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We propose a model-based reinforcement learning algorithm for biped walking in which
the robot learns to appropriately place the swing leg. This decision is based on a learned

model of the Poincaré map of the periodic walking pattern. The model maps from a
state at a single support phase and foot placement to a state at the next single support
phase. We applied this approach to both a simulated robot model and an actual biped
robot. Successful walking patterns are acquired.

Keywords: Biped Walking; Reinforcement Learning; Poincaré map

1. Introduction

We are exploring dynamic balance during gait. To emphasize dynamic balance,
our bipeds have point or round feet without ankle joints. For such bipeds with
point ground contact, controlling biped walking trajectories with the popular ZMP
approach22,6,24,12 is difficult or not possible, and thus an alternative method for
controller design must be used. In this paper, we propose a learning algorithm to
generate appropriate foot placement for biped walking. We are using model-based
reinforcement learning, where we learn a model of a Poincaré map and then choose
control actions based on a computed value function.

Although several researchers have applied reinforcement learning to biped
locomotion,13,2 few studies use a physical robot because reinforcement learning
methods often require large numbers of trials. The policy gradient method18 is one
reinforcement learning approach that has been successfully applied to learn biped
walking using actual robots1,20. However, these methods require hours to learn a
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walking controller1, or require a mechanically stable robot.20

Our goal is rapid learning for a potentially unstable robot. We believe the way to
achieve this is by using model-based reinforcement learning. Doya reported that a
model-based approach to reinforcement learning is able to accomplish the cart-pole
swing up task much faster than without using knowledge of the environment.3 In
our previous work, we showed that a model-based approach using an approximated
Poincaré map could be applied to learn simulated biped walking in a small number
of trials.11 In this study, we show that we can apply the proposed method to an
actual biped (Fig. 1). Because static stability using flat feet is also an interesting
case, we show that we can apply the learning method to a simulated robot that has
flat feet, in addition to the round feet used previously.

In section 2, we introduce our reinforcement learning method for biped walking.
In section 3, we show simulation results. In section 4, we present an implementation
of the proposed method on the real robot. We show that the robot can acquire a
successful walking pattern within 100 trials.

Fig. 1. Five link biped robot. The robot is on a rotating boom so it only has to balance in the
plane of motion

Table 1. Physical parameters of the five link robot model

trunk thigh shin
mass [kg] 2.0 0.64 0.15
length [m] 0.01 0.2 0.2

inertia (×10−4 [kg · m2]) 1.0 6.9 1.4

2. Model-based reinforcement learning for biped locomotion

We use a model-based reinforcement learning framework3,17. We learn a Poincaré
map of the effect of foot placement, and then learn a corresponding value function
for states at phases φ = 1

2π and φ = 3
2π (Fig. 2), where we define phase φ = 0 as

the left foot touchdown.
The input state is defined as x = (d, ḋ), where d denotes the horizontal distance

between the stance foot position and the body position (Fig. 3). We use the hip
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position as the body position because the center of mass is almost at the same
position as the hip position (Fig. 1). The action of the robot u = θact adjusts the
knee angle of the swing leg for touchdown. In the simulation θact is the target knee
joint angle of the swing leg which determines foot placement (Fig. 3). In the actual
robot implementation θact adjusts the knee trajectory in a more general way.

Fig. 2. Biped walking trajectory using four via-points: we update parameters and select actions at
Poincaré sections at phase φ = π

2
and φ = 3π

2
. L:left leg, R:right leg

Fig. 3. (Left) Input state, (Right) Output of the controller

2.1. Function approximator

We use Receptive Field Weighted Regression(RFWR)16 as the function approxima-
tor for the policy, the value function and the estimated Poincaré map. We approx-
imate a target function g(x) with

ĝ(x) =
∑Nb

k=1 ak(x)hk(x)∑Nb

k=1 ak(x)
, (1)

hk(x) = wT
k x̃k, (2)
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ak(x) = exp
(
−1

