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Object recognition requires a robot to perform a number of nontrivial tasks such as
finding objects of interest, directing its eyes towards the objects, pursuing them, and
identifying the objects once they appear in the fovea. In this paper we describe a system
that makes use of foveated vision to solve the problem of object recognition on a hu-
manoid robot. The system employs a biologically motivated object representation scheme
based on Gabor kernel functions to represent multiple views of objects. We demonstrate
how to utilize support vector machines to identify known objects in foveal images using
this representation. A mechanism for visual search is integrated into the system to find
a salient region and to place an object of interest in the field of view of foveal cameras.
The framework also includes a control scheme for eye movements, which are directed
using the results of attentive processing in peripheral images.
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1. Introduction

A robot vision system is humanoid if it firstly possesses an oculomotor system

similar to human eyes, and secondly if it is capable of simultaneously acquiring

and processing images of varying resolution taken from two slightly different views.

Approaches proposed to mimic the foveated structure of biological vision systems

include the use of two cameras per eye2,12,17,18, i. e. a narrow-angle foveal camera

and a wide-angle camera for peripheral vision; lenses with space-variant resolution16,

i. e. a very high definition area in the fovea and a coarse resolution in the periphery;

and space-variant log-polar sensors14. Our work follows the first approach1 (see also

Fig. 1).

Researchers working on humanoids equipped with foveated vision typically stud-

ied behaviors such as visual attention, vestibulo-ocular reflexes, saccadic move-
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Fig. 1. DB’s head. Foveal cameras are above peripheral cameras.

ments, smooth pursuit and mimicking of human movements16,18,17,2,5,22. However,

peripheral vision played a dominant or exclusive role in all these systems. Even

though algorithms implemented on log-polar cameras or space variant lenses imply

the processing of foveal images, researchers who developed such systems seem to

have concentrated on problems that can essentially be solved by using only pe-

ripheral vision. One notable exception is the work of Scassellati17, in which foveal

images were used to detect the eyes of people whose faces were first identified by

peripheral vision. This is a very specialized problem and the authors heavily relied

on the underlying behavioral context to simplify visual processing.

We have recently presented a system that makes nontrivial use of foveal vision

in a task for which foveal vision is well suited, recognition23. We utilize foveation

as follows: our humanoid robot DB relies on peripheral vision to search for inter-

esting areas in visual scenes. The attention system reports about salient regions

and triggers saccadic eye movements. After saccade the robot starts pursuing the

area of interest, thus keeping it visible in the high-resolution foveal region of the

eyes. Finally, high-resolution foveal vision provides the humanoid with a more de-

tailed description of the detected events and objects, upon which the robot can take

further actions.

Our initial system employed LoG (Laplacian of the Gaussian) filters at a sin-

gle, manually selected scale and principal component analysis (PCA) to represent

objects. The nearest neighbor approach was used to identify known objects in vi-

sual scenes. This system was used successfully in interactive experiments with DB.
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To improve its performance, we explored some alternative object representation

schemes and classification algorithms. We experimented with representations based

on Gabor jets25, which are constructed by convolving an image with a number of

Gabor filters at different scales. Gabor filters are prominent in machine vision be-

cause they achieve the best possible joint resolution in 2-D visual space and 2-D

Fourier domain6. They are often used for feature detection. It is also interesting for

humanoid robot vision that receptive field profiles of simple cells in the primary

visual cortex of primates can be approximated by 2-D Gabor functions6. In this

paper we show how support vector machines (SVMs) can be used to classify ob-

jects represented by Gabor jets. We also present some more details of a complete

system starting from visual search over the generation of eye movements to object

recognition.

2. Visual Search and Tracking

To classify an object in the visual scene, the robot must first identify the object’s

location in the image. Visual search and the role of attention in search has been much

discussed in recent literature26. Treisman’s feature integration theory is one of the

most thoroughly studied approaches and resulted – somewhat modified – in several

technical implementations, e. g. Itti et al.10, including some implementations on

humanoid robots2,18. These implementations are mainly concerned with bottom-up,

data-driven processing directed towards the generation of saliency maps. However,

many theories of visual search, e. g. guided search, suggest that there are several

ways for preattentive processing to guide the deployment of attention26. Besides

the bottom-up guidance towards salient regions, there is also a top-down guidance

based on the needs of the searcher. Here we briefly present our implementation of

the top-down search process that bypasses the saliency maps.

