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This paper describes our recent cognitive robotics projects using a neural network learn-
ing scheme. By reviewing those projects that focus on various issues including self-
organization of behavior primitives, chucking of sensory-motor 
ow, behavior-linguistic
association learning and humanoid imitative interactions, the essential characteristics of
embodied cognition based on our proposed dynamic neural network scheme are eluci-
dated.
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1. Introduction

Cognitions in robots and humanoid requires two di�erent aspects which seem to

con
ict with each other in various contexts. On the one hand, the sensory-motor pro-

cesses have to deal with detailed interactions with the environment for the purpose

of precise control of bodily movements. On the other hand, higher level cognition

would require abstractions of those lower level sensory-motor processes, manipulat-

ing them compositionally for conducting goal-directed planning, inference, etc. This

con
ict seems to be related to the symbol grounding problem by Harnad (1990),

in which it is argued that symbol systems consisting of arbitrary tokens cannot

be grounded because they are not constrained by physical interactions with the
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external world.

We have explored the possibility that equivalent structures of symbol systems

are self-organized in neuronal dynamics through iterative sensory-motor interac-

tions with the external world. We presumed that the gap between higher cognitive

processes and the sensory-motor level might be reduced signi�cantly if both share

the same metric space of analog dynamical systems, and if dense bi-directional

bottom-up and top-down interactions can be achieved there.

Local vs. distributed representation

Based on these thoughts, the authors have studied dynamic neural network models

which can generate as well as recognize spatial-temporal pattern of sensory-motor


ow based on its learning. Firstly, we focused on the problems of how to organize and

manipulate behavior primitives (Arbib, 1981). In the conventional approach each

behavior primitive is allocated as a local and independent entity and sequencing

of those primitives are conducted by the higher level system. In such approaches,

the primitives can be represented by symbolic graph structures (Inamura, Naka-

mura, Ezaki, & Toshima, 2001), hidden markov models (Amit & Mataric, 2002) or

mixture of expert networks (Wolpert & Kawato, 1998; Tani & Nol�, 1998). The

potential problem on using local scheme for representing the primitives is lack of

generalization. In the localist approach, whenever novel movement pattern is expe-

rienced, it is added to the primitive repertory without generalization among them.

(Generalization might be done but only by externally using preassumed functions

such as linear interpolations of stored patterns.) It would end-up with extensive

numbers of the primitives for covering varieties of behavior patterns required.

Facing this problem, we have investigated the possibility of the distributed rep-

resentation for the primitives as an alternative scheme where di�erent primitives

are learned and embedded in the same neural network by sharing the same synaptic

weights among them. We investigated a novel scheme called as the recurrent neural

network (RNN) with parametric bias (PB) (Tani, 2002, 2003; Tani & Ito, 2003) in

which the PB vector works as dynamic parameters for encoding di�erent sequence

patterns in a single RNN. The same PB values accounts for both of generating and

recognizing sensory-motor sequence patterns which could be a possible modeling of

mirror neurons (Rizzolatti, Fadiga, Galless, & Fogassi, 1996). The essential di�er-

ences of this distributed representation scheme from the localist scheme are that

each memory of a di�erent pattern are stored as relational one among others. Our

primal focus has been what sorts of generalized structures can be self-organized and

how diversity as well as robustness can be attained in generating patterns in the

distributed representation scheme.

Level structures

It is generally considered that certain level structures are necessary in order to

manipulate the behavior primitives in compositional ways. We formulated a model

in which the higher cognitive level and the lower sensory-motor level are interfaced
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by the PB vector (Tani, 2003). We focused on two problems in this model. One is the

problem of chunking that asks how a set of movement primitives can be acquired as

segmented from continuous sensory-motor 
ow through iterative experiences. The

second problem concerns with the bottom-up and top-down interactions between the

levels. It is expected that adequate interactions could enable the higher cognitive

level to preserve compositionality in manipulating the lower sensory-motor level

without loosing their tight coupling with the outer world.

Cognitive robotics projects

For the purpose of examining the above mentioned ideas and thoughts, several

cognitive robotics projects have been conducted. It is important to note that our

experiments do not just peruse the performance in terms of engineering but rather

focus on analysis of dynamic structures appeared in the experiments. Such analysis

would gain our understanding in essential aspects of embodied cognition, including

local and distributed representation, bottom-up and top-down interactions, articu-

lation of sensory-motor 
ow and behavior primitives, imitation and joint attention,

behavior-linguistic binding, self-organization of hierarchy.

The arm robot platform was utilized to examine the basic characteristics of the

RNNPB (Tani & Ito, 2003). The issues of generalization and diversity in learning,

generating and recognizing behavior patterns are experimentally examined. The ex-

periments with the RNNPB with levels (Tani, 2003) showed how complex behavior

patterns can be decomposed into sequences of behavior primitives where our in-

terest is how such behavior primitives are acquired as segmented from continuous

sensory-motor 
ow of experienced.

