development

 An architecture outline, missing some crucial detail

 Has not implemented yet
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Behavior-Based Framework by Brooks
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Behavior-based Methods

 Do not require explicit world representation

 Symbolic states of the environment

 Emphasis on generation of behaviors

 Hand-programmed, supervised learning and
reinforcement learning

 Use of probabilistic models to improve
system reliability

 System example: Pavlov by S. Mahadevan
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Markov Decision Process

 One of the most general frameworks for learning

 State is about the world, not internal state

 Partially observable version: state of world is not totally
observable.

 Programmer typically imposes task-specific internal
representation:
 The number of states

 The distribution restriction (e.g., left to right model)

 Initial estimate of probability (transition and observation)

 Difficult to grow (develop)

 Hard to scale up



Michigan State University 10

Hierarchical HMM:
Multi-level Stochastic Processes (Mahadevan)

Abstract State:
(corridor)

Production
State: 
(segment)

(intersection)

Vertical
transition probabilities

Horizontal 
transition
 probabilities
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Partially Observable Markov Decision Process
(Mahadevan)

Abstract states: corridors, “facing the wall”

Lower level “production” states: regions of a corridor
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Evolutional Approach

 Steps:
 Task definition

 Problem formulation

 Chromosome representation

 Population generation

 Fitness computation
 Mate and reproduction

 Generation replacement

 Repeat above steps
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Evaluation of Evolutional Approach

 Pros:
 Can perform high dimensional search
 Simpler programming
 For highly complex fitness functions

 Cons:
 Extremely slow
 Computationally expensive
 For a given task
 Human designed task-specific chromosome

representation
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Lessons We Learned

 AI fragmentation: Task-specific

 Humans design task-specific representation

 Learning is not autonomous

 Learning is off-line

 Learning and performance are separate phases

 Machines cannot acquire tasks autonomously

 Task-specific representation cannot scale up to
more other tasks
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2. AMD Approach
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Change of Engineering Paradigm
 Traditional paradigm:

 Start with a task and the
environment.  Humans
understand the task,
not the machine

 Humans design task-
specific representation

 Task-specific
programming plus task
specific learning

 Run the program to
perform

 New paradigm:
 Given rough ecological

conditions of muddy
environment, design a
robot body

 Design developmental
program

 Birth: run the
developmental program

 Develop mind:
robot autonomously
interacts with the world
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Alan Turing’s Child Machine

        Our hope is that there is so
little mechanism in the child
brain that something like it
can be easily programmed.
The amount of work in the
education … to be much the
same as for the human child

                - Alan Turing, 1950
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Traditional Manual Development

A = H(Ec , T)
A: agent
H: human
Ec: Ecological condition
T: Task
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New Autonomous Development

A = H(Ec )
A: agent
H: human
Ec: Ecological condition
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Task Nonspecificity

 A program is not task specific means:
1. Open to muddy environment
2. Tasks are unknown at programming time
3. “The brain” is closed after the birth
4. Learn an open number of muddy tasks after birth

 Avoid trivial cases:
 A thermostat
 A robot that does task A when temperature is high and

does task B when temperature is low
 A robot that does simple reinforcement learning
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Two Types of Work on Robot Development

 Emulate some phenomena in the developmental
process:  About development but not AMD
 Useful as a component study

 Not AMD by itself

 Setting specific

 Task specific

 AMD: what we mean by developmental approach
 Eight operational requirements

 Aim at muddy environments and muddy tasks
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Comparison of Approaches

ApproachesSpeciesArchitectureWorld KnowledgeSystem behaviorTask-specificKnowledge-basedProgrammingManual modelingManual modelingYesBehavior-basedProgrammingAvoid modelingManual modelingYesLearning-basedProgrammingModels withparametersModels withparametersYesEvolutionaryGenetic searchModels withparametersModels withparametersYesDevelopmentalProgrammingAvoid modelingAvoid modelingNo
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8 Requirements for Practical AMD

 Eight necessary operational requirements:
 Environmental openness: muddy environments
 High dimensional sensing, but without loss of essential information
 Online
 Real time speed, with a large memory
 Incremental:

for each fraction of second (e.g., 10-30Hz)
 One-instance learning
 Mixed learning modes
 Muddy tasks

 Existing works (other than SAIL) aimed at some, but not all.
 SAIL deals with the 8 requirements altogether
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3. Neuroscience and
Developmental Psychology
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Why Autonomous Mental Development?

