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This article summarizes our framework for learning biped locomotion using dynamical
movement primitives based on nonlinear oscillators. Our ultimate goal is to establish a
design principle of a controller in order to achieve natural human-like locomotion. We
suggest dynamical movement primitives as a central pattern generator (CPG) of a biped
robot, an approach we have previously proposed for learning and encoding complex hu-
man movements. Demonstrated trajectories are learned through movement primitives
by locally weighted regression, and the frequency of the learned trajectories is adjusted
automatically by a frequency adaptation algorithm based on phase resetting and entrain-
ment of coupled oscillators. Numerical simulations and experimental implementation on
a physical robot demonstrate the effectiveness of the proposed locomotion controller.
Furthermore, we demonstrate that phase resetting contributes to robustness against ex-
ternal perturbations and environmental changes by numerical simulations and actual
robot experiments.

Keywords: Biped locomotion, Learning from demonstration, Dynamical movement prim-
itives, Phase resetting, Frequency Adaptation

1. Introduction

In this paper, we present an approach to learning biped locomotion from demon-
stration and its adaptation through coupling between the pattern generator and
the mechanical system. Motivated by human’s capability of learning and imitating
demonstrated movements of a teacher, imitation learning has been explored as an ef-
ficient method for motor learning in robots to accomplish desired movements™ 3. In
our previous work, we proposed dynamical movement primitives to encode complex
discrete and rhythmic multi-joint movements through imitation learning*. Dynam-
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ical movement primitives are formulated as a set of autonomous nonlinear differ-
ential equations with well-defined attractor dynamics. Demonstrated trajectories
are learned using locally weighted regression, and the output of dynamical move-
ment primitives serves as kinematic movement plans, e.g., desired trajectories, for
a robot.

This paper presents the idea of using the rhythmic movement primitives based on
phase oscillators? as a central pattern generator (CPG) to learn biped locomotion
from demonstration. Recently, there has been a growing interest in biologically-
inspired control approaches for rhythmic motion generation using neural oscilla-
tors. As a CPG, a neural oscillator model proposed by Matsuoka® is widely used

6,7.8:9 quadruped locomotion'?,

for robotic applications such as biped locomotion
juggling!!, drumming!?, and playing with a slinky toy'?. Neural oscillators have
desirable properties such as adaptation to the environment through entrainment.
However, it is difficult to design interconnection and feedback pathways of neural
oscillators, and much effort is often required to manually tune the parameters of
the oscillators in order to achieve the desired behavior.

Compared with neural oscillators, one of the appealing properties of phase os-
cillators is that the desired phase relationship among oscillators can be specified
in a straightforward manner. In previous work in the literature'®, a comprehen-
sive formulation of phase coordination of coupled phase oscillators is proposed.
Applications of coupled phase oscillators have been explored in the gait control of
multi-legged robots'®!® and the control of a biped robot!?. In addition to using
phase oscillators, our movement primitive has various desirable properties which
are beneficial for biped locomotion. For example, it can learn a demonstrated tra-
jectory rapidly, and it is easy to re-scale the learned rhythmic movement in terms
of amplitude, frequency and offset of the patterns®. Furthermore, our movement
primitives has the potential capability of improving learned movements through
reinforcement learning'®.

In the application of rhythmic movement primitives to biped locomotion,
we introduce coupling terms to the movement primitives to achieve the desired
phase relationship among limbs following the formulation proposed in Klavins and
Koditschek'*. We also propose an adaptation algorithm for the frequency of walk-
ing based on phase resetting'® and entrainment between the phase oscillator and
mechanical system using feedback from the environment. Phase resetting is intro-
duced to our dynamical movement primitives motivated from a mathematical point
of view as well as a biological perspective in order to achieve synchronization of
the rhythm of oscillators with the timing of heel strike in biped locomotion. From
a mathematical point of view, the phase resetting algorithm can be interpreted as
a discretized version of the synchronization mechanism of coupled phase oscilla-
tors. From a biological point of view, phenomena of phase resetting or phase shift
are observed in many biological oscillators resulting from external perturbations,
e.g., circadian pacemakers, biochemical oscillators and human finger tapping neural
networks as mentioned in '°. Phase resetting is related to the stability properties
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Fig. 1. Left: Physical system. Right: Five-link model of the robot.