2.1. Top-down Guidance

The theory that human visual search always relies on accumulating information

about objects over time has been recently disputed by Horowitz and Wolfe9. The

authors showed, in a number of behavioral experiments, that search efficiency is

not impaired if the scene is continuously shuffled while the observer is trying to

search through it. They concluded that during a visual search episode, no memory

is devoted to rejected distractors. Although they acknowledge the existence of in-

hibition of return (IOR), they argue that IOR has only a very short duration (last

4-6 attended items).

These findings suggest that it does not make sense to implement complex search

schemes when a humanoid robot looks for a particular feature or object in an

unknown, dynamic and cluttered environment. It is a daunting task to keep and

update all the attended positions in memory when the robot moves and the scene

changes. We therefore decided to implement the top-down search, which needs to

be executed in real-time, in a purely random fashion. Such an approach does not



4 Aleš Ude and Gordon Cheng

exclude the existence of strategically planned searches such as for example limiting

the search to a particular area in the image, but we assume that such searches are

not planned in real-time and are based on higher-level knowledge of the scene.

We assign to each object in our object library a number of signal detectors

describing object features such as for example color. It has been argued recently

that many aspects of visual search can be explained by the signal detection theory24.

The signal detectors do not need to be tuned to one object only, e. g. objects having

the same color are associated with the same detector. Signal detectors can describe

the properties of more than one feature and can thus deal with compounded features.

We assume that 2-D shapes of objects of interest can be approximated by the second

order statistics of pixels contained in their projected images. Since we do not have

any information about the location and identity of the objects (apart from that we

are looking for objects from the library), we start by randomly selecting the object

size, shape and location in the image. If the number of feature detectors is not

too large, all of them are evaluated at each location, otherwise we randomly select

some of them for evaluation so that real-time processing is still possible. The group

of objects associated with the detector is assumed detected if the signal detector

exceeds a threshold that is learned in the training phase. The shape parameters

are varied in a controlled way so that 2-D sizes of the generated object hypotheses

remain within prespecified limits. This implements search at multiple resolutions.

To ensure that the processing time is constant, which is necessary to guarantee real-

time operation of the system, we map the randomly generated object location onto

a window of fixed size. We also implemented a short term inhibition of return by

rejecting all newly generated locations that are located within any of the enclosing

ellipses of the last 5 randomly selected object hypotheses. A new test location is

generated in this case.

2.2. Tracking

An object detection event triggers our tracker, which is implemented in a proba-

bilistic manner. It uses shape and color cues to track objects of interest at video rate

(60 Hz). What matters for our implementation of object recognition on a humanoid

robot is that it can estimate position, orientation, and scale of tracked objects.

Details of the algorithm are given elsewhere21.

3. Generation of Eye Movements and Smooth Pursuit

The main task of the control system is to place a salient region in the field of view of

both foveal cameras so that further analysis and eventually object recognition can

be carried out. Although the focus of the task is to bring the object into the center

of the fovea, the control system uses the view of the object from peripheral cameras

as the basis for control. Motion based on information acquired from peripheral

images is more reliable because objects can easily be lost from the view of the

foveal cameras. Since the foveal cameras are rigidly connected to the peripheral
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Fig. 2. DB pursuing the toy dog. These images illustrate that the head (3 DOFs) and the torso
(3 DOFs) of the robot also move to support the pan and tilt motion of the eyes (4 DOFs), which
are primarily responsible for getting the object in the fovea.

cameras and mounted above them with roughly aligned optical axes, the object can

be placed in the foveal images by bringing it into a position slightly displaced from

the center of peripheral images.

