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Abstract 
This work investigates the feasibility of using a fuzzy controller to stabilize a biped robot in the 

dual-support phase. Taking as inputs the errors of the angular position and angular velocity for each 
joint, the controller uses a rule-base implemented with five membership functions to compute the 
joint torques of a 6 DOF biped robot. The input gains were computed at run-time using the Hip and 
Ankle Strategy (HAS), which sets a gain value for each joint based on the relative position of the 
center of gravity with respect to the support area. Although the Hip and Ankle Strategy was found to 
increase the computational load without enhancing the actuation response, the results have clearly 
showed the success of the fuzzy control scheme in making the non-linear system stable, as well as in 
placing the robot into the most stable posture without having to lift the feet of the ground.  

 
 
1. Introduction 
 

Biped robots have been an emerging interest in the field of robotic. Their method of 
locomotion would make them far more versatile than conventional wheeled robots when 
considering the greater number of terrains over which they could operate without difficulties. In 
parallel with research aiming to enhance the robot decision-making abilities based on 
increasingly advanced intelligent software, there is a need to develop low-level control software 
that deals with the mechanics of the robot. Due to the highly non-linear dynamics of robotic 
systems, many approaches have been studied. Starting with the classical computed torque 
method [1] which attempts to linearize the system by integrating a model of the non-linear terms 
in the controller. The tendency of control system designers has evolved progressively toward 
more robust control schemes. Unfortunately, biped robots present the added difficulty of not 
having a fixed base resulting in stability problems at all stages of the walking cycle. Moreover, a 
true reproduction of human legs configuration results in an over actuated system for which 
standard control methods are not adequate. Many papers have dealt with these problems by 
using a broad range of simplifications such as constraining the motion within the sagittal plane 
(reducing the problem to 2-D and reducing the number of DOF to a minimum) [2,3], using the 
inverted pendulum approximation for the sagittal and/or the lateral plane [4], and omitting the 
dual support phase (assuming that the support feet exchange is instantaneous) [5]. The great 
majority of the studies done on modeling bipeds have used the Lagrange method, accounting for 
the holonomic constraints by means of the Lagrange multipliers [6,7,8].  

Control schemes for biped robots have varied from the simplest feedforward compensation 
and linear state feedback [8] to computed torque methods and impedance control [6,9], the latter 
case being essentially a hybrid force and position control. Another approach was the sliding-
mode control presented in [5], which consists of defining a vector field (in velocity state-space) 
pointing toward the desired trajectory that each link must follow. A control law based on the 
second method of Lyapunov and on sliding mode is derived in order to establish a stable 
controller that forces all links to converge to the ideal trajectories. As it can be found in many 
works on biped control, the impact force is usually considered as a measurable variable. Due to 
the difficulty in measuring this force accurately, these control schemes may prove to be difficult 
to implement.  
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In general, the control schemes developed for bipeds are based on following a predefined 
trajectory, which must be changed depending on the type of action undertaken (running, 
walking, climbing stairs, etc.) and the type of ground relief considered. Moreover, these 
trajectories must take into account both the balance of the system as it moves, and the motion 
itself. A number of researches have worked to circumvent these difficulties by dealing with 
stability and motion separately. As such, the concept of a Central Pattern Generator consisting 
of a set of neurons able to produce rhythmic motion patterns without the need for sensory 
feedback, emerged with the complementary Reflex module that rely heavily on sensor-motor-
feedback to maintain balance [10,11]. Other high-level control schemes were elaborated such as 
the “Hip and Ankle Strategy” (HAS), which is based on the suggestion that the Central Nervous 
System simplifies complex motor actions by fixing from prior experiences the interaction 
among a group of muscles. Starting from this concept, the authors of [12] developed a pseudo-
code that implements this control scheme using a set of if-then-else rules. This approach 
diverged from more conventional ones that optimized energy cost functions to find the best 
effort distribution among all actuators (be it motors or muscles). 

