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The problem of humanoid agents and robots reaching to arbitrary targets in environ-
ments with static and dynamic obstacles has not yet been investigated in detail. Typical
approaches include using randomized motion planning or constructing uninformed tra-
jectories (e.g., linear interpolation between initial and target positions and orientations of
the hand) in operational space, in hopes that inter-link and agent-environment collisions
do not occur. In this paper, we test the most popular algorithms for motion generation
for single-arm reaching in environments with randomly placed obstacles of random sizes.
Additionally, we attempt to formalize the concept of motor primitives, and test a motor
primitive implementation in the same experiments. We conduct an analysis of the effi-
cacy of the algorithms for reaching in static environments, and discuss the extensibility
of the algorithms towards reaching in dynamic environments.
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1. Introduction

Humanoid robots and agents are intended to inhabit our surroundings and thus

must be able to perform the quintessential humanoid activity of reaching in dy-

namic, obstacle-ridden environments. Sampling-based algorithms have recently en-

joyed success in planning motions for agents with few degrees-of-freedom (DOF)

in dynamic environments and relatively many DOF in static environments. No re-

search has effectively addressed the problem of motion planning on agents with

many DOF, such as humanoids, in dynamic environments. In this paper, we test

several kinds of motion generating algorithms, including motor primitives1,2 and

rapidly-exploring random trees (RRT)3, on single-arm reaching tasks in environ-

ments with randomly-placed obstacles, in the hope of determining which algorithms

might be most successful in environments with dynamic obstacles.

A formal statement of the problem that we are attempting to solve follows.

Given an initial posture of the robot or agent and the configuration of obstacles in

the environment, which algorithm is generally most successful at generating joint-

space trajectories that result in the hand reaching a target position and orientation?

1
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Success is determined not only by achieving the goal task, but also by avoiding

self-collisions and collisions with obstacles in the environment.

The problem as stated assumes only static obstacles, which, alone, portray the

task incompletely. However, it is hoped that the full problem (i.e., including dynamic

obstacles) shares enough properties with the problem discussed in this paper that

the results discovered here are applicable to both. Additionally, this paper examines

the extensibility of the dominant algorithms for generating joint-angle trajectories,

all of which operate intrinsically in kinematic spaces, to the problem of reaching

in dynamic environments, which must naturally take robot and obstacle dynamics

into account.

This paper does not attempt to compare running times between the various

algorithms. Not only is such a comparison very difficult given the probabilistic

nature of the RRT algorithm, but such comparisons have little meaning without

definitive lower bounds on the running times of the various algorithms. For example,

all but the RRT algorithm rely on matrix inversion, for which a tight lower bound

has yet to be found. It may also be possible to adjust the subcomponents of the

algorithms to improve running times, thereby invalidating any such comparison.

One other caveat must be mentioned. The algorithms examined in this paper do

not attempt to utilize locomotion to perform reaching. While it can be posited that

reaching is best performed by simultaneously accounting for locomotion within the

algorithms, we have chosen to decouple the problems for the sake of simplicity. For

this reason, all reaching targets are to local (i.e., no locomotion required) targets.

An outline of the paper follows. Section 2 discusses relevant background research,

encompassing planning algorithms and motor primitives. Section 3 attempts to

formalize the concept of a motor primitive. Section 4 details the experimental setup.

Section 5 lists the results from the experiments. Section 6 discusses the results that

were obtained.

2. Background

Humanoid reaching and grasping has recently begun receiving attention from the

computer graphics community. Kuffner4 began using probabilistic motion planners

with kinematically simulated humanoids to reach in static environments; however,

reaching is just one component in his general system for generating human-like

motion. Kallmann et al.5 use a collection of techniques, including RRTs, locomo-

tion, and roadmap restructuring for more robust and naturally appearing reaching;

however, their methods are still restricted to static environments.

