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Abstract—This paper presents an intelligent system health monitoring technique for a 
humanoid robot, Robonaut, which was developed at JSC to be used in space. 
Robonaut’s lower level controller publishes sensor information through NDDS, network 
middleware, and Self Agent analyzes the data to monitor the status of the robot. A 
hierarchical system health monitoring  (SHM) technique is developed. As a base level of 
the SHM, a nonlinear model-based observer and a fuzzy logic framework are developed 
to detect faults and identify the fault source in the robot.  

Keywords – Robonaut, Self agent, System health monitoring, Fault detection and 
identification, Model based fault detector, Fuzzy logic 

 
1.  Introduction  
Like most humanoid robots, Robonaut is a complex electromechanical system 
comprised of many sensors and actuators. Overall task performance of such a system 
depends greatly on the proper functioning of its components. Despite the best design 
and maintenance practices, it is unlikely that such a complex system will be immune 
to random system faults. Any fault that may occur in the system may adversely affect 

 



the humanoid. Therefore it is necessary to detect, isolate, and if possible 
accommodate these faults as soon as they arise. In order to perform the above-
mentioned task, we plan to design an automated monitoring system for Robonaut that 
is expected to provide a real-time status of each sensor and actuator, and to analyze 
of the possible task failures given a knowledge base of system faults. 

A robotic assistant that is expected to work autonomously alongside humans is a 
highly complex system. It includes many actuators to provide multiple degrees-of-
freedom needed for dexterous operation, and a host of sophisticated sensors for 
intelligent interaction with a human as well as the environment.  We have developed 
self-monitoring capabilities for the robot that can be seamlessly integrated with the 
rest of the system to endow it with this unique fault tolerant feature.  
    There are several studies on sensor fault detection in control systems. Hanlon and 
Maybeck used a residual correlation Kalman filter bank to detect sensor fault in 
multiple mode of an aircraft [1]. Roumeliotis et al. employed a multiple model 
adaptive estimation (MMAE) to detect sensor faults in a mobile robot [2]. Both 
research groups detected sensor failure by comparing the sensed value with the 
estimated value from the bank of the Kalman filter. Scattolini and Cattane used 
Beard-Jones’ fault detection filter to detect sensor faults in a large space structure 
[3]. Tinos et al. [4] used artificial neural networks for fault detection and isolation in 
cooperative manipulators, by utilizing a multilayer perception to reproduce the 
dynamics of the cooperative system.  

A radial basis function network to produce fault information classifies the 
residual in the system’s actual and modeled velocity. The paper written by Goel et al. 
[5], as well as the paper written by Romueloitis et al. [6] detect and identify faults in 
mobile robots using a Multiple Model Adaptive Estimate (MMAE), in particular a 
bank of Kalman Filters with a specific embedded failure model, and neural 
networks. Mohamed and Ibrahim [7] used a model based fault diagnosis using a 
knowledge base and fuzzy logic techniques. Authors such as Schneider and Frank 
[8][9], or Benitez-Perez et al. [10] used a non-linear model based observer to 
produce an error residual, coupled with a Fuzzy Logic residual evaluation to detect 
an identify faults. This is the method used in this paper since a sufficiently accurate 
dynamic model has been derived (eliminating a need for adaptive estimators), and 
sufficient data to formulate a fuzzy rule base for fault identification is available in 
Robonaut’s architecture. 

   The proposed SHM is designed in a hierarchical manner consisting of levels. 
The lowest level is component fault detection. Robonaut’s lower level controller 
publishes sensor information through NDDS, which is a network middleware, and 
Self Agent analyzes the data to monitor the status of the robot. The higher level is 
for cognitive control. 
 This paper is organized as follows: Section II describes Robonaut’s hardware 
and software architecture. System health monitoring is presented in Section III. 
Section IV presents fault detection technique using model-based observer and fuzzy 
logic for fault identification with simple experimental results using experimental 
data gathered from Robonaut.  Conclusions are presented in the final section. 

 
 

 



2.  Robonaut 

2.1 Hardware  
    With 43 degrees of freedom, Robonaut (Figure 1) is the first humanoid built for 
space. It incorporates technology advances in dexterous hands, modular 
manipulators, lightweight materials, and telepresence control systems. Robonaut is 
human size with a 3-DOF articulated waist, and 2 seven-DOF arms, giving it an 
impressive workspace for interacting with its environment.  It has a pan/tilt stereo 
vision camera unit that provides ranging information for both teleoperators and 
machine vision algorithms.  