 Developmental mechanisms are easier to program:
lower level, more systematic, task-independent, clearly
understandable

 Relieve humans from intractable programming tasks: vision,
speech, language, complex behaviors, consciousness

 User-friendly machines and robots:
humans issue high-level commands to machines

 Highly adaptive manufacturing systems
(e.g., self-trainable, reconfigurable machining systems)

 Help to understand human intelligence
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Why Active Body?
Kitten Carousel Experiment

 A classic study by Held & Hein 1963

 Kittens raised from birth in total
darkness

 When old enough to walk, placed in
“kitten carousel” for 42 days

 One kitten harnessed to pull the
carousel

 Another just being carried in a box.

 The behavior of the kittens is
strikingly different at ‘visual cliff’.

 Thus, autonomous actions are very
important to understanding.
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Visual Cliff
 Visual cliff:

 A transparent platform
 Visual sharp drop in elevation

 Human infants:
 6 – 8 months old, a week or two after

they began to crawl
 all would cross a visual cliff in initial

trials
 They became increasingly reluctant to

cross in later trials, although nothing
bad had happened during crossing.

 Carousel kittens:
 Passive one does not fear
 Active one does

 Implication:
 Vision is very much developed from

experience!
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Stages of Cognitive Development

Abstract, formal, deductive reasoningFormal operational12 -

Operational thinking with concrete objects
and actions;

Doing so in the presence of concrete
objects and events

Concrete operational6 - 12

Ego-centric;

Captured by surface appearance;

Pre-operational2 - 6

Coordinating sensory perception with
motor behaviors;

Not capable of symbolic representation

SensorimotorBirth - 2

CharacteristicsStageAge
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Robot “Brain” and Its Developer

“Brain”
Response

Representation
Architecture

Timing

Developer

External
sensory
input

External
motor
output

Internal sensors
and effectors are
not shown
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Cross-Modality Cortex Plasticity
(Mriganka Sur and coworkers, Nature April 2000)

 Rewiring:
 Ferret

 Visual signal is rewired to
auditory cortex early in life

 Results:
 Orientation selectivity appeared in rewired auditory cortex,

statistically identical

 The ferrets have been successfully trained to perform vision tasks
using auditory cortex

 Implication:
 Similar developmental mechanisms shared by different sending

modalities
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Rewiring
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Receptive Fields Change with Experience
(Mike Merzenich and coworkers)

 Experiment:
 Adult owl monkeys
 Synchronized stimulus cross fingers
 Repeated training for weeks

 Result:
 Receptive fields cross fingers
 Normal cases: receptive fields cover a single finger

 Implication:
 Even adults are developing every day!
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Developmental Psychology

 Biological-maturation perspective
Maturation of central nervous system in explaining early
behavior in infants

 Environmental-learning perspective
Contribution of the environment

 Constructivist perspective
Jean Piaget: active and constructive

 Cultural-context perspective
The impact of custom and culture

 Current lack of computational perspective
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Animal Learning Models

 Nonassociative learning:
habituation. (e.g., bored to seeing the same toy)
sensitization (e.g., after being startled by a snake, startle by a rope)

 Classical conditioning:
Training: CS - US – UR (e.g., tone - food - salivation)
Result: CS – CR (e.g., tone – salivation)
C: conditional; U: unconditional; S: stimulus, R: response

 Instrumental conditioning (also reinforcement, shaping):
Training: E - R – UR
(e.g., red/green buttons – press red – shock;
         red/green buttons – press green – juice)
Result: R or avoidance depending on UR (e.g., pressing green not red)

 Animal cognitive learning
No apparent reinforcer, very complex behaviors, establishing value system
(e.g., following owner’s instructions, kids learning at schools)
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4. Learning Types for Machines
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Existing Machine Learning Types