2.1. Combinatorial motion planning

Lindemann and LaValle6 note that, while obstacles in the workspace are well-

defined, invalid configurations in C-space are more difficult to represent. Canny’s

roadmap algorithm7 was able to solve the motion-planning problem for static en-

vironments in running time exponential in the degrees-of-freedom of the robot.
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Lindemann and Lavalle6 note that this algorithm employs techniques which are

very difficult to implement correctly. Worse, the running time of this algorithm

grows very rapidly with the number of geometric primitives used to represent the

robot and the obstacles. Combinatorial motion planning algorithms are useful in

highly limited cases, where the number of DOF of the robot is quite small and

the geometry of the robot and the environment are both very simple. Sharir8 dis-

cusses worst-case complexity bounds on motion planning algorithms in more detail.

Generally, combinatorial algorithms are intractable for reaching applications with

humanoid robots, and are not tested in this paper for that reason.

2.2. Sampling-based motion planning

Sampling-based methods are general algorithms applicable to control problems of

arbitrary dimension. They can be divided into two main categories: multi-query

and single-query. Multi-query methods build a Probabilistic Roadmap (PRM)9 that

can be used for several different queries in a single static environment. The basic

procedure consists of randomly sampling the configuration space, creating nodes

when samples are valid, and connecting pairs of nodes each time the connection

is tested to be valid and the nodes are considered to be close enough. Several

variations to the basic PRM approach have been proposed10,11,12. A good overview

and comparison is given by Geraerts and Overmars13.

Single-query methods are typically used when the environment is dynamic.

Roadmaps are built specifically for each query, but trees are used instead of graphs

to increase efficiency. The Rapidly-exploring Random Tree (RRT)14,15 is a popular

single-query method. The basic premise behind it is to expand nodes of the tree

toward random samples until the goal configuration is reached. Another effective

method is based on Expansive Spaces Trees16, where nodes in low-density locations

in the configuration space are locally expanded. An efficient bi-directional version17

incorporating lazy collision detection12 is also available.

In the experiments presented in this paper, we evaluate the use of a RRT14,15

single-query planner for deriving collision-free reaching motions. The RRT planner

is currently considered to be one of the most effective methods for planning in static

environments.

2.3. Motion planning in dynamic environments

Motion planning in dynamic environments must handle the added constraints of

time, velocity, and control dynamics. Additionally, the act of planning may itself

cause solutions to be lost, if search is not pursued in the correct order. A seminal

result by Reif and Sharir18 proved, that for the simplest case of planning, the

motion of a point-robot moving with unbounded velocity among moving obstacles,

motion planning is NP-hard. If the velocity of the robot is bounded, the problem is

PSPACE-hard. The velocities of humanoid robots and simulated agents are uneasily

bounded due to dynamics; the velocity bounds in one posture are not necessarily
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equal to the velocity bounds in another. Finally, this discussion assumes that the

obstacle trajectories are known in advance, a considerable requirement.

Current planners for dynamic environments scale very poorly; robots are limited

to around ten DOF. Both LaValle and Kuffner19 and Hsu et al.20 have explored

“randomized kinodynamic planning”, which plans by feeding random inputs into

the controls of a robot and integrating its equations of motion. While these methods

can produce valid plans (i.e., a plan cannot be generated that the robot is physically

incapable of executing), they complicate the planning process with the addition of

the state space and control space.

If robot dynamics can be ignored, dynamic roadmaps can be constructed that are

updated only as the environment changes, as researched by Kallmann and Matarić
21 and Leven and Hutchinson 22. In particular, Kallmann and Matarić conducted

extensive experiments pitting the dynamically recomputed roadmaps versus RRTs.

They found that the dynamic computation was not much faster, especially for 3D-

situated robots, than complete recomputation using RRTs. The current running

time of RRTs makes that situation intractable.