In addition to having the correct anatomy to work with EVA equipment, the 
Robonaut system is designed with space operations in mind. Robonaut’s single leg 
design includes a stinger to directly mate with the same ISS worksite interface 
(WIFF) used by crew for stabilization. During the design phase, the ability to work 
in space was considered for nearly every aspect, including materials selection, 
thermal endurance, lubricants, avionics, and computer selection. 
 

 
 

Fig. 1. Robonaut. 
 

    Robonaut's arms, neck and waist are human scale manipulators designed to fit 
within EVA corridors. Beyond its volume design, these appendages have human 
equivalent strength, human scale reach, thermal endurance to match an 8-hour EVA, 
fine motion, high bandwidth dynamic response, redundancy, safety, and a range of 
motion that exceeds that of a human limb. Both the arms and waist have a dense 
packaging of joints and avionics developed with a mechatronic philosophy. The arm 
and waist house thermal-vacuum-rated motors, harmonic drives, fail-safe brakes 

 



and 16 sensors in each joint. The arm’s small size, strength-to-weight ratio, density, 
and thermal vacuum capabilities make it the state-of-the-art in space manipulators 
today.  
    Robonaut’s hands set it apart from any previous space manipulator system. These 
hands can fit into all the same places currently designed for an astronaut’s gloved 
hand. A key feature of the hand is its palm degree of freedom that allows Robonaut 
to cup a tool and line up its long axis with the roll degree of freedom of the forearm, 
thereby, permitting tool use in tight spaces with minimum arm motion. Each hand 
assembly has a total of 14 DOFs, and consists of a forearm, a two DOF wrist, and a 
twelve DOF hand complete with position, velocity, and force sensors.  

The forearm is 4 inches in diameter at its base and approximately 8 inches long. 
It houses 14 motors, the motor control, power electronics, and all wiring for the 
hand. Joint travel for the wrist pitch and yaw is designed to meet or exceed that of a 
human hand in a pressurized glove.  

 

2.2 Architecture for control 
To control Robonaut with various intelligent algorithms, NASA developed an 
integrated control architecture that is depicted in Figure 2. In developing control 
architecture, our approach was to provide a sliding scale of intervention options for 
a remote human, ranging from low levels of teleoperation through supervision 
during routine work, to high levels of instruction for new tasks.  

Likewise, an adjacent human teammate will be able to guide the machine 
through new task primitives, while the lower level motor learning system is active 
and transparent to other agents during autonomous work using mastered tasks and 
sensorimotor competencies.  

Joints are controlled through standard PD loops: an inner velocity loop, and an 
outer position loop.  Joint position comes from filtered encoder or resolver 
measurements.  Joint velocity is derived from back-differenced position.  The tele-
operator generated joint position commands are position and velocity limited and 
shaped through a 2 Hz second-order filter.  The shaped command is back-
differenced to provide a commanded velocity signal that drives the motors through a 
feed-forward path, thus minimizing the required closed-loop effort.  Through the 
command shaper, joint servo bandwidth is typically 1 to 2 Hz. Joint rates are 
typically limited at 15 dps.  The loops execute at 400 Hz. At the Cartesian level, a 
standard impedance force control mode can be turned on in parallel with the 
position controller. To protect the hardware, max servo error aborts and soft and 
hard max position limit aborts are provided. 

 



 
Fig. 2. Architecture for control. 

 
 

3. System Health Monitoring 
  
The Robonaut control system design philosophy is inspired by the human brain 
anatomy.  The human brain embeds some functions, such as gaits, reactive reflexes 
and sensing, at a very low level, in the spinal cord or nerves [11].  Higher brain 
functions, such as cognition and planning take place in other parts of the brain, 
including the cerebral cortex and cerebellum. Within the Robonaut control system, 
the very low-level functions are referred to as the brainstem. The brainstem contains 
the motion controllers for the 49 DOFs, sensing, and low-level sequences. The 
lowest-level System Health Monitoring (SHM) is designed to handle any 
abnormality in this level.  The brainstem approach permits higher-level cognitive 
functions to operate independently of the low-level functions. This allows the 
Robonaut system to implement a variety of control methods ranging from 
teleoperation to full autonomy with the brainstem unaware of which higher-level 
control system is being used. In the human brain, this is called cognitive control 
[12]. 