 Supervised learning
Class labels (or actions) are given in training

 Unsupervised learning
Class labels (or actions) are not given in
training

 Reinforcement learning
Class labels (or actions) are not given in
training but reinforcement (score) is given
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Mode of Development: AA-Learning

AA-learning: Automated animal-like learning

Unbiased Sensors

biased Sensors

Effectors

Closed brain

World
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Flowchart of AMD Learning

 Modified Q-learning: integration of supervised
learning and reinforcement learning

Supervised
learning

Reinforcement
learning
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New Classification for Machine Learning

 Need for considering state imposability after the
task is given

 3-tuple (s, b, e):
state imposable, biased sensor, effector

 State: state imposable after the task is given

 Biased sensor: whether the biased sensor is used

 Effector: whether the effector is imposed
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8 Types of Machine Learning

TypeStateBiasedEffector0 (000)state-autonomouscommunicativeeffector-autonomous1 (001)state-autonomouscommunicativeeffector-imposed2 (010)state-autonomousreinforcementeffector autonomous3 (011)state-autonomousreinforcementeffector-imposed4 (100)state-imposablecommunicativeeffector autonomous5 (101)state-imposablecommunicativeeffector-imposed6 (110)state-imposablereinforcementeffector autonomous7 (111)state-imposablereinforcementeffector-imposed

Learning type 0-7 is based on 3-tuple (s, b, e):

State imposable (s=1), biased sensor used (b=1) effector-imposed (e=1)
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Existing Developmental Robots
 Darwin robot:

 Series:
 Darwin IV:  Classical condition

 Darwin V: Reinforcement learning

 Constrained environment (two types of cubes)

 MSU:
 Series:

 Cresceptron (91 – 95): grow architecture

 SHOSLIF (93 – 00): scalable real-time regression

 SAIL (95 – present):  our first AMD robot

 Dav (99 – present):  the next generation of developmental humanoid

 Unconstrained environments
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5. Representation
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Two Types of Concept

 World concept:
a concept about objects in the external environment and their
properties
E.g., In front of the agent, there is an apple.
Properties: grounded in the world, well understood by the
human society

 Mind concept:
a concept that is internal with respect to a nervous system
E.g., In front of me (agent) there is a pear.
Properties: individualized, incomplete, not necessarily a
correct representation of the real world
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World Centered vs Body Centered

 World centered:
Every item corresponds to a world concept

 Body centered:
Every item corresponds to a mind concept
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World Concept and Mind Concept
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Symbolic vs. Numeric Representation

 Symbolic:
use symbols to represent objects.
E.g., name, weight, house, neuron, signal

 Numeric:
use numeric numbers to represent objects.
E.g., value of a pixel, the firing rate of a
neuron
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World Centered Symbolic Representation

 World-centered symbolic representation:
 World centered: one-to-one correspondence between a

world object and an instance of representation type
 In the form of
 Example: Apple = (weight, color)

 Properties:
 Each component (attribute) has a predefined meaning
 Each attribute is represented by a unique variable
 Each object (e.g., apple) is uniquely represented by an

instance

),,,( 21 nvvvA L=
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Mind Centered Numeric Representations

 Body centered numeric representation:
 Body centered
 In the form
 But each component corresponds to

 A sensory element
 A motor control terminal
 Or a function of a multiple of the above

 Example: a brain image

 Properties:
 Each component often does not correspond to any world

concept

),,,( 21 nvvvA L=
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Type of Internal Representation for AMD

 Internal representation: non-terminal (not sensor
and effector ends)

 World-centered symbolic representation is not
suited for internal representation for AMD:
It is world centered, symbolic, not suited for internal
representation of a developing brain

 A body-centered numeric representation is suited
for internal representation for AMD:
It does not have to be a one-to-one correspondence
to a world concept, could be body centered

 Implication to human brain?