2.4. Motor primitives

Suppose that there is a language, in the mathematical sense of the word, that

describes human movement. Such a language could be used both to generate and

recognize human-like movement. The constructs in this language can then be labeled

motor primitives. Researchers from the fields of neuroscience, biology, robotics, com-

puter graphics, and machine vision are actively pursuing the search for motor prim-

itives, also known as basis behaviors, convergent force fields, movemes, and motion

graphs. The initial inspiration for the motor primitive hypothesis came from Johann-

son’s experiments23 with moving lights attached to joints of the human body. The

experiments showed that humans are able to recognize human movement from very

little data, namely video that shows only the moving lights. Furthremore, the neu-

roscience community has discovered mirror neurons in monkeys24 and humans25,26,

which fire both when the animal is performing an action and seeing that action

performed, coupling action perception and generation. Additionally, Giszter et al.27

were able to generate naturally appearing movements in spinalized frogs via micros-

timulation applied to the spinal cords. By directing the application of the stimula-

tion, different movements were produced. The authors noted that the movements,

which acted as convergent force fields, could form building blocks for more complex

behaviors.

A complete survey of various versions of motor primitives is beyond the scope

of this paper. Instead, the use of motor primitives within the field of robotics

is discussed. Roboticists have experimented with many representations of motor

primitives, in both kinematic and motor command spaces. Hodgins and Wooten28

developed sets of primitive controllers and finite-state machines for switching be-

tween them in order to control simulated robots performing complex athletic tasks.
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Matarić et al.29 discuss the effectiveness of three dynamic control systems for a sim-

ulated humanoid performing a dancing task. Faloutsos et al.30 use sets of controllers,

each more complex than Hodgins and Wooten’s, with a priority-based arbitration

scheme and pre and post-conditions to animate virtual stuntmen.

For control in kinematic spaces, Fod et al.31 and Jenkins and Matarić2 cluster

motion-capture data into “behaviors”; the original motion can be reconstituted

or novel motion can be formed via interpolation between clusters. Drumwright and

Matarić1 use a motion-interpolation system on manually choreographed movements.

Ijspeert et al.32 utilize nonlinear dynamical systems for trajectory formation that

is used to drive the movements of a humanoid robot.

3. Motor primitives

The previous section discussed the background of motor primitives, but did not

attempt to unify the representations used by various researchers. Such a quest ap-

pears challenging, given the extreme differences mong various kinematic space and

motor command space representations that have been employed. Therefore, this pa-

per attempts to unify the various kinematic representations such that our primitive

implementation is indicative of the level of performance achievable by motor primi-

tives for reaching. The kinematic representation is chosen over the motor command

representation because the former allows for workspace independent planning 33

and for agent-independent planning.

A redefinition of motor primitive for the purposes of this paper is as follows:

A motor primitive is a mechanism for generating joint-space or operational space

trajectories bounded by “polynomial time”, given the current state and kinematic

goal(s) of the robot and the state of the environment. Polynomial time is designated

as O(ixjy), where i is the number of DOF of the agent, j is the number of obstacles

in the environment, and x and y are some (hopefully small) constants. A primitive

is capable of generating an uncountably infinite number of trajectories (i.e., it is a

member of Cantor’s infinity class ℵ2 of all curved shapes).

A primitive can be formally written as:

π(s, g) → f(t)

where π(.) is the primitive, s is the concatenated (i.e., environment and robot)

state vector, g is a vector of kinematic goals, and f(t) is the trajectory output.

A primitive can also be implemented as a dynamical system, as in Schaal’s Dy-

namic Motor Primitives33. In that case, the functionally equivalent formal definition

becomes:

ḟ = ψ(s, g)

Trajectories can then be formed by integrating f . ψ(.) is a function that deter-

mines a gradient given a current state and goal.
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The above definition is necessarily general. It must account for past and fu-

ture research in motor primitives. It also theoretically empowers primitives (even

a single primitive) to produce the entire class of human movement. Some existing

mechanisms, such as the spline-based trajectory formation algorithm, are already

included in the definition. Other methods, such as the combinatorial motion plan-

ning algorithms, exist outside of this class by virtue of computational complexity.