of neural rhythms, which can be analyzed by examining the phase dependent re-
sponses against perturbations. In recent work??, functional roles of phase resetting
were studied for gait stability against external perturbations in biped locomotion.
The authors investigated the behavior of a biped simulation model against exter-
nal perturbations, where the phase of the prescribed joint trajectories obtained by
Fourier fitting of humans’ gait data were shifted in response to impulsive forces
applied during walking. Their numerical simulations suggested that phase reset-
ting helps maintaining stability of periodic movements in biped locomotion in the
presence of external perturbations.

In this paper, we demonstrate the effectiveness of the proposed control strategy
by numerical simulations and experimental implementation, including an evaluation
of robustness of walking with the proposed algorithm against external perturbations
and environmental changes.

2. Experimental Setup

We use a planar 5-link biped robot developed in 2! (see Fig. 1). The height of the
robot is 0.4 m and the weight is about 3.4 kg. For numerical simulations, we use the
following model: The length of each link of the leg is 0.2 m, the mass of the body
is 2.0 kg, the thigh is 0.64 kg and the shank is 0.05 kg.

The motion of the robot is constrained within the sagittal plane by a tether
boom. The hip joints are directly actuated by direct drive motors, and the knee
joints are driven by direct drive motors through a wire transmission mechanism
with the reduction ratio of 2.0. These transmission mechanisms with low reduction
ratio provide high back drivability at the joints. Foot contact with the ground is
detected by foot switches. The robot is an underactuated system having rounded
soles with no ankles. The robot is controlled with a real-time operating system,
RT-Linux. The sampling frequency of the controller is 1 kHz.
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Fig. 2. Proposed control architecture for biped locomotion with dynamical movement primitives.

3. Biped Locomotion Control with Dynamical Movement
Primitives

In this section, we outline our control framework for biped locomotion using dy-
namical movement primitives depicted in Fig. 2.

3.1. Rhythmic Dynamical Movement Primitives

Rhythmic dynamical movement primitives encode periodic behavioral patterns as
an output of a set of nonlinear dynamical systems composed of a canonical dynam-
ical system with a phase oscillator and a transformation dynamical system with a
nonlinear function approximator. We briefly review the formulation of the rhythmic
movement primitives which we proposed in Ijspeert et al.?

Consider the following limit cycle oscillator characterized in terms of an am-
plitude » and a phase ¢ as a canonical dynamical system which generates basic
rhythmic patterns:

¢=w (1)
T = —p(r —ro) (2)

where w is the frequency of the oscillator, 7 is a temporal scaling factor defined by
T = 1/w, ro determines the desired (relative) amplitude, and y is a positive constant.
When there are multiple oscillators, we will introduce coupling terms among the
oscillators (see Section 3.2.1). This rhythmic canonical system is designed to provide
an amplitude signal v = [rcos¢,rsin$]’ and phase variable mod(¢,27) to the
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following second order transformation dynamical system (z,y), where the output y
is used as the desired trajectory for the robot:

=24 f(¥,0) (4)

where a and § are time constants, y,, is an offset of the output trajectory. f is a
nonlinear function approximator using local linear models?? of the form:

. Zgzl \I/kwg\?
- N
Zk=1 U,

where wj is the parameter vector of the k-th local model. Each local model is
weighted by a Gaussian kernel function

f(¥,9) (5)

), = exp(—hg(mod(e, 27) — cx)?) (6)

where ¢y, is the center of the k-th linear model, and hj characterizes its width. A final
prediction is calculated by the weighted average of the predictions of the individual
models. The parameters wy, are determined by locally weighted learning®? from a
demonstrated trajectory yqemo. Given a sampled data point (fiarget, V) at t where

ftarget = 7_yclem,o — Zdemo (7)
and
TZdemo = Ol (ﬁz (ym - ydemo) - Zdemo)7

the learning problem is formulated to find the parameters wy in (5) using incre-
mental locally weighted regression technique®? in which w; is updated by