Michigan State University 50

Sources for Grow Representation
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Epigenetic Representation

1. Raw vector from sensors.

2. Raw control vector to effectors generated by
task-nonspecific program.

3. Representation generated by a task-nonspecific
program using the input of epigenetic
representation.

4. Nothing other than those generated by
recursive  applications of the above three steps.
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An Example
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Raw Sensory Representation

 Vector representation
 Sensor independent:

 Individual sensors:
e.g. light sensors

 Linear sensory array:
e.g., linear camera

 Surface sensory array:
e.g., image

 Volume sensory array:
e.g., video

Image:

Intensity:

Representation:

100 150 250

x1

x2

x3

100 200 300

100

200

300

100
200

300
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Attributes of Signal Source

 Avoid symbolic representation

 Four attributes at signal source:
Modality, location, intensity and time

 Three attributes for processing:
Line, intensity and time

At signal source: Modality Location Intensity Time

For processing: Line Intensity Time
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Information Hierarchy

 Response level
e.g. Inborn behaviors and learned cognitive skills.

 Representation level
e.g., neural weights

 Architecture level
e.g., a cortex area is prepared for eyes and how neurons are
connected.

 Timing level
e.g., the time schedule of neural growth

The lower the level, the more is wired in.
But all are experience-dependent.
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Self-Adaptive Position and Scale

 Too many lines with different meanings

 Position: mean

 Scale: variance

X(t)

Normalization

X(t) – X(t)

σ (t)
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How to Grow Internal Representation?

Sensors Effectors
Grown

Internal brain
Representation

No consistent access of world concept into internal representation!
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6.  Mental Architecture
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Past Major Work on Mental Architecture
 Perception architectures:

 Neisser 1967: Two stages: pre-attentive then attentive.
 Deldman & Ballard 1982: 100-step rule
 Tsotsos’ 1990:  complexity analysis of immediate vision

 Cognitive architectures (no perception):
 Subsumption by R. Brooks 1986
 Soar by Laird, Newell & Rosenbloom 1987
 Outline by J. Albus 1991
 ACT-R by J. Anderson 1993

 Developmental, incl. perception, cognition and behavior
 Darwin V by  Edelman et al. 1998 (inter-cortical adaptation)
 SAIL-3 by Weng et al. 1998 (intra- and inter cortical adaptation)
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AMD Architecture Considerations

 Intelligent controller or task decomposer? No.
 No intelligent component
 Each component is very mechanical and “dumb”

 Symbolic representation? No.
 A symbol is unbreakable, abstract
 Difficult for robot to generate new symbols

 Vector (distributed) multilevel representation?  Yes.
 Automatic context formation
 Competing percepts
 Competing behaviors
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Soar

 Symbolic representation

 Model goal-oriented cognition and reasoning

 Task-specific knowledge built in
representation

 Sequencing of decision learned from
interactive training

 System example: robot-Soar by Laird at al.
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Darwin V
(Gerald Edelman, N. Almassy and Olaf Sprons and )

 Plasticity in feature integration and in behavior
generation

 A set of programmed-in behaviors

 A value system

 “Taste” as wired-in appetitive and aversive stimuli

 Real-time, online, embodied development by a robot

 Developed capabilities:
Feature invariance linked to behaviors
Vision-based object selection behaviors
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SAIL-3 Developmental Robot

 Automatically developed internal representation from
sensory and effector space

 Sensory mapping: hierarchical feature spaces from input
 Cognitive mapping:

 forming states as working memory from input of sensory mappings
 Self-organizing cognitive maps as long-term memory

 Internal behaviors:
attention selection, action release

 4 learning modes, including effector-imposed, reinforcement
and communicative learning

 Value system, vigilance, forgetting.
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Three Mappings

Sensory
mapping

Sensors
Cognitive
mapping

motor
mapping

Effectors

Only input
space is
available

Only output
space is
available

Input and
output spaces
are indirectly

available
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Overview of Sensorimotor System
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Some Related Work

Sensory Mapping
(5k-D to 100k-D):

J. Weng 91
J.  Atick 93
D. Field 97
T. Sejnowski 97
J. Weng 00

Hierarchical Memory
Self-organization
(Dynamic D):

