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For communication robots, it is important to find a communication partner and attract
his or her attention in daily environments. In this paper, we propose a method for
communication robots to detect and track a human actively in order to communicate
with him or her. We apply Markov chain Monte Carlo methods (MCMC) to human
detection and tracking behaviors with a humanoid robot that has four types of sensors.
Thus, by utilizing our method, the robot can detect and track humans with irregular
motion in complicated daily environments. We verify the validity of our method by
performing experiments with a humanoid-type communication robot named Robovie.

Keywords: MCMC; particle filtering; sensor fusion; human tracking; humanoid robot.

1. Introduction

One of the ultimate goals of robotics is to build robots that can move in daily
environments and participate in society. In order to realize such robots, one of the
most important abilities is to communicate with humans in a natural manner.

In recent years, there has been much research on communication between hu-
mans and robots [1-5]. For example, Matsusaka et al. [1,2] tried to realize a natural
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conversational system with a body and facial expressions and conversational func-
tion. Breazeal and Scassellati [3] constructed a robot that exploits natural human
social tendencies to convey intentionality through motor actions and facial expres-
sions. Ishiguro et al. [4, 5] estimated the communication between humans and a
robot with semantic differential method. However, almost all of these efforts in-
volve passive communication. In these works, it is the human who initially acts
and speaks to the robot. Then, the robot replies by utilizing verbal or nonverbal
information. In our daily communications, it is important to communicate not only
passively but also actively. Active communications include, for example, finding a
communication partner and attracting his or her attention.

In this paper, to realize active communications, we propose a human detection
and tracking method for humanoid robots with multi sensors. There is much previ-
ous research on human detection and tracking tasks [6-8]. Almost all of those works,
however, were conducted under the conditions of a static environment or motionless
sensors being fixed to the environment. We cannot assume such conditions because
we have to deal with mobile humanoid robots in our daily environment to realize
active communication. Thus, we cannot utilize these methods for active communi-
cation. The key ideas of our method are as follows: First, we combine four types
of sensor information taken from a color CCD camera, an omni-directional vision
sensor, ultrasonic range sensors, and infrared motion detecting sensors, into a re-
liability distribution for human existence. Second, we apply Markov chain Monte
Carlo methods (MCMC) [8–10] to finding a communication partner from the reli-
ability distribution. We applied our method to a humanoid robot and verified its
robustness and effectiveness.

In the next section, we introduce the humanoid robot, named “Robovie,” that
was used for our experiments. In Sections 3 and 4, we describe our method and
experiments, respectively. We verify the validity of the method and discuss future
works in Section 5.

2. Everyday Robot – Robovie –

Robovie [4] is a humanoid robot that has been developed by ATR Intelligent
Robotics and Communication Laboratories. It can communicate with humans au-
tonomously. We used this robot for the verification of our method. In this section,
we introduce Robovie briefly.

As can be seen in Fig. 1, Robovie has many kinds of sensors: two color CCD
cameras that can pan, tilt, and zoom individually, an omni-directional camera,
a microphone, ultrasonic range sensors, tactile sensors, and pyroelectric infra-red
sensors. The shape of its upper body is similar to a human’s. Its face consists of the
color CCD cameras as the eyes, the microphone as the ears, and a speaker as the
mouth of a human. It also has four degrees of freedom (DOFs) for each arm and
three DOFs for the neck. Thus, it can generate various gestures for communication,
as a human does. Its lower body is a wheeled mobile base that consists of two
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powered wheels and one free wheel.
The robot has two computers (a. Pentium-III 900 MHz, b. Pentium-4 2.4 GHz，

OS: Linux) for processing sensor information and controlling its body. Its software
architecture for communication is a kind of behavior network that consists of hun-
dreds of situated modules as nodes. The nodes describe communication behaviors
depending on various situations, and transition rules of the modules are repre-
sented as arcs [4]. By utilizing this architecture, it can communicate with humans
autonomously.

However, it is not enough just to be able to communicate with humans actively
without any behavior for tracking and attracting humans.

Fig. 1. Everyday robot “Robovie”

3. Multisensor-based Human Detecting and Tracking with MCMC

In this section, we propose a human detection and tracking method for humanoid
robots. We begin by giving an outline of our method to detect and track humans
with MCMC. Next, we explain several details of the method, especially the relia-
bilities and properties of Robovie’s sensors.