Aiming to combine our intuitive knowledge of walking, with the concept of having separate 
modules that deals independently with stability and motion, the present paper proposes a control 
scheme based on fuzzy logic [13]. The dual-support phase of a biped robot was selected in order 
to investigate the potential of fuzzy logic in solving the over actuation problem without having 
to optimize some energy cost function in the process. The objectives of the research presented in 
this paper are to establish and test a control scheme that is not based on a trajectory following 
approach, while avoiding at the same time the integration of complex models into the controller.  
 
2. Dynamics of the 6-DOF Biped System  
 

Figure 1 shows the 6 DOF biped robot used in the analysis. The orientation and 
position of the frames at each joint are determined based on the Denavitt Hartenburg convention 
commonly used in the analysis of serial kinematic chains. The reference frame for the overall 
system is taken as X0gY0gZ0g located at the foot of the support leg. The non-support leg will be 
referred as the free leg. The stability of the biped will be analyzed when the free leg is at various 
positions with respect to the support leg. The variables 1q to 6q represent the joint angles and 

1a and 2a are the lengths of the lower and upper parts of the leg, respectively. RL  and FL are 
two dimensions representing the length of the foot. A concentrated mass is assumed at each of 
the six joints and the center of mass of the entire biped is assumed to be at point G.   

 
During the transition phase of the walking cycle, the dynamics of a biped robot can be 

treated as a open kinematic chain with one foot as the base and the other foot as the free end. 
During the dual-support phase, where both feet are on the ground, the dynamics of the biped is 
subject to holonomic constraints if we assume that the contact points between the ground and 
feet are fixed within the reference frame. These constraints can be described in the dynamic 
model by using the Lagrange multiplier jλ as follows: 
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Figure 1: Reference frames of the biped robot using DH convention 

 
where L is the Lagrangian of the system L=K-U, K is the kinetic energy of the system and U is 
the potential energy, is the generalized coordinate of joint i, is the input torque at joint i, 
and c(q) is the mathematical relation that defines the geometrical constraints. Figure 2 shows the 
relations between the joint angles when the biped is in the dual support mode.  
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Figure 2: Biped robot in the dual support phase  
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Assuming that  and , the x and y components of the vector linking the first 
frame (i.e. left foot) to the last frame (i.e. right foot) must satisfy the following conditions 
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re-arranging the above two equations and denoting by )cos( ii qc = , , 
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Denoting by C the 2x6 matrix defined by 
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evaluating the Lagrangian of the biped robot, the joint accelerations can be obtained from 
Equation 1 and written as  

( ))(),(1 qPqqNCMq T −−−= − &&& λτ        (5) 

The CTλ terms correspond to the joint torques caused by the reaction forces between the feet and 
the ground.  is a 6x1 vector representing the coriolis and centrifugal terms, is a 
6x1 vector representing the gravity terms, and 

),( qqN & )(qP
τ is a 6x1 vector representing the input torque at 

the joints. Differentiating Equation 4 twice with respect to time gives  
0=+ qCqC &&&& .     (6) 

Substituting Equation 5 into Equation 6 and solving for the Lagrange multipliers λ give 

 ( ) ( )[ ]        (7) qCqPqqNMCCMC T &&& +−−= −−− )(),(111 τλ
 
The complete dynamics of the biped robot in the dual support can be described by the two 
equations (5) and (7). 
 
3. Biped Stability Control 
 

This section is to assess the performance of a controller based on fuzzy logic to 
stabilize a biped robot in the dual-support phase. In this phase, the system becomes over 
actuated which leads to multiple solutions. The goal is to stabilize the robot by forcing it to 
adopt a predefined optimal balanced posture. The joint velocities and joint angular positions are 
used as inputs to the proposed fuzzy controller. This choice is motivated by the fact that fuzzy 
controllers based on position and velocity feedback have already been successfully used to 
control the stability of single and multi-link inverted pendulums. The obvious similarity 
between these systems and a biped robot system suggest that the latter could be effectively 
controlled using the same strategy. In a general trajectory planning control scheme, this type of 
controller would follow a trajectory characterized by a series of pre-defined joint-space 
variables. In the particular problem of walking bipeds, failing to follow such trajectories (by 
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being either too slow or to fast) can result into dynamic instabilities and eventually, complete 
failure in achieving the goal task (i.e. the robot is unable to resume its walking cycle). In this 
case, no predefined trajectory is specified. Each joint is controlled independently based on its 
specific position and velocity errors. All joint motions are managed according to the same 
control rules. The position error and the velocity error are defined as the difference between the 
actual angular position and angular velocities and the ones specified by the desired posture (i.e. 
the joint variables describing the pre-defined optimal balanced posture). The goal of the 
controller is to minimize the error, and ideally, to reduce it to zero. However, it will be seen 
later on that the error does not need to be zero in order to reach the optimum balanced position. 