We determined a fixed offset in an off-line training phase and although theo-

retically the offset depends on the object’s depth, this method proved sufficient to

keep the object of interest close to the center of foveal images, thus making foveal

images suitable for recognition (see Fig. 3). While the robot attempts to focus on

the object, the detector actively searches through the incoming foveal images, which

makes it possible to determine the object’s position in foveal images immediately

after the object appears in the fovea.

The robot’s primary mechanism for maintaining the view of the object of interest

is the eye movement: the control system continuously alters the pan and tilt of each

eye to keep the object near the center of the corresponding view. Our robot DB

has altogether 30 degrees of freedom and other joints can support the eyes to keep

the object in the center of the fovea. We implemented supportive head and torso

movements and thus use 10 degrees of freedom (4 on the eyes + 3 on the head + 3

on the torso) to maintain the view of the object7 (see also Fig. 2). The task of the

robot head and torso DoFs is to assist the eyes by increasing the viewable area. The

complete control system is implemented as a network of PD controllers expressing

the assistive relationships. The proposed controllers do not rely on a standard model

of robot kinematics and are too simple for an open loop control system. However,

they work very well in a closed loop case. Details about this approach can be found
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in another paper7.

Our experiments proved that we can estimate objects’ locations and shapes

much more accurately in foveal than in peripheral images (see Fig. 3), which is

essential for object recognition.

4. Object Representation

Early approaches to object recognition in static images were implemented predom-

inantly around the 3-D reconstruction paradigm of Marr13, but many of the recent

recognition systems make use of viewpoint-dependent models. View-based strategies

are receiving increasing attention because it has been recognized that 3-D recon-

struction is difficult in practice and also because of some psychophysical evidence

for these techniques19.

In a view-based approach, each object is represented by a number of images taken

from different viewpoints. These model images are compared to the test images

acquired by the robot. However, since a humanoid robot and objects can move in

space, objects appear in images at different positions, orientations and scales. To

recognize objects, we must first extract the portions of images that contain objects

of interest. The extracted images must then be normalized to a fixed size, which

enables us to compare the acquired images with the model images using methods

like principal component analysis and support vector machines.

4.1. Normalization through Affine Warping

A common feature of many blob trackers - including the one implemented by us21,

which was used in the experiments described in this paper - is that they approxi-

mate the shape of tracked objects by the second order statistics of pixels that are

Fig. 3. Tracking in peripheral and foveal images. The ellipses show the detected locations and
shapes. It is apparent that foveal images are much better suited for recognition than peripheral
images.
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probabilistically classified as ”blob pixels”. By computing the eigenvalue decompo-

sition of the associated covariance matrices, we can estimate the extent of the blobs

along their major and minor axes, i. e. calculate the location and shape of ellipses

enclosing the blob pixels. As the lengths of both axes can differ significantly, it

makes sense to normalize each image along the principal axis directions instead of

image coordinate axes and to apply a different scaling factor along each of these

directions, taking into account the length of the corresponding axis.

By aligning the object’s axes with the coordinate axes, we also achieve invariance

against planar rotations. This reduces the number of views that need to be stored

to represent an object.

Normalization along the principal axes can be implemented by applying the

following transformations: (1) translate the blob so that its center is aligned with

the origin of the image, (2) rotate the blob so that its principal directions are aligned

with the coordinate axes, (3) scale the blob so that its major and minor axis are as

long as the sides of a predefined window, (4) translate the blob so that its center is

aligned with the center of the new window. The resulting mapping in homogeneous

coordinates is given by the following affine transformation:
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where u = [u, v]T and θ are the position and orientation of the blob, a and b are the

half lengths of its major and minor axis, and wx and wy are the predefined width

and height of the window onto which we map the window containing the blob.

The process of geometrically transforming the input image by the affine map-

ping given in Eq. (1) is know as affine warping. Since matrix A is invertible, we

implemented affine warping by parsing through the pixels of the output window,

which is smaller than the input window, and by applying the inverse mapping A−1

to each of the pixels in this window. We estimate the associated color intensities at

these positions either by a nearest neighbor or cubic interpolation.