3.1. Outline of Proposed Method

Figure 2 shows an outline of the proposed method. In this figure, the grey areas
denote the MCMC processes and the slanted line area denotes the non-MCMC
processes. The outline of the flow is as follows:

(1) The robot acquires sensor information within a limited range from each sensor.
Initially, it uses the entire range of each sensor.

(2) It calculates the reliability distribution of human existence for each sensor from
the sensor information (see subsection 3.2).
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(3) It combines the distributions of the sensors into the reliability distribution of
human existence around itself (see subsection 3.2).

(4) It predicts the next positions of humans from the distribution (see subsection
3.3).

(5) Finally, it limits the range of each sensor based on the predictions (see subsection
3.3).

By iterating these steps, the robot can reduce the sampling area of the sensors
and also reduce the processing time. When the robot cannot detect a human from
the predictions, it removes the limitation and restarts from the initial process.

Sampling

Calculating

Sensor1 SensorNSensor2

Sampling the sensor

Calculating

reliability distribution

Combining all distributions into reliability distribution

MCMC Process

Predicting the next positions of humans

from the reliability distribution

Sampling

Calculating

Limiting the range of each sensor

MCMC Process

Fig. 2. Outline of proposed method’s data processing flow

3.2. Reliability Distribution of each Sensor

Human existence is observed by detecting skin color and human face features from
visual information, and moving objects from range, infrared and visual information.
If we do not detect such features, however, we cannot determine that there is no hu-
man presant. Therefore, if we do detect these features, we can increase the reliability
of human existence, but, if we do not detect the features, we cannot increase the
reliability of human nonexistence. Thus, we define the reliability of human existence
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around the robot, R(x), as

R(x) = 1−H(x) (1)

and H(x) = −P (x) log2(P (x))

−(1− P (x)) log2(1− P (x)) , (2)

where x, H(x) and P (x) denote a direction around the robot, an information en-
tropy, and a probability of human existence in the effective area of each sensor,
respectively (see Fig. 3). In our case, the range of P (x) is from 0.5 to 1.0.

ReliabilityRobovie

Subject1

Subject 2

Minimum effective

   area of sensors

Maxmun effective area

 of sensors0 deg

90 deg270 deg

Fig. 3. Reliability and effective area of sensors

We calculate the reliability from four kinds of sensors: an omni-directional cam-
era, conventional CCD cameras, ring-type ultrasonic range sensors, and pyroelectric
infra-red sensors, attached on the robot as shown in Fig. 1.

We define the reliability distributions of human existence for each sensor by
conducting preliminary experiments. In the experiments, we record time series data
of each sensor output and subject’s position with a 3-D motion capture system
when he or she walks around the robot. We assume that the distributions are able
to approximate normal density distribution, and calculate parameters of them from
the recorded data. Details of them are described below.

Omni-directional camera

The omni-directional camera can obtain omni-directional visual information as
shown in Fig. 4. We calculate the reliability distribution for this information by
the features of a moving object taken from the camera. The features of the moving
object are its region size and position calculated by the interframe difference of
RGB values of the omni-directional visual information. We calculate the reliability
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distribution for the omni-directional camera, fo(x), as

fo(x) ∼ N(µo, σo
2)× αo , (3)

αo = 0.3×Msize , (4)

µo = Mθ , (5)

and σo
2 = Md , (6)

where N(µo, σo
2), Msize, Md and Mθ denote the normal distribution with a mean

µo and a variance σo
2, the region size of the moving object, the distance between

the robot and the object, and the direction to it with respect to coordinates fixed
to the robot, respectively. The variables and the distribution are shown in Fig. 5.

We do not use this sensor while the robot is moving because the features of
moving objects consist of both the object motion and the robot motion, which are
difficult to distinguish between. Thus, in (3), while the robot is moving, αo is 0.

Fig. 4. Omni-directional visual information

Conventional CCD camera

We calculate the reliability distribution for the conventional CCD camera by the
sizes and positions of a human face, skin and clothes taken from it. The size and
position of the face can be calculated by Gabor filter banks [11]. We also calculate
the region size and the position of the skin by using the HSV color information. The
size and position of the clothes are calculated by tracking a color region beneath
the face.