T. Kohonen 88
J. Weng 91
J. Friedman 93
S. Murthy 98
J. Weng 98
J. Weng 00

Motor mapping
(2-D to 10-D):

J. Weng 96
B. Scassellati 96
S. Schaal 99  
M. Mataric 99
C. Breazeal 00

Value System (distributed):
T. Sejnowski 96, G. Edelman 98, R. Sutton 98, J. Weng 02
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Type 1: Observation-driven MDP

R: Regressor
L: Set of states
V: Value system
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Formulation: POMDP and ODMDP

POMDP

ODMDP
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Comparison of POMDP and ODMDP

 POMDP is world centered
ODMDP is mind centered

 Each state of POMDP is hand specified
Each state of ODMDP is automatically generated

 POMDP has two layers of probability
P(st | xt , st-1 ) and P(xt | st ).
ODMDP has one layer of probability
P(pt | lt ).
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From Sensory input to Behavior output

 Cognitive
mappings:

 Value system:
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Types 2 through 5

T: Attention selector
R: Regressor
L: Set of states
M: Motor mapping
V: Value system
D: Delay unit

Type 2: Add T (selective)

Type 3: Add M (reheasable)

Type 4: Add Si  (SASE)

Type 5: Developmental
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A Flaw of the Model for Agents

 A well accepted model: Sense and respond to external
world
E.g., the excellent text by Russell & Norvig

 The flaw:
 Absence of self-generated representation

 Lack of sensing and learning internal activities
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The New Model: SASE Agent
(Weng ICDL’02)

 SASE:
Self-Aware and Self-Effecting

 External world: the world
around including the body

 Internal world: brain
 Sensing:

 External:
 internal: brain

(e.g., primed sensation)

 Effecting:
 external world
 internal world

(e.g., attention selection)
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Necessary Conditions of Self-Awareness

Suppose an agent is aware of its mental
activities (sensations and actions) about a
task b in an environment E.  Then:

1. It senses such mental activities using its
(internal) sensors

2. It feeds the sensed signal into its
perceptual entry point just like that for the
external sensors
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Why SASE?

 Self-generated internal representation (at least the later
conscious part) should be a part of the internal world to be
aware of: SA

 Autonomous operations on the internal representation is
necessary: SE

 A half century of mistake:
overlook the need for the machine to be aware of its own
internal world and its operations (autonomous thinking
process )

 Autonomous thinking using autonomously developed
internal  representation: an essence of consciousness?
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How the Architecture Enables Generalization?

Several mechanisms for generalization:

 Value system: value-sensitive events
 Pleasure seeking and pain-avoidance

 Novelty seeking

 Values of many contexts depending on experience

 Value-insensitive events (nearly-equal values)
 Attention selection from new settings

 Autonomous thinking:
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External and Internal Reasoning

 Three types of reasoning processes:
 External, through ej’s
 Internal, through ij’s
 Mixed

 Attention model T selects which is attended
 Type-1 through Type-3 allow external

reasoning, not internal ones
 Type-4 allows all three types of reasoning
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Autonomous Planning

 Type-4 allows internal reasoning to
realize autonomous planning
Plan (a):

Plan (b):

Selection based on the value system
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Type 6: Multi-level DOSASE MDP

T: Attention selector
R: Regressor
L: Set of states
M: Motor mapping
V: Value system
D: Delay unit
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Architecture Types

 Type 1: Observation-driven MDP

 Type 2: Observation-driven Selective MDP

 Type 3: Observation-driven Selective Rehearsed MDP

 Type 4: Observation-driven SASE MDP

 Type 5: Developmental Observation-driven SASE MDP

 Type 6: Multi-level DOSASE MDP
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SAIL-3 Architecture
 Develop via experience

 Lower level:
 More reflexive

 Limited extent of sensory
association

 Fast behaviors

 Higher level:
 More deliberative

 Extensive sensory
association

 Slower response

 Mediation of levels
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7. Sensory Mapping
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Input Map and Receptive Fields
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Staggered Hierarchical Mapping (SHM)
(Zhang, Weng & Zhang ICDL 2004)

0

483216

Output of
SHM

Cognitive
Mapping(HDR)
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How Neurons Derive Features?