4.2. Gabor Jets

Early view-based approaches used raw grayscale images as input to the selected

classifier, e. g. principal component analysis20 or support vector machines15. Such

an approach, however, cannot deal with illumination changes. Some recent recogni-

tion systems therefore apply a bank of illumination-insensitive filters to the original

images before starting the recognition process. In this way robustness against vary-

ing brightness conditions can be improved. We follow the approach of Wiskott et

al.25, who applied a bank of Gabor filters to the incoming images, both in training

and in recognition phase. Gabor filters are known to be good edge detectors and

are therefore robust against varying brightness. They have limited support both
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in space and frequency domain, which results in a certain amount of robustness

against translation, distortion, rotation, and scaling.

Complex Gabor kernels are defined by

Φµ,ν(x) =
‖kµ,ν‖

2

σ2
· exp

(

−
‖kµ,ν‖

2‖x‖2

2σ2

)

·

(

exp
(

ikT
µ,νx

)

− exp

(

−
σ2

2

))

,(2)

where kµ,ν = kν [cos(φµ), sin(φµ)]T . Gabor jet at pixel x is defined as a set of

complex coefficients {Jx
j } obtained by convolving the image with a number of

Gabor kernels at this pixel. Gabor kernels need to be selected so that they sample a

number of different wavelengths kν and orientations φµ. Wiskott et al.25 proposed

to use kν = 2−
ν+2

2 , ν = 0, . . . , 4, and φµ = µπ
8
, µ = 0, . . . , 7. They proposed to

use a similarity function based on scalar products between normalized magnitudes

of Gabor jets, i. e. {ax
j /‖ax‖}, where ax

j is the magnitude of the corresponding

complex coefficient Jx
j , ax = [ax

1 , . . . , ax
n ]T , and n is the jet dimension (n = 40 in

case of Wiskott et al.25 jets). This collection of normalized magnitudes is called a

Gabor jet at pixel x in the rest of this paper.

The calculation of Gabor jets is computationally expensive because the under-

lying Gabor kernel functions have large support. It is therefore advantageous to

compute the convolutions I ∗ Φµ,ν with the help of Fast Fourier Transform

I ∗ Φµ,ν = F−1 (F(I) · F(Φµ,ν)) (3)

It is not necessary to use Gabor jets at every image pixel as an input to the

recognition system. Ideally, one would calculate the jets only at important local

features. We did not attempt to extract local features because it is often difficult

to extract them in a stable manner. Rather we decided to calculate the jets on a

regular grid of pixels. We took pixels x appearing in Eq. (2) from a regular grid

with the spacing of 4 pixels. Normalized jets {ax
j /‖ax‖}n

j=1
calculated on this grid

and belonging to the ellipse enclosing the object like in Fig. 4 were utilized to build

feature vectors that can be used for classification.

It is important to note that we first scale the object images to a fixed size and

then apply Gabor filters. In this way we ensure that the size of local structure in

the acquired images does not change and consequently we do not need to change

the frequencies kν of the applied filters.

5. Recognition with Support Vector Machines

Support vector machines (SVMs) are a relatively new classification system rooted

in the statistical learning theory4. They are considered as state of the art classifiers

because they deliver high performance in real-world applications. They have been

applied to several problems in computer vision including face recognition8 and also

to more general 3-D object recognition problems15.

First we consider the problem when we need to distinguish between two objects

or between one object and all other objects in the database. A linear SVM for two-

class classification problems is given by an optimal hyperplane wT x + b = 0, which
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Fig. 4. Training images of the five objects used in statistical experiments. Scaling and planar
rotations are accounted for using the results of visual tracking and affine warping. To take care of
rotations in depth, we must collect a sufficient amount of typical viewpoints.

separates data points belonging to both classes. The decision function is given by

f(x) = sign(wT x + b). (4)

The hyperplane is optimal in the sense that it separates the largest fraction of points

from each class, while maximizing the distance from either class to the hyperplane.