WZJFI = WZ -+ \IlkPZHi?ek (8)
where
ptil _ 1 pt PLvvT P!
F AP A +vTPLY

T ~
€r = ftarget — W,V

and \ € [0, 1] is a forgetting factor. As illustrated in previous work*, the amplitude,
frequency and offset of the learned rhythmic patterns can be easily modified by
scaling the parameters 1o, w(= 1/7) and y,, individually.

3.2. Rhythmic Dynamical Movement Primitives as a CPG

We use the rhythmic dynamical movement primitives described above as a CPG for
biped locomotion. Fig. 2 illustrates the proposed control architecture in this paper.
Each joint is equipped with a movement primitive which generates the desired joint
trajectory. The output of the movement primitive y is used as the desired trajectory
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Og4cs for each joint. We define the index and the corresponding name of the joint as
Left hip (¢ = 1, L_HIP), and Left knee (i = 2, L KNEE), Right hip (¢ = 3, R_HIP),
and Right knee (¢ = 4, R.LKNEE). An additional oscillator (¢ref) is allocated to
provide a reference phase signal to the limb oscillators, which is adjusted by the
ground contact information at the instance of heel strike.

Section 3.2.1 introduces coupling to the oscillators of the movement primitives
to achieve the desired phase relationship between the limbs. Section 3.2.2 outlines
the phase resetting and frequency adaptation algorithms of the learned periodic
movements through the interaction among the coupled oscillators, robot and envi-
ronment.

3.2.1. Inter- and Intra-limb Phase Coordination

Coupling among the oscillators is introduced to regulate the desired phase relation-
ship between the limbs of the robot. This is motivated from a biological point of
view where it has been hypothesized that coupling among neural oscillators plays
an important role in coordinating the desired phase relationship of limb movements
in locomotion and gait transition®3.

Consider the following coupling terms for the oscillator i:

N
¢ =wi+ kY Cijsin(¢; — ¢) (9)
i=1
where k is a positive constant gain, and Cj; is an element of the n X n matrix
C which characterizes the coupling with other oscillators. This form of coupling
appears in various studies of coupled oscillators and their application!415:16:17,24,25
Specifically, we employ a formulation'* to coordinate the desired phase relationship.
We design the desired phase difference among the canonical oscillators such that
the links of each leg move in phase (with zero phase difference), and the left and
right legs move out of phase (with 7 phase difference) by defining the phase of the
oscillator as ¢; = 0 at the instance of heel strike of the corresponding leg. More
specifically, we require ¢y — ¢p2 = 0, ¢p3 — ¢4 = 0, ¢1 — ¢3 = 7, and P2 — ¢4 = 7.
Thus, the connection matrix C is chosen to be

0 1 -1-1
1 0 -1-1
=100 1| (10)

-1-11 0

3.2.2. Phase Resetting and Frequency Adaptation of CPG

The phase resetting and frequency adaptation algorithms are motivated by the
synchronization mechanism of the coupled oscillators to adjust the frequency of the
learned periodic motions by the robot through the interaction among the CPG,
robot and environment. In our original formulation?®, phase resetting was directly
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introduced to all the limb oscillators. Instead, in our current setting, we first intro-
duce phase resetting to the reference oscillator. Then, additional continuous cou-
pling is introduced to the limb oscillators to achieve the desired relative phase to the
reference oscillator in order to avoid discontinuity to the desired joint trajectories.