We define the reliability distributions calculated by the face, the skin and the
clothes information as ff (x), fs(x) and fc(x), respectively. These distributions con-
form to a normal distribution such as (3). The means and variances for them are
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Fig. 5. Reliability based on features of moving object taken from omni-directional camera

as follows.

αf = 0.5× Fsize, (7)

αs = 0.3× Ssize, (8)

αc = 0.2× Csize, (9)

µf = Fθ, µs = Sθ, µc = Cθ, (10)

σf
2 = Fd, σs

2 = Sd, and σc
2 = Cd, (11)

where F , S and C denote the face, skin and clothes, respectively. The subscripts
size, d and θ denote the size of a region, the distance between the robot and the
center of the region, and the region’s direction. The variables and the distributions
are shown in Fig. 6.

The robot utilizes only this sensor while it is moving. It, however, can calculate
three reliability distributions, ff , fs, and fc, based on six kinds of information that
are the region sizes and the positions of the face, the skin color, and the clothing
color. Thus it is still able to track a human robustly while it is moving.

Ultrasonic range sensors

The robot can obtain omni-directional range information from the ring-type ultra-
sonic range sensors. We calculate its reliability distribution from changes in the
range information, which describe the existence of moving objects.
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(b) Using skin color
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Fig. 6. Reliability based on visual information taken from conventional CCD camera
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The distribution also conforms to a normal distribution. Its mean and the vari-
ance are

αu =
0.2×Dmin

D
, (12)

µu = Uθ, (13)

and σu
2 = D, (14)

where D, Dmin，and Uθ denote the distance between the object and the robot,
the minimum distance that can be measured by the sensor, and its direction. The
variables and the distribution are shown in Fig. 7. While the robot is moving, αu

is 0.
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distribution
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f (x)u

u

u
2

u

Fig. 7. Reliability based on change in range information taken from an ultrasonic range sensor

Pyroelectric infrared sensors

The pyroelectric infra-red sensors are used to detect the moving objects by mea-
suring changes in infra-red readings. The sensors’ output is either 1 (detected) or 0
(not detected).
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We define these sensors’ reliability distribution, fp(x), as

fp(x) ∼
{

0.3× αp (−30 ≤ xp ≤ 30),
0 (otherwise),

(15)

where αp is the weight value 0 while the robot is moving and 1 while it is not
moving. The distribution is shown in Fig. 8.
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Fig. 8. Reliability based on change in IR information taken from pyroelectric IR sensor

After calculating all reliability distributions for all sensors, we combine the dis-
tributions into a reliability distribution of human existence around the robot by the
following equation.

F (x) = max (fo(x), ff (x), fs(x), fc(x), fu(x), fp(x)) . (16)

3.3. MCMC process

We predict the next positions of humans and limit the ranges of each sensor by
utilizing particle filtering method [9, 10] that is based on MCMC. A process of the
prediction and the limitation is as follows:

(1) Acquire a weighted sample-set {(s(n)
t−1, π

(n)
t−1), n = 1, . . . , N} at time-step t − 1

from a previous iteration. s
(n)
t−1 and π

(n)
t−1 denotes the n-th sampling point (a
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direction with respect to the robot coordinate) and its weight at t− 1, respec-
tively. The sample-set {(s(n)

t−1, π
(n)
t−1)} represents approximately a conditional

state-density R(Xt−1|Zt−1) where Xt−1 and Zt−1 denotes a state and an ob-
servation feature, respectively. R(Xt−1|Zt−1) denotes a normalized reliability
distribution of human existence at time-step t − 1. We decide a number of
sampling points N as 1000 in the experiments.

(2) Calculate cummulative weights c
(n)
t−1 as

c
(0)
t−1 = 0, and c

(n)
t−1 = c

(n−1)
t−1 + π

(n)
t−1 . (17)

Select a sample set {s′(n)
t } by iterating following steps [9].