 Hebbian Rule:
updating weights when
output is strong

 Lateral Inhibition:
suppressing neighbors
when the neuron output is
high

 Hebbian Rule + Lateral
Inhibition develops feature
detectors
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2-D Sensory Mapping

 Goal:
 reduce

dimension

 allow control

 Methods:
 PCA, ICA, LCA

 Attention
selection



Michigan State University 87

SAIL: Spatiotemporal Sensory Mapping
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Example of Sensory Mapping Development

 Natural images digitized from video

 5,000 image samples, each with 160x120 pixels

 Each receptive field cover 32x32 pixels

 Incremental PCA to generate and update wavelet filters
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Samples of Training Images
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Developed Visual Filters
 Similar to Gabor filters and Wavelets, but better and complete
 Automatically developed, not hand designed!
 Representation for higher perception becomes manageable

Red

Green

Blue

Luminance
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Incremental PCA (IPCA)

 Principal components:
 Covariance matrix of R

 eigenvectors associated with the largest eigenvalues of
R

 R is too big and it is batch processing

 Incremental PCA:
 Without using R

 Update eigenvector (eigenvalue) one sample at a time
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Candid Covariance-free Incremental PCA (CCIPCA)
(PAMI Aug. 2003)

 Scatter vector:

 Amnesic updating principal component vector

 Compute output yi as projection on the vector

 Residual vector for next principal component
vector:
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IPCA: Most Efficient Estimate

 A most efficient estimate is one
that has the least variance from
the real parameter, e.g. sample
mean
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Convergence of IPCA Algorithms

Oja's SGA Our IPCA
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Other Eigenvectors

Oja's SGA Our IPCA
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IPCA Convergence Comparison

Convergence of the first 5 eigenvectors for 5632-dimension data (88-by-
64 images): (a) Oja’s SGA (b) Sanger’s GHA (c) Proposed CCIPCA

(a)

(b)

(c)



Michigan State University 97

IPCA and Most Efficient Estimate

The most efficient estimate:
 A most efficient estimate is one that has the least variance

from the real parameter.
 The sample mean of data is a most efficient estimate of

mean, if the distribution satisfies some regularity conditions

IPCA:
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IPCA: Eigenfaces

The first 10 eigenfaces obtained by (a) batch
PCA, and (b) CCIPCA shown as images
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CCI Lobe Component Analysis

 Lobe: concentration of probability density
 Whitening:

Decorrelation of input components
Normalize the power along each direction
Lobe components are salient

 Lobe Component Analysis:
corresponding to Independent Component
Analysis (ICA) for super-Gaussians
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Use of SHM: Occluded Face Recognition

 Training phase:
Complete face (G) available

 Testing phase:
Only occluded faces:
Upper view (U)
Lower view (L)

 Solution:
 Training using active vision:

Acquires U and L views during
training

 Testing detects U and L views
 U and L integration
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Summary of Occlusion Experiment

1008.3702.4702.4SHM+HDR

1131.5765.5765.5Monolithic+NN

U+LLU

Testing Time (ms)
Method

98.57%95.95%92.86%SHM+HDR

82.38%75.83%51.43%Monolithic+NN

U+LLU

Recognition Rate
Method
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SAIL: Motor Mapping

 The reverse of sensory mapping

 Additional: signal reconstruction from projections

 Two action source at each level:
 Innate behaviors, programmed in our learned offline
 Learned behaviors from higher levels

 Mediating actions from high levels:
Soft-subsumption
From high level (vh, ch); from low level (vl, cl)
winner: max{chwh, clwl}, where wh > wl > 0
The control signal of the winner is executed
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8. Cognitive Mapping
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The Last Context and the Primed Context

TimeNow

Last context:
1. Last sensation
2. Last action

Primed context:
1. Primed sensation
2. Primed action
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Working Memory and Long Term Memory