It can be computed by minimizing

1

2
‖w‖2 (5)

subject to

yi(w
T xi + b) ≥ 1, i = 1, . . . , N, (6)

where yi is respectively equal to 1 and −1 for positive and negative examples, xi

are the training data (in our case vectors combining the Gabor jets), and N is the
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number of training images. This is a quadratic programming problem and there

exist algorithms that can solve it efficiently4.

It can be shown that w is given as a linear combination of data points xi, i. e.

w =
∑N

i=1
αiyixi, 0 ≤ αi. Most of the coefficients αi take zero values. Feature

vectors corresponding to nonzero αi are called support vectors. This formulation

enables us to rewrite the decision function (4) in terms of dot products between

training feature vectors xi and the feature vector x generated by a test image

f(x) = sign

(

N
∑

i=1

αiyix
T
i x + b

)

. (7)

Studying the quadratic programming problem (5) and (6), one can note that it can

be solved in such a way that data points xi appear only in dot products xT
i xj . This

allows the extension of support vector training to the case of nonlinear separating

surfaces. The key idea here is to map the original feature points into a higher di-

mensional space z = Φ(x), where the data can be separated by a linear hyperplane.

It turns out that if Φ fulfils certain conditions, then there exists kernel function K

so that Φ(xi)
T Φ(xj = K(xi, xj). In this case the decision function becomes

f(x) = sign

(

N
∑

i=1

αiyiK(xi, x) + b

)

. (8)

Since feature vectors x only appear in dot products both in the training algorithm

and in the decision function (4), we only need to use K and never need to know the

function Φ. Hence nonlinear SVMs can be calculated using exactly the same basic

algorithm, the only difference being that we replace the dot products xT
i xj with

K(xi, xj).

An important family of kernel functions is given by Gaussian radial basis func-

tions (RBF)

K(x, y) = exp

(

−
‖x − y‖2

2σ2

)

. (9)

In our experiments we used linear SVMs and RBF-based SVMs. The support vector

machines were trained using the SVMlight software11.

We implemented two classification schemes: one versus the rest, where the goal

is to determine whether a particular object is in the scene or not, and the tree

structure scheme initially proposed by Guo et al.8, where the goal is to identify

an object when multiple choices are allowed (multi-class classification problem). In

this second case each support vector machine is trained to distinguish between two

objects and the final result is obtained by elimination.

The multi-class recognition problem requires the calculation of many dot prod-

ucts between the training feature vectors and the test feature vector. In this case it

is advantageous to reduce the dimensionality of Gabor jet representation. This can

be accomplished by applying PCA (or ICA) to the training jets. Projections of the
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training jets onto the calculated principal components can then be used as input

for SVM training.

We also exploit the dynamic nature of our system and run the recognition process

on a time sequence of images. The object is deemed recognized only if the identity

of the object does not change over a certain period of time. This is based on the

assumption that correct classifications are stable whereas misclassifications are not

and change as the viewpoint changes. In our experiments we typically used 3 images

per second to allow for some interframe motion and waited until the recognition

result was stable for at least two seconds before accepting it. Otherwise the robot

continues to observe the object until the classification result becomes stable or the

person interacting with the robot removes it.

6. Experiments and Conclusions

Experimental results are shown in Tab. 1 - 4. The task here was to determine

whether an object was in the scene or not using only one support vector machine

(one versus the rest scheme). For each of the five objects in the database (see Fig. 4),

the images of the object under consideration were taken as positive examples and

the images of all other objects were taken as negative examples. Training images

were collected while a user moved the objects in front of the robot. Gabor jets were

used as input to the SVM training. We captured the incoming images at 320× 240

pixels and the portion of the image containing the tracked object (see Fig. 3) was

mapped onto the window with 120 × 160 pixels (see Fig. 4). Our foveal cameras

can capture 30 images per second, but we used only three of them to prevent the

collection of too many similar training images. We captured 200 training images

per object, hence the data collection process took a bit longer than one minute per

object. Each support vector machine was trained using 200 positive examples and

800 negative examples. The performance of the system degraded when we used less

training images or a lower resolution target window. For testing we used images

taken from a different video acquired by the robot’s foveal cameras.