The embodied language project (Sugita & Tani, 2003) have focused on bidi-

rectional interactions between behavioral and linguistic processes. The RNNPB is

regarded as a mirror system in which behavioral modality in terms of continuous

sensory-motor 
ow and linguistic modality in terms of word sequences is binded

by utilizing the PB vector. The experiments were conducted in a task space where

a mobile robot with a vision system can act on some objects. The analysis of the

self-organized structures in the RNNPB illustrated how the compositionality as well

as the generalization in learning are achieved in the system.

The studies of imitative interaction (Ito & Tani, 2003b) have been conducted

by using a small Humanoid robot developed by Sony Corp. The RNNPB is em-

ployed as a mirror system for recognizing the human subject's movement patterns

and generating its own corresponding behavior. The experiments in the imitation

game using the humanoid robot showed that joint attention as well as turn tak-

ing behaviors are generated which are explained in terms of synchronization and

desynchronization between the robot and the subjects.

In the following sections, �rstly our proposed model of the RNNPB will be

described brie
y. Nextly, several robotics experiments using the RNNPB will be

reviewed. Finally, we will show the future research directions are discussed.
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Fig. 1. The system 
ow of RNNPB in learning phase (a), generation phase (b) and recognition
phase(c).

2. The RNNPB modeling

This section presents the main ideas behind our proposed model RNNPB. For details

of the modeling, please refer to our prior publications (Tani, 2002, 2003; Tani &

Ito, 2003).

The role of learning is to self-organize the mapping between the PB vector and

behavioral spatio-temporal patterns. It is important to note that the PB vector

for each learning pattern is self-determined in a non-supervised manner, without

teacher signals. Another feature of the RNNPB is that the system works as both

a behavior recognizer and generator as a mirror system after learning. When given

a �xed PB vector, the RNNPB generates the corresponding dynamic patterns. On

the other hand, when given target patterns to be recognized, the corresponding PB

vectors are obtained through an iterative inverse computation.

In the learning phase, a set of movement patterns are learned through the for-

ward model of the RNNPB by self-determining both the PB vectors, which are as-

signed di�erently for each movement pattern, and a synaptic weight matrix, which

is common for all the patterns. The information 
ow of the RNNPB in the learning

phase is shown in Figure 1(a). This learning is conducted using both target se-

quences of motor values mt and the sensory values st. When given mt and st in the

input layer, the network predicts their values at the next time step in the output

layer as ^mt+1 and ^st+1. The outputs are compared with their target valuesmt+1 and

st+1 and the error generated is back-propagated (Werbos, 1990; Rumelhart, Hin-

ton, & Williams, 1986) for the purpose of updating both the synaptic weights and

PB vectors. Note that the determined synaptic weights are common to all learning

patterns, but the PB vector is di�erently determined for each pattern. The manner

of determining the PB vectors will be detailed in later sections. ct represents the

context units where the self-feedback loop is established from ct+1 in the output
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layer to ct in the input layer. The context unit activations represent the internal

state of the network.

After the learning is completed, the sensory-motor sequences can be generated

by means of the forward dynamics of the RNNPB with the PB vectors �xed as

shown in Figure 1(b). The PB vectors could be given from another network, as in

the behavior-language association task described later, or self-determined through

the recognition process, as in the imitative interaction task with the humanoid

robot. In the generation phase, the RNNPB can be operated in a closed-loop mode

where the next step's sensory-motor prediction outputs are fed back to the current

step as inputs, as denoted by a dotted line on the left-hand side in Figure 1(b). Thus,

the RNNPB can generate imaginary sensory-motor sequences without receiving the

actual sensory inputs from the environment.

Figure 1(c) illustrates how the PB vectors can be inversely computed for the

given target sensory sequences in the recognition phase. The RNNPB, when receiv-

ing the current sensory inputs st, attempts to predict their next vectors, ^st+1, by

utilizing the temporarily obtained PB vectors. The generated prediction error from

the target value st+1 is back-propagated to the PB units and the current PB vectors

are updated in the direction of minimizing the error. The actual computation of

the PB vectors is conducted by using the so-called regression window of the imme-

diate past steps, by which the PB vectors can be modulated smoothly through the

steps. (This mechanism will be detailed in the next section.) If pre-learned sensory

sequence patterns are perceived, the PB vectors tend to converge to the values that

were determined in the learning phase.

3. Learning di�erent dynamic movement patterns

In this section, we will describe how multiple movement patterns of di�erent types

of attractor dynamics can be learned simultaneously using the RNNPB. We will

examine characteristics of generalization in learning as well as diversity in pattern

generations in this scheme through our speci�c dynamical systems analysis.

3.1. Arm robot experiments

The RNNPB was used to learn two di�erent type of movement patterns, end-point

movements and cyclic movements, simultaneously by using an arm robot shown in

Figure 2. The arm robot has 4 degrees of freedom and it has a vision to identify

the position of the arm tip. 3 end-point movement patterns and 2 cyclic movement

patterns were successfully learned with minimizing the error. Figure 3 shows a

pro�le of generating movement patterns with manually switching the PB values.

3.2. Analysis

In order to examine the mapping self-organized between the PB vector to move-

ment patterns, the phase space analysis was conducted for the PB vector. Figure 4
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Fig. 2. The arm robot with a vision system.