 Long term memory        :
 Representation level

 Architecture level

 Timing level

 Working memory         :
 Context that the brain currently attend to

 Depends on robot’s internal and external behaviors

 E.g.,

)(tl

)(tw

))3(),2(),1(()( −−−= txtxtxtw
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Cognitive Mapping: Regression

 Last context:

 Cognitive mapping:
generate action and update long term memory

))(),(()( twtxtc =

))(|)(),(())1(),1(( tltwtxftatl =++
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Cognitive Mapping

 Goal: approximate a function y = f (x)
where x is any vector in a d-dimensional space
(e.g., d = 10,000)

 Allow supervised learning:
training samples (xi, yi), i=1, 2, …

 Allow reinforcement learning
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Seven Regression Requirements

1. High dimensional (5k-D and more)
2. One-instance learning
3. Adapt to increasing complexity
4. Deal with local minima problem
5. Incremental
6. Long term memory without catastrophic

memory loss, but forget old details
7. Very low time complexity with large

memory



Michigan State University 109

Coarse to Fine

 Input: x

 Starting from root

 Coarse-to-fine
search using a tree

 Each leaf node has
sample pairs (xi , yi )

 Output: yi from the
best matches xi
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Hierarchical Discriminant Regression
(PAMI Nov. 2000)

 The tree is constructed
incrementally from
(xi , yi ), i = 1, 2, …
where yi may be missing

 Given unknown x, the tree
finds the best match xi fast

 Each node has a memory
trace register

 A tree node is forgotten
(deleted) if this memory
trace is low

   

      

         

   

   

         

State space

      
Forgetting

Partition tree
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Forgetting Using Memory Trace Decay

Memory strength

Time

T
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Why Features?

 Many components in
the raw input are
irrelevant to output

 Impractical to use
nearest-neighbor
rule:
Cannot exhaust all
the possible
combinations!



Michigan State University 113

Each Node Automatically Derives
its Most Discriminating Feature Subspace
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Disregarding Irrelevant Input Components

++ ++ + ++
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HDR: Hierarchical Structure
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Handling Unbalanced Samples: SDNLL

 SDNLL: size-dependent negative log likelihood

 Smooth transition among three types of likelihood:
Euclidean, Mahalanobis, and Gaussian

 Transition points are automatically determined by
the statistics of estimates

L(x, ci) = 1/2 (x - ci)T Wi
-1(x - ci) + 1/2 ln( |Wi | )

Wi  =  we r2I  +  wm Sw  +  wg Gi 
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Fitting Class Boundaries:
Few Samples
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Fitting Class Boundaries:
Median Sample Sizes
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Fitting Class Boundaries:
Large Sample Sizes

Euclidean

SDNLL
Mahalanobis

Bayes

Gaussian



Michigan State University 120

Fitting Class Boundaries:
Unbalanced Sample Sizes

Euclidean
SDNLL
Mahalanobis
Bayes

Gaussian



Michigan State University 121

Industrial Applications of HDR
 Innovation:

 Automatic derivation of features, instead of human
designing features

 Fast real time speed, easier for system development

 Applications:
 Recognition: recognize shapes or patterns
 Defect detection: position and types
 Detection for missing component
 Pose estimation: given a known pattern, determine its

position, orientation, etc
 Sensor and effector calibration: mapping from sensory

space to effector space (learning based calibration)
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An Overview of Existing Trees

 Well-known classification and regression trees: not
suited for high-dimension input
 CART and C5.0:  univariate tree

 OC1: multivariate tree

 SAIL: hierarchical discriminant regression (HDR) for
high-dimensional input
 Multivariate tree

 Automatic subspace derivation: doubly clustered

 Unify classification and regression problems
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Classification: Weizmann Set

 Total 28 subjects
 Each subject under:

5 orientations
3 lighting conditions
2 expressions

 30 frontal views each

 Leaving-one-out test
and cross validation
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Classification: FERET Set

 Total 457 subjects
 1 subject: 6 images

 34 subjects: 4 each

 423 subjects: 2 each

 Images are normalized to
the same size and intensity
range

 Gaussian mask applied to
suppress periphery

 Leaving-one-out test
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HDR: Performance Comparison