Sampling-based planners are not included in the motor primitive class, even when a

finite number of samples are used, due to the potentially unbounded time required

to obtain a sample.

4. Experiments

Recall that we are attempting to determine which algorithm is most successful at

generating collision-free reaches from an initial posture to a target position and ori-

entation. Our experiments consisted of 16,504 randomly generated environments,

each consisting of between 0 and 25 cubes of randomly generated size and position.

Given enough cubes of varying size, it is possible to approximate any environment,

leading to elimination of a priori knowledge from the experiments. For each envi-

ronment, an initial posture of the humanoid was randomly generated, and a target

position and orientation for the hand were randomly generated as well. The initial

posture consisted of randomly sampled values (within joint limits) for both arms (7

DOF), the lower back (3 DOF), and the neck (3 DOF). Only 10 DOF of the agent

were active in the experiments - 7 DOF in the arm and 3 DOF in the lower back.

All random values in the experiments were drawn from uniform distributions and

generated by a pseudo-random number generator.

The four algorithms discussed below were each tested in every environment.

Success or failure and manner of failure (if any) were recorded. Every algorithm

attempted to generate a joint-angle trajectory from the initial posture to any pos-

ture with the hand at the target position and orientation. Small deviations from

the target were deemed acceptable– the norm of the positional error was as high as

2.54cm, and the orientation error up to 10 degrees– but collisions of the humanoid

with itself or external objects resulted in failure.

An analysis of the performance of each algorithm was made after the experiments

were compleated. It is desirable to determine whether certain algorithms perform

better in chosen environments. We chose to perform the analysis in this manner,

rather than selecting a benchmark battery of tests in advance; our intent was to

prevent the introduction of possible experimenter bias on test similarity. Such bias

might hide subtle trends in an algorithm’s performance, and it could admit a priori

knowledge into the study.
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4.1. Algorithms

4.1.1. Linear operational-space trajectories with Jacobian pseudo-inverse

kinematics

The baseline algorithm used in our experiments is based upon the pseudo-inverse

Jacobian inverse kinematics (IK) method. It relies upon a linearly interpolated

path between the initial and goal positions and orientations of the simulated hu-

manoid’s hand. The linear trajectory combined with the IK method results in an

algorithm that blindly attempts to achieve its goal, regardless of the environment.

This algorithm improves upon standard resolved-motion rate control by using a reg-

ularization method for singularity avoidance described by Baerlocher34. Note that

this algorithm is a member of the motor primitive class.

4.1.2. Baseline algorithm with obstacle avoidance integrated into inverse

kinematics

We utilize the redundancy in the manipulator to avoid obstacles through the

Jacobian pseudo-inverse with a homogeneous solution. Maciejewski and Klein’s

algorithm35 is the chosen implementation. This algorithm also uses a linearly in-

terpolated path between the initial and goal positions and orientations of the hu-

manoid’s hand. The method does not plan its way around obstacles as much as

reactively attempt to avoid them. The primary downfall to this algorithm is the

number of parameters that must be tuned (five) in order to achieve good balance

between target convergence and obstacle avoidance. Such problems are inherent to

multiple-task Jacobian pseudo-inverse formulations, as noted by Baerlocher34. Note

that this algorithm is also a member of the motor primitive class.

4.1.3. Motor primitive vocabulary of common reaches

The Verbs and Adverbs system, developed by Rose et al.36, was used to implement

a vocabulary of common human-like reaches. This system interpolates between ex-

emplar reaching trajectories in Cartesian space in order to generate reaches to novel

locations. The motion database consisted of 784 example motions to and from eight

locations around the humanoid, with motions perturbed as necessary to avoid col-

lision with a single small obstacle placed at 27 different locations. The
(

8

2

)

= 28

combinations of source and target reaches, in concert with the 28 possible obsta-

cle positions (the scenario corresponding to absence of the obstacle is included),

result in the 784-exemplar database. The vocabulary was chosen in an attempt to

mimic common human reaches (in terms of initial and final positions and obstacle

avoidance), and in so doing, to test their effectiveness. We utilized this system by

simulating performance of each of the 28 primitives to the target location; if no col-

lision was detected, the primitive was successful. In this way, the primitive operates

blindly as in the previous two algorithms: no planning is performed.