3.1 Low level sensor monitoring 
    The fundamental component on which the SHM relies is its ability to monitor 
signals to detect faults. There are several possible component faults that can occur 
within Robonaut which are summarized in Table 1.  

 



 
Table 1. Possible components failure in Robonaut 

Components Faults 

Power  Power supply failure 

Actuator Lost connection, 
Transmission failure 

Sensor 
Encoder fault, 
Camera fault, 
Proximity sensor fault 

 
Figure 3 illustrates a system block diagram and typical plots of sensor signal and 
residual using a nonlinear model based error residual generator. The SHM concept 
with a modification is being applied to the Robonaut at NASA-JSC under a joint 
project with the Center for Intelligent Systems at Vanderbilt University. 
 

 
 

Fig. 3.  System block diagram and plots of sensor signals. 
 

3.2 High-level task control monitoring 
   NASA’s vision for the future of space exploration is to bring humans and robots 
together to achieve mission goals. In order to form an effective human-robot 
teaming, however, existing human-robot interaction methods must be greatly 
improved. Before intelligent robots like the Robonaut are fully developed and 
integrated as team members, robot’s cognitive capabilities must be improved so that 
a robot can serve as an effective assistant for humans while performing 
collaborative task in space. At vanderbilt, we are implementing a high-level 

 



cognitive control for our humanoid robot called ISAC (Intelligent SoftArm Control) 
[13] using modular controllers, working memory and a central executive [14]. This 
concept could be transferred to the Robonaut to control Robonaut behaviors in new 
or difficult situations. Figure 4 depicts how cognitive control interacts with low-
level sensorimotor-based actions. 
 

 
 

Fig. 4.  Concept of Cognitive Control. 
 
 

4.  Fault Detection and Identification  
4.1 Model for the right arm of Robonaut 
  The right arm of Robonaut consists of seven joints as shown in Figure 5.  

 
Fig. 5. Joints in Robonaut’s right arm. 

 



Each joint has a servo control loop that is implemented on the real-time OS, 
VxWorks. In order to derive the transfer function between the motor command and 
the joint velocity, we made the following assumptions based on observations and 
heuristic knowledge: 

• Transfer function between the motor command and the joint velocity is 
assumed to have a constant gain.  

• Gravity and Coulomb friction are the dominant external forces.  
• Stick-slip friction force is considered.  
• Gravity is regarded as a constant because the range of joint motion was 

relatively small, though it is a function of joint position. 
• Assume no external control forces. 
 

Based on the above assumptions, the following structure of the model was chosen:  
 

( ( )g c ssK u F F sign F ( ))ω ω ω= − − − ,                    (1) 
 
where , , gu Fω  and cF  are joint velocity, motor command, gravity and Coulomb 
friction respectively. ( )ssF ω is the stick-slip friction. 
    Using the experimental data, we estimated the parameters of the model given by 
Equation (1) using a least square error method. Figure 6 shows the block diagram of 
the whole control system with the estimated parameters. As shown in  the figure, the 
controller consists of an outer position control loop with a position gain Pk  and an 
inner velocity control loop with a velocity gain k , a feed-forward gain V Fk  and a 
gravity compensation term _g compF . The motor command, u, is expressed in the 
following form. 
 

( ) ( ) _V P d V d F d g cou k k k k Fθ θ θ ω θ= − + − + −& &
mp .         (2) 

 
Note that equation (2) has the same form as a PD controller except the addition of 
the feed-forward and gravity compensation terms. 

The developed model was used to find a position error residual. To emulate 
encoder fault in experiments, the encoder value was set to a constant value on the 
control level in Robonaut’s real-time control architecture. When the encoder value 
was set constant, the motor command increased due to the control action in 
Equation (2) causing the error residual to increase and hence we had to quickly stop 
Robonaut. One advantage to our fault detection system is that the stopping action 
would be automated as well as respond faster than a human who was observing and 
anticipating the fault, much less a human who was not paying close attention to the 
humanoid. 

 



 
 Fig. 6. Block diagram for controller and motor in the Elbow Pitch joint. 