Method Error 
rate 

Search  
time (s) 

PCA 12.80% 0.115 
PCA tree 14.58% 0.034 
LDA 2.68% 0.105 
NN 12.80% 0.164 
SVM+PCA 12.5% 0.090 
HDR 1.19% 0.078 

 
 

Weizmann face database FERET face database

MethodErrorrateSearchtime (s)CART53%0.029C5.041%0.030OC156%0.047CART+PCA53%0.047C5.0+PCA41%0.047OC1+PCA41%0.046HDR0.00%0.027
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Characteristics of HDR tree

Depth vs degree of tree (q)

Measured from the trees automatically constructed from FERET face data set

Distribution of nodes over levels (q=2)
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Hand-Written OCR Images

 MNIST hand-written digits

 60,000 training samples, 10,000 test samples

 IHDR: 3.24% error rate
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Features in IHDR Tree for OCR
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9.  Abstraction Levels
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SAIL: Open View

 Each state is a vector in a
high dimensional space

 At each state:
 take a vector input
 update memory
 output a vector output

 The finite state machine
is autonomously
generated from
experience!
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SAIL: Recursive View

 Active: what is in the state depends on
internal behavior
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Context state

 Content: last experience
 Sensory input, including “pain” and “pleasure”
 Recalled action

 Internal action on state
 Push in: moving on through time
 Hold: pondering
 Clear: take the new setting

 How internal actions are learned: shaping
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Abstraction Levels

 Higher levels cover larger spatial and
temporal scale

 State in the lower level as input to higher
level

 Attention as internal action that turn to levels
 Action from attended level is selected as

current pending system action
 “Go ahead” internal behavior releases

pending action to motor mapping
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SAIL: From Low to Higher Levels

 Primed
sensations
and actions in
new clustered
space

 Composite
effects of
multi-level
internal
behaviors
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Developing Behaviors

 Early period:
 Some “innate” behaviors, programmed or learned off-line
 Occasionally imposed actions
 Reinforcement learning
 Behavior shaping: changing reinforcement schedule

according agent performance

 Later period:
 Learn language, from simple to complex
 Learn the value system: criteria for success
 Mostly learn through communications in language
 Less use of low-level reinforcers.
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10. System Integration
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A Unified View of Multimodality

 Vision: image stream

 Speech: cepstrum stream

 Language:
 sign language: image stream and motor actions

 spoken language: speech stream in and out

 written language: image stream

  Reasoning, thinking and decision making

All sensori-state-motor:
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Projects

 SHOSLIF (1993 - 2000)
 Classification and regression tree for high dimensional inputs (D >

5000)

 Use of PCA and LDA for automatic derivation of features for space
partition

 SAIL (1996 - present)
 Developmental algorithm: SAIL (Self-organizing Autonomous

Incremental Learner)

 SAIL robot, custom made

 Multimodal integration: vision, speech, language, navigation, object
manipulation, and attention.
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SAIL: Reinforcement Leaning and
Communicative Learning
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Demo: Multimodal Integration
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SAIL: Action Chaining Video
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SAIL Novelty Test
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SAIL’s “Draw-Bridge” Test
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Dav: Range-based Collision Avoidance
with Attention Selection
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Some SAIL References

 J. Weng, “The Living Machine Initiative ,”
Technical Report MSU-CSE-96-60, 1996

 International Conf. Humanoid Robots, 1999, Japan
 International Conf. Humanoid Robots, 2000, MIT
 W. Hwang and J. Weng, HDR, IEEE PAMI, Nov. 2000
 Weng et al. “Mental Development by Robots and

Animals,” Science, Jan. 26, 2001
 Weng, “Developmental Robotics: Theory and

Experiments,” International Journal of Humanoid
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Future

 A new industry:
 New type of software industry
 Service robots and smart toys entering homes
 Robots widely used in defense and public environments

 Systematic break throughs in artificial intelligence
along all fronts:
 Vision
 Speech
 Natural language
 Robotics
 Creative intelligence