 
3.1 Controller overview 
 

The scope of this work is limited to the biped stability control for the dual-support phase. 
Therefore, it does not include reaching stability by modifying the support area (i.e. moving a 
foot in some direction to make the body center of gravity fall into an extended stable area). 
Since it is not possible to recover from a point where the center of gravity is beyond the support 
area without extending this area by moving one or both feet, the starting position of the center of 
gravity will have to be restricted to a position between the extremities of both feet. External 
forces and moments concentrated on the body center of gravity are used as external disturbances 
to simulate the biped stability. Moreover, it is assumed that these forces can be contained within 
the sagittal plane.  

 
3.1.1 Controller structure 
 

The controller is composed of two parts. The first one corresponds to a high-level fuzzy 
controller that evaluates the current robot configuration in terms of the position of its center of 
gravity within the support area. The second part is a low level fuzzy controller that takes care of 
evaluating the output torques of the six joints based on the desired position and velocity of each 
joint. Since we want to achieve static stability, the desired velocity will always be zero for all 
joints. The high-level controller (HLC) determines the strategy to apply in a given situation. 
Depending on the configuration of the robot (i.e. how close is body’s center of gravity from the 
limits of the support area), the controller can either give more weight to the hip joints or the 
ankle joints. In the eventuality that the robot is in a stable position, the controller may divide the 
actuation effort equally between all joints. This strategy is inspired by the work of [12]. The 
main function of the HLC is to select the input gains for the low-level controller. These gains 
increase the magnitude of the error for a selected sub-group of joints. The low-level controller 
(LLC) is the actual controller that computes the torques required at each joint. The same sets of 
fuzzy rules and membership functions are used for each joint. As mentioned earlier, these rules 
determine the actuation torque based on the magnitude of the error of the angular velocity and 
position. Figure 3 shows an overall structure of the control system. 

 
3.1.2 High-level fuzzy controller 
 
The HLC has as input variables the angular position of the 6 joints and as output a vector of 6 
elements containing the input gain for each joint. The input membership functions are shown in 
Figure 4. 

 
The universe of discourse defined by the negative and positive boundaries is defined based 

on the distance from the reference frame at the support foot, and the tip of the free foot. 
Depending on the relative position of the free foot with respect to the support foot, three cases 
are possible as described in Figure 5. Taking the position of the center of gravity along the 
horizontal axis (with the support foot as the reference frame), it is possible to calculate the 
certainty of each membership function. From there, the following sets of rules apply to 
determine the gain vector K for the input of the LLC.  
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if (strategy = zero )  then  K =  [1, 1, 1, 1, 1, 1] 
if (strategy = Ankle ) then  K =  [µ, 1, 1, 1, 1, µ] 
if (strategy = Hip )  then  K =  [1, 1, µ, µ, 1, 1] 

with µ > 1. 
 
 

 
 

Figure  3: Controller overview 
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Figure 4: HLC input membership function 

 
The certainty of the three premises shown above will be labelled Pzero, Pankle and Phip. 

Since the fuzzification process will result in a maximum of two active membership functions 
(and a minimum of one), at least one of the Px values will be zero. However, its value will still 
be needed in the defuzzification process. This process is performed using the following equation 
for each joint: 

ihiphipiankleankleizerozeroi KPKPKPK ,,, ++=          i = 1,2,…6,                  (8) 
and Kzero, 1...6  = [1, 1, 1, 1, 1, 1], Kankle 1...6 =  [µ, 1, 1, 1, 1, µ], Khip 1...6    = [1, 1, µ, µ, 1, 1]. 
 