4.2 Fuzzy logic for fault identification 
We examined the possible sources for faults and decided to begin our focus on the 
following: 
 
• Sensor failure 

o There are many kinds of sensors including encoders in joints, 
force/torque sensors in wrist and shoulder, touch sensors in hands, and 
cameras. As a basic step, we concentrated on detection of encoder 
fault because of its importance. 

o In simulation, the motor current should increase and the error residual 
should increase. 

o The derivative of the sensor output should be zero. 
 

• Actuator failure 
o This occurs when the actuator breaks and the joint goes limp. Because 

the motor driver supports motor health monitoring signal for 
malfunction of the motor, we can use this signal for fault isolation.  

o In simulation, the motor current should be near zero (implies low 
torque.) 

o The derivative of the sensor output should be non-zero. 
 

We observed the experimental data to build a fuzzy logic analyzer for fault 
identification. Triangular membership functions were defined for all inputs to the 
fuzzy logic rules: 

 



• The Error Residual  (Encoder Reading –Estimated Model Value) could be 
Large Positive (LP), Positive (P), Near zero (P), Negative (N), or Large 
Negative (LN) 

• The Encoder Value could be Positive (P), Negative (N) or Near Zero (NZ). 

• The Estimated Model Value could be Positive (P), Negative (N), or Near Zero 
(NZ). 

• The Motor Current could be Positive (P), Negative (N), or Near Zero (NZ). 

• The Derivative of the Encoder Value could be Positive (P), Negative (N) or 
Near Zero (NZ). 

• The Derivative of the Estimated Model Value could be Positive (P), Negative 
(N) or Near Zero (NZ). 

 
The Fuzzy Logic Output Membership functions are 
• Healthy Output (0) 
• Sensor Failure (2) 
• Actuator Failure (4) 
 
Figure 7 illustrates a sample simulation screenshot for one joint. 

 
Fig. 7. Sample simulation screenshot for one joint. 

 
To identify a difference between an actuator fault and a sensor fault, the most 

important factors are if the residual is either no longer zero (either LP, LN, P or N), 
if the Motor Current acts almost normal or if it decreases dramatically (as one may 
expect if the actuator breaks and the motor spins), and also if the velocity of the 
sensor output immediately goes to zero, or if there is some oscillation. 
 
 

 



Here are a few sample rules: 
• If Residual is NZ, AND Desired Velocity is N, AND Actual Velocity is N, 

THEN output is Healthy Signal (0) 
• If Residual is LP, AND Desired Velocity is N, AND Actual Velocity is NZ, 

AND Motor Current is P, THEN output is Sensor Failure (2) 
• If Residual is LN, AND Desired Velocity is P, AND Actual Velocity is NZ, 

AND Motor Current is NZ, THEN output is Actuator failure  (4) 
 
5.  Simulation and Experiment 

 
Using data gathered from the Robonaut API, we calculated the desired encoder 

value using the derived dynamic model. Figure 8 shows at 6.5 seconds, the encoder 
signal was kept at a constant value of , which emulates an encoder fault.  90− o
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Fig. 8. Encoder fault detection: (a) Actual and estimated encoder value;  
(b) Difference between actual and estimated encoder value;  
(c) Output from fuzzy logic based fault identification block. 

 



Figure 8 also shows that the error between the estimated value and the real 
encoder value increased after the occurrence of the encoder fault. Therefore, we 
could easily detect the encoder failure by observing the residual. The third diagram 
shows the output of the fuzzy logic rules. While the encoder reading matches well 
with the model based estimator, the output of the Fuzzy Logic is 0 (for a healthy 
signal). Once the fault is introduced, the Fuzzy Logic outputs a value of 2, which 
corresponds to an Encoder Fault. At 8 seconds, the emergency stop button was 
pressed causing many sensor values to stop.  As shown in the error residual plot, 
when everything is functioning correctly, the residual is not exactly zero. However, 
using Fuzzy Logic to set tolerances and to examine other important information, we 
can know that everything is functioning properly. 

 
 

6.  Conclusions and Further Work 
 

In order to monitor system health in the humanoid robot Robonaut, we proposed a 
model based fault detection scheme and fuzzy logic for fault identification. 
Simulation using experimental data was performed to verify the proposed fault 
detection and identification scheme. We were able to detect and identify when the 
arm is functioning properly, when a sensor fault is present, and when an actuator 
has failed.  

Further work is required to detect collision and other types of faults such as 
power and transmission failure.  
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