We tested the classification of Gabor jet vectors - both in raw form or processed

by principal component analysis - using linear SVMs and SVMs based on radial

basis functions. Tab. 1 - 4 show that there was no significant difference between

these four approaches. PCA was able to retain the essential properties of feature

vectors, but support vector machines were able to classify the feature vectors with

(Tab. 1 and 3) or without PCA (Tab. 2 and 4). The method of choice is thus more

dependent on other factors such as computing time. Classifiers with PCA require

more training time, but they return a classification result faster because feature

vectors are smaller in this case and dot products between them can be calculated

quicker. This is especially important when using the binary tree structure designed

to solve multi-class problems, which require the calculation of many dot products

between feature vectors. It, however, remains to be shown if PCA would perform

well on large databases. In addition, our initial results show that SVMs without
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Table 1. Misclassifications (Linear SVMs, PCA)

false neg. false pos.

teddy bear 1 4.5 % 0.5 %

teddy bear 2 7.8 % 0.3 %

teddy bear 3 1.4 % 1.9 %

toy dog 3.9 % 2.7 %

coffee mug 2.1 % 0.7 %

combined 4.0 % 1.2 %

Table 2. Misclassifications (Linear SVMs)

false neg. false pos.

teddy bear 1 8.5 % 0.1 %

teddy bear 2 6.4 % 0.3 %

teddy bear 3 2.3 % 0 %

toy dog 3.1 % 0.6 %

coffee mug 2.3 % 0 %

combined 4.5 % 0.2 %

Table 3. Misclassifications (RBF SVMs, PCA)

false neg. false pos.

teddy bear 1 7.4 % 0 %

teddy bear 2 8.0 % 0.1 %

teddy bear 3 3.7 % 0 %

toy dog 2.7 % 0.4 %

coffee mug 1.9 % 0 %

combined 4.7 % 0.1 %

Table 4. Misclassifications (RBF SVMs)

false neg. false pos.

teddy bear 1 5.8 % 0.2 %

teddy bear 2 6.6 % 0.3 %

teddy bear 3 0.2 % 1.4 %

toy dog 2.9 % 0.4 %

coffee mug 2.5 % 0.1 %

combined 3.7 % 0.5 %

PCA perform better than SVMs with PCA when we reduce the number of training

views per object. Currently, our method of choice is RBF-based SVM without PCA.

Our results cannot be compared directly to the results on standard databases

for benchmarking object recognition algorithms because here the training sets are

far less complete. Some of the errors are caused by the lack of data in our models

rather than by a deficient classification approach. In addition, these results were

obtained using cameras in motion and automatic figure-ground discrimination rou-

tines described in Section 2. Our results show that it is possible to recognize objects

without using accurate turntables, which are often used to systematically capture

all relevant views. This is especially important from the application point of view

because not using a turntable greatly simplifies the training process.

We conclude that the proposed approach is successful at locating, pursuing and

recognizing objects in motion. We have demonstrated for the first time how to

integrate peripheral and foveal vision on a humanoid robot to solve these problems

in real-time.

The recognition system is implemented on two dual processor PCs that con-

currently process video streams coming from the peripheral and foveal cameras.

However, such an architecture will become too limiting for real-time execution once

the complexity of the cognitive tasks increases. Therefore, a cluster of processors is

being established with the ultimate aim of emulating the human visual system. The
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cluster can be employed to explore various cognitive architectures, such as the one

in this paper. Currently 40 PCs are being used, connected together over a 1 Gbit

Ethernet network. The vision processing on each PC can range from the most basic

(e. g. color extraction, edge filtering, etc) to higher-level (e. g. visual tracking, recog-

nition, etc). The sophistication can increase quite rapidly simply through connecting

the processing outputs of simpler elements to the inputs of more advanced process-

ing elements in a bottom-up manner. Manipulation of the lower-level processes can

also be performed in a top-down fashion. Thus, this framework will provide the

flexibility to explore a greater range of cognitive architectures.
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