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A humanoid robot must be able to cooperate efficiently and safely with humans in
an unconstrained environment. Furthermore, it should not only present no danger to
humans itself, but also be able to detect dangerous situations for the user. To restrict
the processing only to salient objects and events, attention systems modeling the human
visual system have been proposed. However, they are computationally demanding and
the capabilities of digital signal processing systems are still rather limited compared
with those of humans. Therefore, we propose that simple dedicated mechanisms should
be introduced to identify important or even dangerous events. To this end, efficient
detectors for objects falling down, objects moving at high velocity as well as human
faces are presented in this work.
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1. Introduction

It is computational prohibitive for a robot to process every region in every captured

image to the highest cognitive levels, like object recognition and action planning. It

has to bundle its limited resources on regions likely to contain important objects or

events. The objective of an attention system is to detect these salient objects and

events and, thus, to allow to learn efficiently about a new environment and to react

to important incidents.

As the human brain faces the same problem and performs remarkably well on

this task, it seems sensible to use it as a starting point. The neural processes in the

human visual system are not completely understood yet, but psychological studies

suggest that objects are selected based on an interplay of bottom-up, image-based

saliency cues and top-down, task-dependent cues.1,2 The bottom-up part is suffi-

ciently well understood that computer models simulating its behavior have been

proposed, e.g. by Cave3, Itti4 and Wolfe et al.5 However, not very much is known

about the top-down part. It is typically implemented as an adjustment of the weights

in the bottom-up system.

In the bottom-up part of the human visual system several topographical feature

maps like intensity, opponent-color, orientation, depth and movement are extracted
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in parallel over the complete visual field. These maps are combined into a single

saliency map. Regions are thereby regarded as salient if the center differs markedly

from its surroundings.

To this end, the maps pass through a hierarchical structure with higher levels

consisting of smaller maps and consistently larger receptive fields per unit. On the

one hand, this hierarchy calculates the center-surround differences and performs the

fusion into a single saliency map. On the other hand, the hierarchy also provides

for scale invariance. The region with the highest activation in the saliency map is

then chosen as the next point to focus attention on.

The locations predicted by these models have been shown to be a good approxi-

mation of the ones attended by human subjects during visual search tasks. However,

they are quite complex to compute and the capabilities of digital signal processing

systems are still rather limited compared with those of humans. This is especially

true if the system needs to be mobile, like e.g. a humanoid robot.

It is imperative for a humanoid robot not only to cooperate efficiently but also

safely with humans in an unconstrained environment. Furthermore, it should not

only present no danger to humans itself but also be able to detect dangerous sit-

uations. It is rather unlikely that this can be achieved with the aforementioned

attention systems in the near future.

It is reasonable to use these systems in situations that are not time-critical,

e.g. to explore a new environment efficiently. However, in our opinion, they should

be augmented by simple dedicated mechanisms to identify dangerous situations. A

similar idea was already presented by Milanese et al.6, where an alerting system

performing motion detection was introduced to supplement a bottom-up attention

system based on color, orientation and local curvature. On the other hand, this

alerting system detected any movements and not only dangerous ones.

In this work efficient detectors for several important or dangerous situations are

presented. Sect. 2 deals with the identification of objects falling down. In Sect. 3

a detector for objects moving at high velocity and in Sect. 4 a detector for human

faces are presented.

Our system consists of a color camera having a field of view of approximately 55

degrees that captures images of 320x240 pixels in size at a frame rate of 30 images

per second. The camera is attached to a Pentium IV with 1.8 GHz.

2. Falling Object Detection

An object falling down is a dangerous or, at least, an exceptional event that deserves

closer attention. The user could have dropped something or he could have thrown

something on the floor without having noticed it. Furthermore, the robot could

have dropped something itself, too. Therefore, a simple but effective detector for

falling objects based on difference images is presented in this section. Fig. 1 shows

a typical result, where a person drops a mug while moving to the left.