2
(x− ck)T Dk(x− ck)

)
, (3)

where ck is the center of the k-th basis function, Dk is the distance metric of the
k-th basis function, Nb is the number of basis functions, and x̃k = ((x − ck)T , 1)T

is the augmented state. The update rule for the parameter w is given by:

∆wk = akPkx̃k(g(x)− hk(x)), (4)

where

Pk ← 1
λ

(
Pk − Pkx̃kx̃T

k Pk
ak

λ + x̃T
k Pkx̃k

)
, (5)

and λ = 0.999 is the forgetting factor.
In this study, we allocate a new basis function if the activation of all existing

units is smaller than a threshold amin, i.e.,

max
k

ak(x) < amin, (6)

where amin = exp(− 1
2 ). We initially align basis functions ak(x) at even intervals

in each dimension of input space x = (d, ḋ) (Fig. 3) [−0.2(m) ≤ d ≤ 0.2(m) and
−1.0(m/s) ≤ ḋ ≤ 1.0(m/s)]. Initial numbers of basis functions are 400(=20× 20)
for approximating the policy and the value function. We put 1 basis function
at the origin for approximating the Poincaré map. We set the distance metric
Dk to Dk = diag{2500, 90} for the policy and the value function, and Dk =
diag{2500, 225, 1600, 1600} for the Poincaré map. The centers of the basis functions
ck and the distance metrics of the basis functions Dk are fixed during learning.

2.2. Learning the Poincaré map of biped walking

We learn a model that predicts the state of the biped a half cycle ahead, based
on the current state and the foot placement at touchdown. We are predicting the
location of the system in a Poincaré section at phase φ = 3π

2 based on the system’s
location in a Poincaré section at phase φ = π

2 (Fig. 2). We use a different model to
predict the location at phase φ = π

2 based on the location at phase φ = 3π
2 because

the real robot has asymmetries mainly caused by the planarizing boom.
Because the state of the robot drastically changes at foot touchdown (φ = 0, π),

we select the phases φ = π
2 and φ = 3π

2 as Poincaré sections. We approximate this
Poincaré map using a function approximator with a parameter vector wm,

x̂ 3π
2

= f̂1(xπ
2
,uπ

2
;wm

1 ), (7)

x̂π
2

= f̂2(x 3π
2
,u 3π

2
;wm

2 ), (8)

where the input state is defined as x = (d, ḋ), and the action of the robot is defined
as u = θact (Fig. 3).
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2.3. Representation of biped walking trajectories and the low-level

controller

One cycle of biped walking is represented by knot points or via-points for each joint.
The output of a current policy θact is used to specify via-points (Table 2 and Fig.
11). We interpolate trajectories between target postures by using the minimum jerk
criteria5,23 except for pushing off at the stance knee joint. For pushing off at the
stance knee, we instantaneously change the desired joint angle to deliver a pushoff
to a fixed target to accelerate the motion.

Zero desired velocity and acceleration are specified at each via-point. To follow
the generated target trajectories, the torque output at each joint is given by a PD
servo controller:

τj = k(θd
j (φ)− θj)− bθ̇j , (9)

where θd
j (φ) is the target joint angle for j-th joint (j = 1 · · · 4), position gain k is set

to k = 2.0 except for the knee joint of the stance leg (we use k = 8.0 for the knee
joint of the stance leg), and the velocity gain b is set to b = 0.05. Table 2 shows the
target postures for the controller used in the simulation.

We reset the phase21,14 at foot touchdown according to a phase reset curve8

(Fig. 4) as:

φ← φ+ ∆ψ(φ), (10)

where ∆ψ denotes amount of phase reset. The phase reset curve and φ axis (∆ψ = 0)
crosses at φ = ∆φ and φ = π + ∆φ, where ∆φ = 0.3 is empirically determined.
Because we are using a low-gain servo controller in (9), we need to keep the phase
of the controller ∆φ ahead of the phase of the robot.