The input space for the interpolator is 6-dimensional, consisting of two concate-
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nated 3-dimensional vectors. The first vector represents the initial hand position

of the robot in Cartesian space; the second vector represents the final hand posi-

tion. The output space is 4-dimensional; it is composed of trajectories of the hand

position (time is the fourth dimension). The rotational trajectory of the hand is pro-

duced by linear interpolation between the initial and target orientations of the hand.

Finally, joint-space trajectories can be produced by running an inverse-kinematics

algorithm on the combined hand position/orientation trajectories.

We did not attempt to use a primitive parameterization that incorporated the

orientation of the hand. Such a parameterization would have allowed interpolation

to occur in joint-space rather than Cartesian-space. Cartesian-space interpolation

requires resolution into joint-angles via inverse kinematics, and is capable of generat-

ing “natural” motion only with great difficulty. In contrast, joint-space interpolation

generates motion representative of the exemplar motions; if the exemplars appear

natural, then the generated motions will also. Despite this disadvantage with regard

to generating natural motion, interpolation in Cartesian-space allows the use of an

obstacle-avoidance IK algorithm, increasing the solubility of primitives.

The Verbs and Adverbs system was chosen primarily for its intuitive interpo-

lation results. Other interpolation methods, such as Shepard’s37, failed to produce

motions that were highly similar to the exemplar motions, even when very close

in the input space. Research also exists38 that demonstrates how to determine the

appropriate input-space parameters to produce a given output (i.e., invert the inter-

polation mechanism) for Verbs and Adverbs. Such results are necessary to determine

the 6-dimensional input-space parameters that generate a trajectory from an initial

Cartesian position to a final Cartesian position.

4.1.4. Joint-space RRT Planner

The joint-space rapidly-exploring randomly-tree planner is implemented as specified

by LaValle15. The planner is given an obstacle-free, final posture as its goal; this

posture causes the agent’s hand to be in the correct position and orientation. The

posture obviates the need for inverse kinematics to resolve a suitable configuration

from the hand target. In this way, the RRT planner is given an advantage that it

would not have solving a problem in situ.

4.1.5. Hybrid algorithms

Simple hybrid algorithms can be constructed by splicing together one or more of

the standard methods. The hybrid is successful if any of the composing methods

is successful. We tested hybrids of all possible combinations of the four algorithms

just discussed.
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4.1.6. Choosing sampling rates and maximum number of samples

The algorithms that utilize Jacobian-based IK must transform an operational space

trajectory into a joint-space trajectory. A higher sampling rate along this trajec-

tory translates into better performance for the inverse kinematics algorithm at the

expense of greater computation: the algorithm’s running time scales linearly with

the sampling rate. The RRT-based methods also operate better with more sam-

ples but experience even greater computational expense; the running time of the

RRT algorithm is of quadratic complexity in the number of samples (due to the

nearest neighbor search). Additionally, while the running time of the inverse kine-

matics algorithm can be reasonably predicted based upon the sampling rate, no such

prediction can be made for the RRT-based methods. This failure stems from the

variation in the time required to obtain a sample; the time required is proportional

to the clutter in the environment. This issue makes determining an appropriate

number of samples for RRTs difficult.

The inverse kinematics-based algorithms utilized 10,000 samples from the de-

sired trajectory. Using more samples would have resulted in slightly better conver-

gence for the algorithms but would have increased the experimental time dramati-

cally. This slowdown is due to the motor primitives using the relatively slow obstacle

avoidance IK algorithm. The RRT-based methods were allowed as many as 3,000

samples, and seemed to benefit very little from adding more. The median number

of samples needed in using RRTs for a successful path, when one was found, was

35.