(a) generate a random number r ∈ [0, 1], uniformly distributed.
(b) find, by binary subdivision, the smallest j for which c

(j)
t−1 ≥ r

(c) set s
′(n)
t = s

(j)
t−1

(3) Assume that humans walk randomly with the speed less than 5 [km/h], the
distance between the robot and human is approximately 1 [m], and the sampling
rate of the sensors is 100 [ms]. Then we define the dynamical model which
denotes predicted position of human at the next time-step as

R(Xt|Xt−1) ∼ N(Xt−1, (∆/6)2) , (18)

where N(Xt−1,
(

∆
6

)2
) denotes the normal distribution with a mean Xt−1 and

a variance
(

∆
6

)2
. Xt−1 denotes a state variable at time-step t− 1. We decide ∆

as 15 [deg] in the preliminary experiment. This distribution indicates that the
predicted position of human is between −15 and 15[deg] with a probability of
0.9974.

(4) Predict a sample-set {s(n)
t , n = 1, . . . N} by sampling from R(Xt|Xt−1 = s

′(n)
t ).

(5) Acquire an observation model R(Z|X) by normalizing the reliability distribu-
tion F (x) calculated by (16) as

R(Z|X) =
F (x)∑360
i=0 F (i)

, (19)

where Z denotes observation features.
(6) Measure the observation features Zt at the new sample position s

(n)
t . Then,

calculate the weight π
(n)
t as

π
(n)
t =

R(Zt|Xt = s
(n)
t )

∑N
n=0 R(Zt|Xt = s

(n)
t )

(20)

By iterating the above process, we can reduce the sampling points and the range
of each sensor by utilizing the reliability from the previous time-step. An outline of
the process is shown in Fig. 9
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Fig. 9. Outline of the MCMC process

4. Experiments

We applied our method to the humanoid robot Robovie and conducted experiments
with the robot to verify the method’s validity. The robot and two subjects were
situated in the experimental room as shown in Fig. 10. The task of the robot was to
detect and track a human. We compared the proposed method with a method that
always utilizes the entire range of each sensor. The trial period of the experiments
is 2 minutes. The number of trials is 5 for each method.

We use a 3-D motion capture system, VICON, to measure positions and postures
of the subjects and the robot at a 120 Hz sampling rate.

4.1. Results of Experiments

Figure 11 shows an example of the loci of each subject and the robot taken from the
motion capture system under the conditions of the proposed method. In the figure,
the circles indicate the positions of them measured at intervals of 20 seconds. Figure
12 shows the directions of each subject with respect to the coordinate fixed to the
robot under the conditions of the proposed method. As shown in these figures,
the robot detects and tracks Subject1. Figures 13 and 14 also show the same
information while utilizing the entire range of each sensor. Under this method, the
robot has difficulty tracking the subject continuously because the processing time
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(a) t = 0 sec

(b) t = 1 sec

(c) t = 2 sec

Fig. 10. Subjects and robot in experimental room
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Fig. 11. Results of human detecting and tracking task with proposed method (MCMC)
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Fig. 12. Results of human detecting and tracking task with proposed method (MCMC)

becomes three times longer than for the proposed method shown in Table. 1.

Table 1. Average processing times

Proposed method Using all samplings
Average [msec] 30.8 94.7

Figure 15 shows the change in the range limitation of each sensor under the
proposed method. In this graph, the X-axis denotes the direction [deg] around the
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Fig. 14. Results of human detecting and tracking task with all-sampling-method

robot and the Y-axis denotes the number of frames [× 33 msec]. The black area
denotes the limited range of each sensor. As shown in the figure, the robot can limit
the range of each sensor. When it loses a human within the limited range, it uses
the entire range of each sensor.

5. Conclusions and Future work

In this paper, we proposed a method for a robot to detect and track humans by
calculating the reliability of human existence around the robot with MCMC. In the
experiments, we indicated the validity of the proposed method by comparing it with
a method that always utilizes the entire range of each sensor. The robot was able
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Fig. 15. Change in sampling area with MCMC

to continuously track the first subject detected by using the proposed method.
In the method, the robot combines the reliability distributions of all sensors into

one distribution. However, if the robot has the observation model of each sensor,
this process is not necessary and it can predict human existence directly from the
reliability distribution of each sensor with MCMC. In future work, we will try
to apply the observation models, eliminate the combining process, and verify the
validity of the method.
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