Based on Equation (8) it can be seen that the input gain of the knees will always be 1, while 
the hip and ankle input gains will vary between 1 and µ depending on the fuzzy sets defining the 
position of the center of gravity. 
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Figure 5: Feet configurations 

3.1.3 Low-level fuzzy controller 
 

The low-level controller (LLC) determines the torques required at each joint 
to maintain or increase the stability of the system. The problem being very 
similar to the inverted pendulum [13], the same input variables are used (i.e. 
angular positions and velocities) and the same fuzzy rules are implemented 
here. A summary of these rules is shown in Table 1. The labels –L, -S, +S and 
+L stands for negative large, negative small, positive small and positive large 
respectively. It is assumed that the angular position of each joint varies between 

2π−  and 2π  and the angular velocity varies between 4π−  rad/sec and 4π  
rad/sec. The output is limited by the size of the actuator at each joint and can 
vary between and . Figures 6 and 7 show the inputs and the output 
membership functions of the low level joint controller, respectively. 

maxT− maxT

 
Table 1: Summary of LLC fuzzy rules 

Angular Position Error (rad) 
-L -S 0 +S +L Torque (N m) 

- π / 2 - π / 4 0  π / 4  π / 2 
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Figure 6: LLC input membership functions 
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Figure 7: LLC output membership functions 
 

 
It is important to emphasize the fact that the two universes of discourse represented in Figure 

6 actually correspond to the position and velocity errors associated with each joint, multiplied 
by the input gain computed by the HLC. So the input for the LLC is of the form: 
Angular position:  

( ) ( ) ( ) ( ) ( ) ( )[ ]665544332211 ,,,,, KqeKqeKqeKqeKqeKqee =  (9) 

Angular velocity:   

( ) ( ) ( ) ( ) ( ) ( )[ ]665544332211 ,,,,, KqeKqeKqeKqeKqeKqee &&&&&&& =  (10) 

with  the angular velocity error associated with joint i. The “minimum” operator is used to 
evaluate the certainty of the premises when two membership functions are activated for a given 
variable and the output is calculated using the COG (Center of gravity) method. 

( )iqe&

 
 
4. Simulation of the 6-DOF Biped 
 

Simulations were conducted using Matlab/Simulink. These simulations are to analyze 
the performance of the fuzzy controller in stabilizing the biped robot described by the dynamic 
model derived in section 2. Studies in biomechanics have shown that the mass distribution of a 
human body gives a ratio of 19% of the total body mass for each leg, and 62% for the upper-part 
of the body. Based on this distribution, the mass and the size of each of the legs and of the upper 
part of the biped were selected. The masses of the legs are assumed to be concentrated at the 
joints and the mass of the upper part is assumed to be concentrated at point G. The length of 
each link and location of the center G with respect to the hip joint are taken based on the 
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proportions of the human body. Table 2 shows the proportions of the biped used in this 
simulation.  

 
 
 

Table 2: Biped characteristics 
 

Parameter Value 
aG 0.15 m 
a2=a3 0.225 m 
a1=a4 0.225 m 
d 0.26315 m 
LR 0.05625 m 
LF 0.1125 m 
Tmax 1.24 N.m 

 
In order to test the performance of the 6 DOF biped under the proposed fuzzy control, the ability 
of the biped to return to a pre-defined posture (reference position) starting from an initial 
posture is examined. The initial posture is defined by an initial joint angle for each of the six 
joints describing the motion of the biped. This test will show if the biped can recover from a loss 
of balance without having to move the feet off the ground. The initial posture used in the 
simulation is shown in Figure 8 and the corresponding joint angles are given in Table 3.  
 

 

 
Figure 8: Initial posture 

 
Table 3: Initial angular positions  

Support leg Free leg 
Ankle Knee Hip Hip Knee Ankle 

-20 65 -90 40 -45 50 
 
The desired equilibrium position is defined by the joint angles shown in Table 4 
 

Table 4: Desired posture  
Support leg Free leg 

Ankle Knee Hip Hip Knee Ankle 
β 0 - β - β 0 β 
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Where  β = −2/π acos((l/2)/(a1+a2)) and l is the distance between the two ankles.   
 