Fig. 2 presents the different processing steps in detecting this falling object. First,
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(a) Detected falling object (b) Previous image

Fig. 1. Detection of an object falling vertically

a difference image between the current and previous frame is calculated. For higher

robustness, this is done on each of the three channels of the color image and the

results are combined into one gray scale image of 8 bit depth (see Fig. 2(a)). Second,

this difference image is thresholded and morphological operations are performed to

clean it up. The resulting black and white image is shown in Fig. 2(b). A closing

operation is used to fill in gaps within one object, as can be seen e.g. for the mug

and for the face. Thereafter an opening operation is used to remove very small

structures which would complicate the subsequent extraction of the outer contours

of the black blobs unnecessarily.

The next step consists of replacing the outer contours by their bounding rectan-

gles to facilitate the further treatment (see Fig. 2(c)). Finally, small objects as well

as bounding rectangles containing only few black pixels are removed, as can be seen

in Fig. 2(d). Additionally, rectangles being similar in size and below each other are

merged into a single one as falling objects are likely to produce to distinct non-zero

regions. This can either be due to the object being sufficiently fast to occupy a

completely distinct region in the next image or be due to a falling single-colored

object whose positions in two consecutive images are still overlapping, as can be

seen in Fig. 2(a). The bounding rectangle indicating the falling object in Fig. 1(a)

is produced by restricting the height of the rectangle in Fig. 2(d) to the bottom line

of the previous rectangle.

To decide if a falling object is present or not, the rectangles obtained in one

frame are compared with those of the previous frame. A falling object represents

an accelerated, downward movement. In terms of the bounding rectangles, this is

equivalent to

• a downward vertical displacement,

• an increase in height,
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(a) Difference image (b) . . . cleaned

(c) Bounding rectangles (d) . . . cleaned

Fig. 2. Processing steps in falling object detection

• a similar horizontal position,

• and a similar width.

The first condition is self-evident. The second one takes into account the increase

in height due to the increase in velocity of a falling object over time. The higher

velocity not only leads to a steady increase in distance between the previous and

current position of the object but also to a bigger height of the object itself due to

the finite exposure time for capturing the images.

The last two conditions require the horizontal position and the width only to

be similar to allow for inaccuracies in the process and to detect objects that are

rotating or not falling perfectly vertically, too. A more severe example for this is

shown in Fig. 3.

To distinguish between an object falling down and an object being actively
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(a) Detected falling object (b) Difference image

Fig. 3. Detection of an object falling in an inclined way

moved downwards, it was first tried to verify the law of free fall in the vertical

displacement and the increase in height. However, this did not show a robust per-

formance. Especially, parts of the hand being included in the bounding rectangle

of the falling object as well as rotations of the object causing changes in its height

resulted in severe problems in determining its acceleration. Furthermore, an addi-

tional image was needed to estimate the acceleration requiring a longer observation

interval.

On the other hand, an active downward movement typically does not fulfill the

conditions mentioned above. As shown in Fig. 4, the rotational movement of the

arm around a fixed point results either in an increasing vertical position but a

decreasing height or an increasing height but a fixed vertical position. Furthermore,

at the beginning and the end of the sequence, the bounding rectangles are discarded

during the next processing step due to an insufficient amount of moved pixels.

Therefore, false detections are limited to cases where the arm is moved almost

exactly in the direction of the camera. This was regarded as acceptable as such a

movement would have been difficult to classify correctly with the more complex

approach of verifying the law of free fall, too.

The thresholds were adjusted so that the mug shown in the figures was robustly

detected to be falling for distances ranging from 0.7 m to 2.5 m. For larger distances

the mug becomes so small that it is removed from the images during the cleanup. For

distances smaller than 0.7 m, the mug is typically not visible long enough without

interferences of the moving hand. As far as the maximum allowed inclination is

concerned, Fig. 3 presents the worst case. In similar sequences the object is not

always detected as falling.

The determination of the thresholds is not very critical. They can be changed

significantly and still a large variety of falling objects are robustly detected for a
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Fig. 4. Image sequence of an object being actively moved downwards (left column: current input
image; right column: difference image with bounding boxes before clean up and merging)
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wide interval of ranges. More severe thresholds result in a lower false alarm rate

but also in the objects being needed to fall more vertically as well as changes in

their shape caused by inaccuracies and rotations being less acceptable. With our

settings, the false alarm rate is approximately one misclassification in 250 images

for a typical sequence of a person moving in front of the camera.