Consider the following phase resetting and frequency update law to the reference
oscillator at the instance of heel contact:

(Z-Sref = @:}ef + 5(t — theel StTike)( ;Lzl;(l)tstrike - ¢Tef) (11)
~ 1 ~ ~

w?:]_‘ - w'r‘ef + K(w'r?zeasured - w:}ef) (12)
where § is the Dirac’s delta function, n is the number of steps, and ¢7°%9* . is the
phase of the mechanical oscillator (robot) at heel strike defined as ¢[2%t . =0
at the heel strike of the left leg, and ¢}°%t . . = at the heel strike of the right

leg. W) . .sureq 18 the measured frequency of locomotion defined by

™
w'?neasured = 7n (13)
measured

where T ... is the stepping period of locomotion (half period with respect to

the oscillator). At the same time, natural frequencies of all the limb oscillators w;
are updated at the instance of heel contact such that w; = d}fj}l, and additional

coupling is introduced to the limb oscillators with ¢, ¢ to achieve the desired relative
phase d)l = ¢2 = (bref and ¢3 = ¢4 = (bref + .

4. Numerical Simulations
4.1. Learning from Demonstrated Trajectory

As a demonstrated trajectory, we use the motion capture data of human walking?”
(29-year-old male, 173cm, 83.5kg, right hip and knee). We identified the period
and frequency of this pattern by the power spectrum estimation with FFT and
autocorrelation as T = 1.17 sec and f = 1/T = 0.855 Hz respectively. The dynamics
of the robot are derived using SD/FAST? and integrated using the Runge-Kutta
algorithm at 1ms step size. The ground contact force is calculated using a linear
spring-damper model. A low-gain PD controller is used at each joint to track the
desired trajectory which is the output of the movement primitive.

A walking pattern from the demonstrated trajectory is learned with the dynam-
ical primitives. We manually designed the desired trajectory for the initial step of
locomotion from a standing position at rest, and the proposed CPG controller is
activated at heel contact of the first step. The amplitude parameter of the dynam-
ical primitives is set to rg = 0.7, and the offset y,,, = 0.375 is introduced to the
knee joints. For the scaling of the natural frequency of the oscillator, the adaptation
law described in Section 3.2.2 is used with the initial frequency of w = 4.83 rad/s

8http://wuw.sdfast.com
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Fig. 3. Joint trajectories for the left leg and heel strike timing for four periods (8 steps) of walking
(simulation).

(period of oscillation is 1.3 sec). These parameters are determined empirically from
trial and error.

Figure 3 illustrates the desired and actual joint trajectories for the left leg, and
the timing of heel strike after a stable pattern was learned by the phase resetting
algorithm. Figure 4 shows the torque command for the left leg, which indicates that
the knee joint swings passively since it requires almost no torque (see t = 15.1 ~ 15.3
sec). Figure 5 depicts one step of walking. Figure 6 (left) shows the adaptation of the
period of locomotion and Fig. 6 (right) shows the learning curve of the frequency of
the CPG with different coupling constants K = 0.2,0.5 and 0.8 in (12). The stepping
period approached 0.387 sec, and the resultant CPG frequency was w = 8.12 rad/s,
which roughly corresponds to the natural frequency of the swing leg modelled as a
simplified linear pendulum, using the proposed adaptation law.

4.2. Robustness Against External Perturbations

In this section, we numerically evaluate robustness of walking with the proposed
algorithm against external perturbations by pushing the robot forward and back-
ward with external forces during walking. Forces are applied for a duration of 0.1
sec at different timing during a single step (at an interval of 0.1 rad from 0 to 27
of the phase of the reference oscillator). We judge that the robot could tolerate the
perturbation if the robot continues to walk over 30 steps after the disturbance is
applied. Figure 7 shows the magnitude of the maximum external forces which the
robot tolerated. When a forward perturbing force is applied, the robot could cope
with up to 9.1 N (max) at ¢ = 1.1 rad, and 2.2 N (min) at ¢ = 2.7 rad of the
perturbing forces. When a backward perturbing force is applied, the robot could
cope with up to —2.4 N (max) at ¢ = 4.9 rad and —1.0 N (min) at ¢ = 0.4 and
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Fig. 4. Torque command to the left hip and knee joints for four periods (8 steps) of walking
(simulation).
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Fig. 6. Frequency adaptation of walking via entrainment (simulation). Left: adaptation of period.
Right: learning curve of the frequency of the CPG.