4.2. Humanoid agent

The humanoid agent used in the experiments was created from models publicly

available from The Princeton Shape Retrieval and Analysis Group39. It uses 45

Euler joints for a total of 135 degrees-of-freedom. Each arm is composed of nine

DOF, each hip and leg constitutes nine DOF, and the spinal column accounts for

fifteen DOF (of which nine DOF lie in the neck). The fingers compose the remaining

DOF; the fingers resemble that of a human in complexity and collectively account

for 42 DOF per hand. Joint limits approximating those of humans are enforced.

Using joint limits, some Euler joints are downgraded to revolute joints without

violating generality in the software; for example, the three DOF elbow is reduced

to one DOF. The agent stands 1.55 meters tall, and is depicted in Figure 1. Note

that the algorithms tested controlled only the right arm and one Euler joint in

the spine. Additionally, two DOF in the arm were disabled to better simulate a

human arm, resulting in ten effective DOF. The humanoid is simulated using only

kinematics; dynamics are not taken into account.

5. Results

The results from the experiment are detailed in Tables 1 and 2. It is apparent that

the standard RRT planner performs far better than the other tested algorithms.
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The tables also indicate that motor primitives are a powerful method; the small

vocabulary of reaching primitives clearly outperformed the standard method of

linear hand trajectories and Jacobian pseudo-inverse IK. Table 2 shows that the

hybrid algorithms are able to increase performance over their constituent algorithms

only slightly.

Figures 1, 2, and 3 demonstrate successes with the algorithms on several envi-

ronments. Each pair of images depicts the start and end of the motion generated

by an individual algorithm. Note that images from the linear hand trajectory with

obstacle-avoidance inverse kinematics are not presented; these images highly re-

semble those generated by the linear hand trajectory with least-squares inverse

kinematics algorithm.

Table 1. Results for four primary algorithms over 16,504 trials. Path failure indicates failure of RRT
to find a path. Convergence failure indicates failure of IK-based algorithms due to IK convergence.
Collision failure indicates failure of IK-based algorithms due to collision. Reaching vocabulary does
not include failure results because each primitive in the vocabulary can be considered a separate
algorithm.

Algorithm Success Path failure Convergence Collision

failure failure

RRT 77.0% 23.0% N/A N/A

Linear hand traj + LS1 IK 21.7% N/A 13.8% 64.5%

Linear hand traj + OA2 IK 21.7% N/A 13.8% 64.5%

Reaching vocabulary 30.4% N/A N/A N/A
1Least-squares
2Obstacle-avoidance

6. Discussion

6.1. Performance expectations

Our reaching database implementation of motor primitives is obviously not the best

method for the single-arm reaching task. Its blind, brute-force attempt of all prim-

itives in the vocabulary might work well in spaces with available knowledge, but

is not extremely effective in environments without a priori knowledge. Compared

with the RRT planner, which is intricately aware of its environment as it expands

through the configuration space with a Voronoi bias 40, the reaching database is a

poor substitute. However, the comparison between the primitive-based methods in-

dicates that adding more primitives does boost performance. Whether performance

can be increased to an acceptable level without adding too many primitives is a

question for future research.
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Table 2. Results for hypothetical hybrid algorithms over 16,504 trials. Overlap indicates the amount
of solution overlap, defined as percentage of trials for which more than one of the algorithms in a
hybrid is able to solve.

RRT LS IK1 OA IK2 Reaching vocab Success Overlap

• 30.4% N/A

• 21.7% N/A

• • 32.1% 62.7%

• 30.4% N/A

• • 32.1% 62.6

• • 21.7% 99.7%

• • • 32.1% 67.9%

• 77.0% N/A

• • 83.0% 29.5%

• • 81.0% 21.8%

• • • 83.4% 35.6%

• • 81.0% 21.8%

• • • 83.4% 35.0%

• • • 81.0% 26.8%

• • • • 83.4% 35.5%
1Linear hand trajectory + least-squares IK
2Linear hand trajectory + obstacle-avoidance IK

6.2. Improving performance

It is desirable to know how much performance can be improved asymptotically

with the various algorithms. For example, while there is currently no such analysis

available for RRTs, Kavraki et al.41 have provided a proof relating the failure of a

probabilistic roadmap planner (a cognate to the RRT) to the number of samples and

the ratio of free volume of configuration space to total volume of configuration space.