Table 2. Target postures at each phase φ for the simulated controller: The target postures given
by numbers do not change from cycle to cycle, while those given by θact are controlled by the
learned policy. The units for numbers in this table are degrees

left hip left knee right hip right knee
φ = 0 −10.0 θact 10.0 0.0

φ = 0.5π θact 60.0
φ = 0.7π 10.0 −10.0
φ = π 10.0 0.0 −10.0 θact

φ = 1.5π 60.0 θact

φ = 1.7π −10.0 10.0

2.4. Rewards

The robot gets rewarded if it successfully continues walking and gets punishment
(negative reward) if it falls down. On each transition from phase φ = 1

2π (or φ = 3
2π)

to phase φ = 3
2π (or φ = 1

2π), the robot gets a reward 0.1 if the height of the body
remains above 0.35m during the past half cycle. If the height of the body goes below
0.35m, the robot is given a negative reward (-1) and the trial is terminated.
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Fig. 4. Phase reset curve. φ:Phase at foot touchdown. ∆φ:Desired phase difference. ∆ψ:Amount
of phase reset.

2.5. Learning the value function

In a reinforcement learning framework, the learner tries to create a controller which
maximizes expected total return. We define the value function for the policy µ

V µ(x(t)) = E[r(t+ 1) + γr(t+ 2) + γ2r(t+ 3) + ...], (11)

where r(t) is the reward at time t, and γ (0 ≤ γ ≤ 1) is the discount factora. In this
framework, we evaluate the value function only at φ(t) = π

2 and φ(t) = 3
2π. Thus,

we consider our learning framework as model-based reinforcement learning for a
semi-Markov decision process (SMDP)19. We use a function approximator with a
parameter vector wv to represent the value function:

V̂ (t) = V̂ (x(t);wv). (12)

By considering the deviation from equation (11), we can define the temporal differ-
ence error (TD-error)17,19:

δ(t) =
tT∑

k=t+1

γk−t−1r(k) + γtT−tV̂ (tT )− V̂ (t), (13)

where tT is the time when φ(tT ) = 1
2π or φ(tT ) = 3

2π. The update rule for the value
function can be derived as

V̂ (x(t))← V̂ (x(t)) + βδ(t), (14)

where β = 0.2 is a learning rate. The parameter vector wv is updated by equation
(4).

2.6. Learning a policy for biped locomotion

We use a stochastic policy to generate exploratory action. The policy is represented
by a probabilistic model:

µ(u(t)|x(t)) =
1√
2πσ

exp
(
− (u(t)−A(x(t);wa))2

2σ2

)
, (15)

aWe followed the definition of the value function in17
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where A(x(t);wa) denotes the mean of the model, which is represented by a function
approximator, where wa is a parameter vector. We changed the variance σ according
to the trial as σ = 0.2

(
150−Ntrial

150

)
+0.01 for Ntrial ≤ 150 and σ = 0.01 for Ntrial >

150, where Ntrial denotes the number of trials. The output of the policy is

u(t) = A(x(t);wa) + σn(t), (16)

where n(t) ∼ N(0, 1). N(0, 1) indicate a normal distribution which has mean of 0
and variance of 1. We derive the update rule for a policy by using the value function
and the estimated Poincaré map.

(1) Predict the next state x̂(tT ) from the current state x(t) and the nominal action
u = A(x(t);wa) using the Poincaré map model x̂(tT ) = f̂(x(t),u(t);wm).

(2) Derive the gradient of the value function ∂V
∂x at the predicted state x̂(tT ).