¢ = 0.5 rad of the perturbing forces. In contrast, without phase resetting, the robot
only could cope with much smaller disturbances, as indicated by the plot in Fig. 7,
for example, the robot only tolerated up to 3.9 N of the forward perturbing force
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Fig. 7. Numerical evaluation of the robustness of walking against external perturbations. In the
simulations, the robot is pushed forward and backward by perturbation forces for a duration of
0.1 sec at difference timing during a single step. The plot shows the magnitude of the maximum
external forces which the robot tolerated. This plot demonstrates that the robot could cope with
much larger disturbances with phase resetting compared to the case without phase resetting.
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(b) without phase resetting (b) without phase resetting

Fig. 8. Examples of the response against forward and backward perturbations. Left: the robot is
pushed forward by a perturbation force of 6.0 N for a duration of 0.1 sec at ¢ = 0.5. Right: the
robot is pushed backward by a perturbation force of -2.0 N for a duration of 0.1 sec at ¢ = 2.0. (a)
with phase resetting, the robot is able to reject the disturbance and continue to walk. (b) without
phase resetting, the robot falls over after the perturbation is applied.

applied at ¢ = 1.1. On average, with phase resetting, the robot tolerated up to
4.83 N and —1.58 N of the forward and backward perturbing forces respectively.
However, without phase resetting, the robot tolerated only up to 1.79 N and —0.88
N of the forward and backward perturbing forces respectively.

Figure 8 (left) depicts an example of the response against forward perturbations.
The robot is pushed forward by a perturbation force of 6.0 N for a duration of 0.1 sec
at ¢ = 0.5. Figure 8 (right) depicts an example of the response against backward
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perturbations. The robot is pushed backward by a perturbation force of —2.0 N
for a duration of 0.1 sec at ¢ = 2.0. The results in Fig. 8 (a) show that with
phase resetting, the robot is able to reject the disturbance and continue to walk. In
contrast, the results in Fig. 8 (b) show that without phase resetting, the robot falls
over shortly after the perturbation is applied. The simulation results demonstrate
the effectiveness of phase resetting to achieve robust walking against disturbance.

5. Experimental Evaluations

We implemented the proposed control framework on our biped robot described in
Section 2. In the experiments,xmorimo our initial attempt to achieve biped locomo-
tion using the human demonstrated trajectory was not successful. This was largely
due to mechanical limitation of the experimental system and discrepancy in the
ground contact condition between simulations and experiments. Thus, we used an-
other target trajectory which was experimentally obtained from an actual trajectory
of successful robot locomotion using a state machine controller. The state machine
controller is designed to coordinate the leg movements with the physical state of
the legged system based on the idea presented by Hodgins?®. To initiate locomotion
in the experiments, we first suspended the robot with the legs swinging in the air,
and then placed the robot on the ground manually. Thus, the initial condition of
each run was not consistent, and occasionally the robot could not start walking
or fell over after a couple of steps when the timing was not appropriate. In this
experiment, the initial frequency of the oscillator was set to w = 5.71 rad/s (period
of oscillation is 1.1 sec), and the adaptation gain in (12) was decreased according
to an annealing procedure K = %, where Ky = 0.05 and n is the number of steps,
as it is needed in most gradient descent procedure. We introduced an offset « for
phase resetting

qgref ="+ 5(t — theel strike)( ZZZ(l)tstrike - ¢ref + 04) (14)

to adjust the timing of foot contact, where « is chosen to be o« = 0.8 rad. These
parameters are determined empirically. Note that phase resetting with an offset ef-
fectively changes the period of oscillation. Figure 9 presents snapshots of a walking
experiment on a flat surface (carpet). Stepping period for a typical walking experi-
ment was around 0.37 sec as a result of frequency adaptation, and walking velocity
was about 0.51 m/s (1.87 km/h).