The algorithm is very efficient. It runs at approximately 50 frames per second

on our system.

3. High Velocity Detection

Objects moving at high velocity not only represent impending danger themselves

naturally but a quick movement of the user may also indicate a dangerous situation,

which the robot has missed to realize itself. To this end, a simple algorithm to detect

such events based on optical flow images is presented in the following (see Fig. 5).

A different approach compared with Sect. 2 was used as nothing is known about

the direction of the movement.

(a) Input image (b) Detected object

Fig. 5. Detection of an object moving at high velocity

Optical flow is calculated by comparing the change in brightness between two

consecutive frames at one point with the brightness gradient at that point. There-

fore, it can primarily be calculated at a non-zero brightness gradient, parallel to

this gradient and only for displacements smaller than its extent. Velocities in other

directions and at other pixels can only be estimated under the further assumption

of smoothness of the motion field.7

Objects moving at high velocity result in large displacements from one image

to the next and, thus, they are difficult to handle with optical flow algorithms. To

be able to calculate an accurate optical flow field nevertheless, we use the multi-

scale approach described in Bergen et al.8 The optical flow is first computed at a
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low resolution. Thereafter, the input image is warped according to the calculated

motion field and the optical flow is refined at the next higher resolution. Then the

input image is warped again, and so on. In our application, a Laplacian pyramid

consisting of three levels is used.

(a) Downsampled input image (b) Optical flow image

Fig. 6. Processing steps in high velocity detection

As no exact motion field is required for our application and as the computational

expense of calculating an optical flow image is directly proportional to the size of

the image, the input images are low-pass filtered and downsampled twice yielding

a reduction in image size and, accordingly, computation time by a factor of 16.

Fig. 6(a) displays the thus obtained image of 80x60 pixels corresponding to Fig. 5(a).

Based on the calculated optical flow field (see Fig. 6(b)), the decision if a fast

moving object is present or not seems straightforward. However, an optical flow

field never represents a one to one mapping of the velocity distribution in an image.

In our case this is aggravated by the reduction in the resolution of the input im-

ages. The velocities, which are assigned to pixels belonging to a moving object, are

rather broadly distributed and, thus, it is difficult to estimate the proper velocity

of an object. As a result, the distribution of velocities over an object as a whole is

examined to check if a large percentage of pixels are assigned a high velocity.

Additionally, already the definition of a fast moving object is difficult. The

definition is not only subjective but also depends on the size of an object. Clearly, a

smaller object needs to move at a higher speed to be called “fast moving”. Therefore,

several decision rules were implemented to cope with the varying size of objects.

To detect large, fast moving objects covering most part of the image, like e.g. a

person, the velocity distribution over the complete image is used. Pixels surpassing

a low velocity threshold are thereby used as an indicator for the size of the object.

To detect smaller, fast moving objects, subwindows of 40x30 pixels and 30x20
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pixels in size are slid over the optical flow image with approximately 50 % overlap

in width and height to remove the effects of other moving objects being present in

the scene. Pixels surpassing a low velocity threshold are again used to indicate the

size of an object. As indicated above, a smaller size of the object thereby leads to

a higher velocity threshold that is needed to be surpassed.

The thresholds were adjusted by several experiments so that good results were

achieved for different objects, like e.g. a moving person, a waved hand, a hand wav-

ing an object, for distances ranging from 0.8 m to 2 m. A moving person and a waved

hand are detected as fast moving if their velocities are higher than approximately

150 pixels per second and 300 pixels per second, respectively.

A common drawback of determining the velocity only in image coordinates, as

e.g. done by our optical flow algorithm, is that the calculated velocity of an object

not only depends on its velocity but also on its distance to the camera. The same

movement of an object being performed closer to the camera results in a higher

velocity in image coordinates. As the object will also become bigger, it will be

detected more easily as moving at a high velocity. However, this is not problematic

here as humans will also tend to be attracted more easily by a movement closer to

the camera.

Another problem lies in the assumption underlying optical flow calculations

that objects move on straight lines. Therefore, the rotational movement of a waved

hand is somewhat problematic and the fingertips are sometimes not detected by the

algorithm.