(3) Derive the gradient of the dynamics model ∂f
∂u at the current state x(t) and the

nominal action u = A(x(t);wa).
(4) Update the policy µ:

A(x;wa)← A(x;wa) + α
∂V (x)
∂x

∂f(x,u)
∂u

, (17)

where α = 0.2 is the learning rate. The parameter vector wa is updated by equation
(4). We can consider the output u(t) is an option in the SMDP19 initiated in state
x(t) at time t when φ(t) = 1

2π (or φ = 3
2π), and it terminates at time tT when

φ = 3
2π (or φ = 1

2π).

3. Simulation results

We applied the proposed method to the 5 link simulated robot (Fig. 1). Physical
parameters of the 5 link simulated robot in table 1 are selected to model the actual
biped robot fixed to a boom that keeps the robot in the sagittal plane (Fig. 1). We
use a manually generated initial step to get the pattern started. We set the walking
period to T = 0.79 sec (ω = 8.0 rad/sec). A trial terminated after 30 steps or after
the robot fell down. Figure 5(Top) shows the walking pattern before learning.

Figure 7 shows the accumulated reward at each trial. We defined a successful trial
when the robot achieved 30 steps. A stable biped walking controller was acquired
within 200 trials (Fig. 7). The shape of the value function is shown in Figure 8(Left).
The minimum value of the value function is located at negative body position d and
negative body velocity ḋ because this state leads the robot to fall backward. The
maximum value of the value function is located at negative body position d and
positive body velocity ḋ which leads to a successful walk. The shape of the policy is
shown in Figure 8(Right). If the body velocity ḋ is not sufficient, i.e., ḋ = 0.0 ∼ 0.3,
the policy changes the output θact to place the foot closer to the center of mass
to increase the walking speed. The number of allocated basis functions are 402 for
approximating the value function, 400 for approximating the policy, 104 for the
Poincaré map f̂1 in equation (7), and 106 for the Poincaré map f̂2 in equation (8).
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Figure 9 shows joint angle trajectories of stable biped walking after learning.
Note that the robot added energy to its initially slow walk by choosing θact appro-
priately which affects both foot placement and the subsequent pushoff. The acquired
walking pattern is shown in Figure 5(Bottom). Figure 10 shows the time course of
the phase modulated by the phase reset at foot touchdown. The amount of the
phase reset was different at each foot touchdown.

Because static stability using flat feet is useful to maintain balance for humanoid
robots, we also applied the proposed method to a simulated robot that has flat feet.
Figure 6(Top) shows the walking pattern before learning. We used a different initial
step for the flat footed model. The other simulation settings were the same as the
round footed model. Figure 6(Bottom) shows the walking pattern generated by an
acquired policy. Both figure 5(Bottom) and figure 6(Bottom) show walking patterns
for 6 seconds. In this study the round footed robot walked faster.

Round foot model 

Fig. 5. Acquired biped walking pattern with round feet: (Top)Before learning, (Bottom)After
learning

Flat foot model

with round heel and toe 

Fig. 6. Acquired biped walking pattern with flat feet: (Top)Before learning, (Bottom)After learning
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Fig. 7. Accumulated reward at each trial: Results of 10 experiments. We filtered the data with
moving average of 20 trials.
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Fig. 8. Shapes of acquired value function and policy: (Left)Value function, (Right)Policy

4. Real robot implementation

We applied the proposed model-based reinforcement learning scheme to our biped
robot (Fig. 1). We use a walking pattern generated by a pre-designed state machine
controller15 as the nominal walking pattern. We detect via-points in this nominal
walking pattern and manually select via-points which correspond to foot placement
(Fig. 11). In this framework, control output θact modulates the selected via-points
θv

i :

θv
i = θ̄v

i + θact (i = 1, · · · , nv), (18)

where nv denotes the number of selected via-points, and θ̄v
i denotes the nominal

value of the selected via-points. Each selected via-point is equally modulated by the
control output θact.
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Fig. 9. Joint angle trajectories after learning
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Fig. 10. Time course of the phase modulated by the phase reset at foot touchdown. Arrows rep-
resent the timing of the right foot touchdown.
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Fig. 11. Trajectories used for actual robot control: Nominal joint-angle trajectories and detected
via-points represented by cross (×). Manually selected via-points represented by circle (◦) are
modulated by control output θact.