Robustness of the proposed algorithm is evaluated by testing walking over sur-
faces with different friction properties such as carpet, cork sheet (3 mm thick) and
a metal plate (2 mm thick). Figure 10 shows an experimental result of walking over
these different surfaces. In Fig. 11, the metal plate was placed so that the inclina-
tion of the slope slightly changes like a seesaw when the robot walks over it (the
height of the center is 7 mm). Figures 12-14 show the desired and actual joint tra-
jectories, the torque command, the timing of heel strike, and the stepping period of
this walking experiment over a see-saw like metal plate respectively. The stepping
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Fig. 9. Snapshots of a walking experiment on a flat surface (carpet) for a single step at 15 frames/sec
(1 frame ~ 66 msec)

Fig. 11. Snapshots of a walking experiment over surfaces with different friction properties and a
seesaw-like metal plate with a slight change in the slope. Also see the plots in Figs. 12-14 for joint
trajectories, torque commands and stepping period for this experimental run, respectively.

period is disturbed when walking over the see-saw like plate (around 15th step, see
Fig. 14), however, it is recovered after passing it. The robot could deal with these
environmental changes as the experimental results in Figs. 10 and 11 demonstrate.

Note that even if we use the learned trajectory from the actual robot walking
pattern, the robot could not walk by just replaying it as a desired trajectory. Phase
resetting using foot contact information was necessary. This implies that appro-
priate on-line adjustment of the phase of the CPG by sensory feedback from the
environment is essential to achieve successful locomotion. In addition, empirically
we found that the proposed controller achieved much more robust walking compared
to the state machine based controller which we originally designed.
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Fig. 12. Joint trajectories for the left leg and heel strike timing of the walking experiment over
different surfaces with a see-saw like metal plate depicted in Fig. 11. These plots illustrate the
joint trajectories of walking from 11th to 23rd steps in the corresponding plot in Fig. 14.
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Fig. 13. Torque command to the left hip and knee joints of the walking experiment over different
surfaces with a see-saw like metal plate depicted in Fig. 11.

6. Conclusion

In this paper, we presented a method for learning biped locomotion from demon-
stration and its frequency adaptation using dynamical movement primitives. In the
dynamical movement primitives, kinematic movement plans are described in a set of
nonlinear differential equations with well-defined attractor dynamics, and demon-
strated trajectories are learned using locally weighted regression. Specifically, we use
rhythmic dynamical movement primitives based on coupled phase oscillators as a
CPG, and introduced a frequency adaptation algorithm through interactions among
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Fig. 14. Stepping period of a walking experiment over different surfaces with a see-saw like metal
plate depicted in Fig. 11. The stepping period is disturbed when walking over the see-saw like
metal plate, however, it is recovered after passing it.

the CPG, mechanical system and the environment motivated by the synchroniza-
tion of coupled oscllators. Frequency adaptation of a CPG is beneficial when the
desired frequency of the coupled system is not exactly known in advance. Numerical
simulations and experimental result demonstrate the effectiveness of the proposed
control algorithm to achieve steady state walking roughly at the natural frequency
of the coupled system. Furthermore, we empirically evaluated robustness of walk-
ing with the proposed algorithm against external perturbations and environmental
changes. The numerical and experimental results demonstrate the effectiveness of
phase resetting contributes to achieve robustness of walking against disturbances.

Future work will address initiation and termination of walking, and on-line bal-
ance compensation. We will also consider collection of human’s walking data under
various behavioral conditions. In our current study, we used a simple phase reset-
ting mechanism in which the phase of the CPG is forced to be reset to a specific
value at the instance of heel strike regardless of the current phase of the CPG. In
the future, we are interested in the generalization of the idea of phase resetting to
determine phase dependent reaction against external perturbations such as recovery
from stumbling by designing an appropriate phase resetting curve'®. Formal math-
ematical analysis will be required to understand the principle of periodic stability
of a limit cycle solution to the dynamics of a combined oscillator and mechanical
system.
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