The algorithm is computationally very efficient again. On our system, it runs at

a frame rate of approximately 30 frames per second.

4. Face Detection

Psychological studies based on the visual search paradigm, where human subjects

are asked to search for an object among distractors in a briefly presented display,

have shown that searches for faces are inefficient.9 Therefore, faces are not among

the basic features in the human visual system that are extracted pre-attentively

over the whole field of view in parallel. On the other hand, it was equally shown

that dedicated mechanisms to detect faces exist in the human brain.

Furthermore, humans and especially the user play an outstanding role for the

behavior of a humanoid robot. Not only shall the robot present no danger to humans

sharing its environment but it is also the robot’s main purpose to serve humans.

Finally, the detection of the user’s face is also the first step in determining what he

pays attention to and, thus, in deciding if the user has probably missed to realize a

dangerous situation. Therefore, a special mechanism to detect human faces based

on a combination of color information and a Haar-like feature based classifier is

presented in this section.

The very fast object detector based on a cascade of simple classifiers using Haar-

like features was introduced in Viola et al.10, applied to face detection and its high
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(a) Detected face in input image (b) Skin color image

Fig. 7. Detection of human faces

performance presented. Using a cascade has the advantage that many subwindows

can be classified as not containing a face and thus discarded early in the processing

chain. Only subwindows containing faces or something very similar to faces need to

pass through the complete cascade to be classified. This reduces the computation

time drastically compared with a single but complex classifier. The required com-

putation time was further reduced by using the Haar-like features. These simple

features can be computed very efficiently using an integral image10 but still provide

a rich representation of the image contents.

Lienhart et al.11 refined this approach by introducing rotated features and a

post optimization procedure. This reduced the false alarm rate by about 24 % at a

given hit rate. At a hit rate of 95 %, the false alarm rate was stated to be below

0.5 %. These results could be verified by tests using the FERET database12. Even

faces being rotated by up to 25◦ are typically detected.

This detector running at approximately 5 frames per second on our system is

at the heart of our special mechanism. It is sensible to combine it with a detector

for skin color as the Haar-like features do not make use of the color information

contained in the image.

It has been shown that human skin colors cluster in a small region in the color

space and that they differ more in intensity than in color.13 Skin color can be

modeled as being normally distributed with a low variance in the chromatic color

space and therefore most of the false alarms caused by non-skin-colored objects can

be suppressed efficiently. The chromatic color space is obtained from the RGB color

space by simple intensity normalization.

Furthermore, skin color information can be used to reduce the search region.

In the example shown in Fig. 7, 80% of the subwindows are dropped even for the

conservative threshold that at least 50% of the pixels contained in a subwindow need
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to be skin-colored. Unfortunately, this classification based on skin color does not

only require the pixels to be classified as skin-colored or not but also the amount

of skin color to be determined for each frame. Although the latter can be done

efficiently using the integral image, no significant improvements in processing time

could be achieved.

Nevertheless, the introduction of skin color makes sense in our scenario. Our

humanoid robot performs user tracking with the help of skin color, too,14 so that

the skin color classification has to be performed anyway. Additionally, the skin

color image is processed further to form blobs. Therefore, it is planned to crop

subimages around these blobs in the future and to preform face detection only

on those subimages so that the calculation of the amount of skin color for each

subwindow will be avoided as well.

5. Conclusions

If robots are to act in the same environment as humans, it is of utmost importance

that they do not present any danger for the human users. Furthermore, they should

be able to detect important or even dangerous situations. In our opinion it is rather

unlikely that this can be achieved with the traditional attention systems in the near

future. Therefore, three dedicated mechanisms have been introduced in this work

to supplement these systems: efficient detectors for objects falling down, objects

moving at high velocity as well as human faces. These detectors were shown to be

robust and computationally inexpensive.

Future work will be aimed at integrating these mechanisms into our attention

system based on the work of Itti4 and into our face tracker14. Additionally, further

dedicated mechanisms to detect dangerous situations are envisioned, e.g. tracking

the hands of the user shall be used to detect exceptional movements and to predict

interactions of the human with the environment.
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