We changed the variance σ in equation (15) according to the trial as σ =
0.1

(
50−Ntrial

50

)
+ 0.01 for Ntrial ≤ 50 and σ = 0.01 for Ntrial > 50, where

Ntrial denotes the number of trials. We set the walking period to T = 0.84 sec
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Fig. 12. Biped walking pattern before learning

Fig. 13. Biped walking pattern after learning

Fig. 14. Biped walking pattern on metal surface

(ω = 7.5 rad/sec). A trial terminated after 30 steps or after the robot fell down.
We use the pre-designed state machine for the initial 6 steps. We set the distance
metric Dk in equation (3) to Dk = diag{2500, 90} for the policy and the value
function, and Dk = diag{2500, 90, 1600} for the Poincaré map.

Figure 12 shows a biped walking pattern before learning. The robot fell when
using only the nominal walking pattern. Figure 13 shows a biped walking pattern
after learning. After 100 trials in the real environment, the robot acquired a policy
which walks stably. We applied the acquired controller to a different ground surface.
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Even on a surface with quite different friction (smooth metal vs. carpet), the robot
successfully walked using the learned biped walking policy (Fig. 14).

Figure 15 shows joint angle trajectories of the actual robot. The robot generated
a stable periodic pattern after 100 trials. During each step, the robot straightened
its leg, which is uncommon in the popular ZMP approach due to the necessity of
avoiding singularities. Figure 16 shows the time course of the phase modulated by
the phase reset at foot touchdown.

Figure 17 shows the accumulated reward at each trial using the real robot. The
robot learned a stable walking pattern within 100 trials.

An acquired value function after 100 trials is shown in Figure 18(Left). The min-
imum value of the value function is located around zero body position d = 0.0 and
negative body velocity ḋ, and the maximum value of the value function is located
around zero body position d = 0.0 and positive body velocity ḋ. The difference
between shape of the value function acquired in the simulated environment (Fig.
8) and the real environment (Fig. 18) is possibly caused by the effect of the boom.
The shape of the policy is shown in Figure 18(Right). The number of allocated basis
functions are 407 for approximating the value function, 401 for approximating the
policy, 59 for the Poincaré map f̂1 in equation (7), and 59 for the Poincaré map f̂2
in equation (8).
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Fig. 15. Joint angle trajectories after learning on real robot

5. Discussion

In this study, we applied the proposed approach to a physical biped robot, and
acquired a policy which generates a stable walking pattern. We controlled foot
placement using the knee because the lower leg has smaller mass and tracking the
target joint angle at the knee is easier than tracking using the hip joint. Using hip
joints or using different variables for the output of the policy are interesting topics
for future work. We are also considering using captured data of a human walking
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Fig. 16. Time course of the phase modulated by the phase reset at foot touchdown on the real
robot. Arrows represent the timing of the right foot touchdown.

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

2

2.5
A

cc
um

ul
at

ed
 r

ew
ar

d

Trials

Fig. 17. Accumulated reward at each trial using real robot. We filtered the data with a moving
average of 20 trials.

−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

d position [m]
d velocity [m/sec]

V
al

ue

−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1
−0.2

0

0.2

0.4

0.6

d position [m]
d velocity [m/sec]

P
ol

ic
y

Fig. 18. Shapes of acquired value function and policy in real environment: (Left)Value function,
(Right)Policy

pattern 25 as a nominal trajectory instead of using a hand-designed walking pat-
tern. We will analyze the change during learning of the volume of the region of
stable walking in state space. In our previous work, we have proposed a trajec-
tory optimization method for biped locomotion9,10 based on differential dynamic
programming4,7. We are now considering combining this trajectory optimization
method with the proposed reinforcement learning method.
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