The proof shows that the probability of the planner failing decays exponentially with

the number of random samples employed, assuming that a solution exists.

Two of the methods used in this paper rely upon the obstacle avoidance inverse

kinematics algorithm. However, this algorithm performs only marginally better than

the standard least-squares algorithm. This unexpected result is a product of the

algorithm’s extensive parameter-tuning requirements; it is very difficult to find a

good (much less optimal) set of constants. A better set of parameters should increase

performance, albeit probably only slightly.

It is unclear where the limit on performance for reaching with motor primitives

lies. Selecting a bigger and/or better vocabulary than is used in this comparison

could improve performance dramatically. This performance increase is illustrated

in our results by the database vocabulary of 28 primitives outperforming the linear

trajectory algorithms, which, as noted are also motor primitives. Alternatively, a

different interpolation system might provide better performance. These are issues
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(a) Motion start (b) Motion end

Fig. 1. Start and end of a motion generated by a linear hand trajectory with least-squares inverse
kinematics. Paths to be taken by the hand and elbow are drawn.

(a) Motion start (b) Motion end

Fig. 2. Start and end of a motion generated by RRT. Paths to be taken by the hand and elbow
are drawn.
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(a) Motion start (b) Motion end

Fig. 3. Start of motion generated by the primitive reaching vocabulary. Paths taken by the hand of
successful primitives are shown. Note that only one of these paths corresponds to the end motion.

for future research.

6.3. Extensibility to dynamic environments

As previously stated, none of the algorithms presented in this paper projects im-

mediately to the problem of humanoid reaching in dynamic environments. The

extension of the algorithms of this problem is now discussed.

Kinodynamic algorithms19,20 are an extension of the standard RRT algorithm

to dynamic environments. These methods are limited to low DOF (i.e., around

ten), making them ill-suited for most humanoid tasks. Indeed, standard RRTs are

analogous to classical AI algorithms for searching in static environments: they both

experience high performance in deterministic, static environments, but seem to have

difficulty scaling to dynamic environments. One potential problem for kinodynamic

algorithms in the context of the humanoid reaching task is the potentially un-

bounded time required to obtain a sample. Research into kinodynamic algorithms

is still nascent; further investigation is needed to determine the efficacy of these

algorithms for humanoid reaching.

Motor primitives seem to be a potentially feasible choice for reaching in dynamic

environments, perhaps given some a priori knowledge about the environment. While

a vocabulary of primitives may not always provide a solution (even when one exists),

the running time of primitives is more predictable than that of sampling-based

planners. Primitive running time is dependent upon number of robot DOF and
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obstacles in the environment, while sampling-based planners are dependent upon

these factors as well as the amount of “clutter” in the environment. However, a

means to improve motor primitive efficiency must be found or computational power

has to be significantly increased if primitives are to be used for this type of reaching.

Together with the advent of a priori knowledge into the reaching task, lower running

times could make motor primitives the most attractive choice for single-arm reaching

in dynamic environments. However, these issues must be investigated further.

7. Conclusion

We have presented a comparison of the dominant methods for motion planning

in the context of humanoid reaching in static environments. The rapidly-exploring

random tree (RRT) method proved to be the most successful method. Hybrid meth-

ods and extension of the algorithms towards dynamic environments were discussed.

Future work will incorporate dynamic obstacles and a priori knowledge towards

obtaining effective reaching performance for humanoid robots in dynamic environ-

ments.
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1. E. Drumwright and M. Matarić, “Generating and recognizing free-space movements in
humanoid robots,” in 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Las Vegas, NV, October 2003, pp. 1672–1678.
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