Preliminary results showing the performance of the control scheme presented in this 
paper are shown in Figure 9 and Figure 10. The time response of q3 and q4 during the recovery 
from a loss of balance as shown in Figure 9.a indicates that the upper body has the slowest 
response. Starting from a posture where the body is bent forward, the hips gradually move to the 
center of the support area without altering much the inclination of the trunk. Once all the links 
are closer to their desired positions (at t≈ 0.25 secs.) the hip joints gradually rotate the trunk to 
its desired position. Based on the Hip and Ankle Strategy, the initial posture should fall into the 
Hip Strategy area and therefore puts more weight on the error of the hip joints such that the 
system first rotates the trunk up to the vertical axis. However, the error signals of the knee joints 
result in a large torque response which brings point G to the Ankle Strategy area very quickly 
(within 0.25 sec).  

 
Figure 10 shows the contribution of each of the Hip and Ankle strategies during the 

recovery phase as calculated by the high level fuzzy controller. The figure shows that the 
recovery starts with 20% of the control effort is due to the hip joints and 80% is due to the ankle 
joints. As the biped is near the desired posture, the control effort is split based on the ankle 
strategy and the zero strategy. At t=1.2 sec, the biped passes by the desired position and at this 
instant 100% of the control effort is based on the zero strategy. Since stabilizing a biped in the 
double support phase is similar to the problem of stabilizing an inverted pendulum, the desired 
position is in fact open-loop unstable and to in order to stabilize the system at this position, the 
fuzzy controller splits the control effort between the zero strategy and the ankle strategy as 
shown in Figure 10 when t > 1.2 sec. 

 
In order to assess the impact of the Hip and Ankle Strategy, the effect of increasing the 

multiplier µ will be investigated and further discussion will be included in the final version of 
the manuscript. As described in section 3.1.2, this multiplier essentially plays the role of a 
varying input gains vector for the error on the angular velocities and positions. Depending on 
the robot posture, the Hip and Ankle Strategy (HAS) puts more weights on the hip or ankle 
joints according to the employed strategy. As it was implemented, this high-level fuzzy 
controller only takes into account the position of the center of gravity with respect to the support 
area. It does not take in account the particular configuration of the legs. Further studies could 
include an implementation of the Hip and Ankle Strategy taking into account the legs 
configuration rather than just the center of gravity. It may then be possible to increase the 
actuation force where it is truly necessary without excessive energy expenditure. 
 
5. Conclusion 
 

The goal of this work was to assess the feasibility of using fuzzy logic to stabilize a biped 
during the dual-support phase. Taking as inputs the angular position and the angular velocity for 
each joint, the controller used a rule-base implemented with five membership functions to 
control the output torques. The input gains were computed at run-time using the Hip and Ankle 
Strategy, which sets a gain value for each joint based on the relative position of the center of 
gravity with respect to the support area. The results have clearly showed the success of the fuzzy 
control scheme in stabilizing a highly non-linear system such as the one describing the 
dynamics of a biped robot. The proposed fuzzy control was used to allow the biped robot 
recover from a loss of balance defined by a pre-defined initial posture. Simulations using the 
Hip and Ankle Strategy showed this control scheme only increased the computational load along 
with the actuation load imposed on the motors. The same conclusions were drawn from 
simulations aiming to enhance the system performances by increasing the number of 
membership functions.  The dynamic model used in this paper showed some deficiencies when 
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testing parallel legs configurations. These configurations lead to a singularity in the over all 
mass matrix. A dynamic model that takes into account the length and the mass of each foot 
would be more realistic. Also, adding a joint in the middle of the foot (representing the junction 
at the toes) could solve the singularity problem of the mass matrix by making it impossible to 
align all joints along the same line.  Finally, fuzzy control seems to be a promising approach to 
control bipeds due to its simplicity and robustness and will be extended to cover the full walking 
cycle of the biped.  

 
 

 
 

 
(a) 

 
(b) 

 
Figure 9: a) Angular positions during the recovery (rad). b) Applied torques during the recovery (N.m). (µ=2). 
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Figure 10: Strategies employed during the recovery (µ=2) 
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