Fig. 3. The results of generating two oscillatory movements followed by one end-point movement.
The change over time of the motor outputs and the parametric biases are shown in the top and
bottom rows, respectively. Time steps are shown in the abscissa.

(a) and (b) show how amplitude and periodicity of generated oscillatory patterns

modulate while the PB values are changed in 2 dimensions. The sub-regions of black

colored represent the region for end-point movements and other regions do for cyclic

movements. An important observation is that the characteristic landscape is quite

rugged in the region of the cyclic movement patterns. However, further analysis

showed that the characteristics in the region of the end-point movement patterns

were di�erent. Figure 4 (c) and (d) show the variations of the end-point positions

reached in the region of the �xed point dynamics in the 2 dimensional PB space. It

is observed that the end-point position angles modulate rather smoothly in the PB

space.

These experimental results indicate important aspects of the RNNPB concern-



May 27, 2004 15:14 WSPC/INSTRUCTION FILE humanoid

Insert Paper's Title here 7

Fig. 4. The phase plots for (a) the amplitude and (b) the period of generated movement patterns
in 2 dimensional PB space. The end positions in terms of 2 joint angles are shown in (c) and (d)
for the analysis of the end-point movement region.

ing generalization and diversity in self-organizing distributed memory for movement

patterns. Firstly, it was shown that two types of movement primitives, end-point

movements and cyclic movements, are organized in the separated regions in the PB

space. The end-point movements are said to be generalized in terms of their smooth

modulation characteristics observed in the PB space. It is explained that end-point

movement patterns can be structurally shared as shown by Bizzi, Acornero, Chap-

ple, and Hogan (1984). On the other hand, cyclic movement patterns are not well

generalized in terms of their 
uctuated modulations, however it can generate diverse

cyclic movement patterns including aperiodic ones. This is because a shared struc-

ture among cyclic movement patterns in the training set cannot be found easily and

thus the PB mapping is nonlinearly distorted in the processes of embedding those

unrelated patterns in one network. This sort of characteristics appear because each

memory pattern is stored as relational to others in the distributed representation

of the RNNPB. We have discussed these essential characteristics of the RNNPB

repeatedly in di�erent task contexts (Ito & Tani, 2003a; Sugita & Tani, 2003).

4. Sensory-motor 
ow chunking by the level structured RNNPB

The following will describe how we addressed the problems of how the sensory-

motor 
ow can be learned by chunking. In the current paper, the problems of the

bottom-up and top-down interactions in behavior generation based on top-down

plans cannot be addressed because of the limited space. This should be referred to

(Tani, 2003).

4.1. The RNNPB with multiple levels

The RNNPB is extended to have multiple levels by which it can deal with generation

and recognition of more complex behavior patterns. Figure 5 shows the extended

architecture. The higher level and the lower level RNNS are bi-directionally in-

terfaced using the PB vector. The prediction of the PB vector sequences generate

top-down plan of action sequences while the recognition of the sensory 
ow gen-
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Fig. 5. The complete architecture. Two levels of RNNs on the left-hand side and the working
memory on the right-hand side.

erate the feedback of the PB vector corresponding to the actual experience in the

environment.

4.2. Chunking experiment

The experiments were conducted in the task of simple object manipulation using

the arm robot shown in Figure 2. In this task, the robot receives the center posi-

tion of the object and the arm tip position perceived by the robot camera as the

sensory inputs. The extended RNNPB with two levels are forced to learn multi-

ple behavior episodes in a supervised way. Each episode consists of a sequence of

behavior primitives such as approaching the object, pushing the object, and then

return to home position. It is noted that there are no signs of segmentations in

the sensory-motor 
ow which the robot experiences. The network has to discover

how to segment the 
ow by attempting to decompose the sensory-motor 
ow into

a sequence of segments (behavior primitives) which are reusable in other episodes

to be learned.

The learning results are shown in Figure 6. It is observed that 7 episodes are

learned by decomposing them into sequences of 7 behavior primitives. Those are

shown in Figure 6 with abbreviations with AO: approach to object in the center

from the right-hand side, PO: push object from the center to the left-hand side,

TO: touch object, IC: perform inverse C shape, HO: go back to home position, CE:
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Fig. 6. For the seven training sequences (a)-(g), the temporal pro�les of the parametric bias which
resulted from learning are plotted in the top row, the motor outputs are plotted in the second row
and the sensor inputs are plotted in the third row. The vertical dotted lines denote the occurrenceof
segmentation when the primitive behaviors switched in the training sequences. The capital letters
associated with each segment denote the abbreviation of the corresponding primitive behavior.
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Fig. 7. (a) Model for co-learning of word sequences and corresponding behaviors, (b) model for
recognizing word sequences and generating corresponding behaviors.

go to the center from the right-hand side and C: perform C shape.

5. Embodied language project

In this study, we attempted to bind simple linguistic processes of combining verbs

and objects and simple behavior processes of object related actions by using the

RNNPB scheme. The study was inspired by Arbib (2002)'s hypothesis that the

mirror neurons, which become active both for generating and recognizing object

handling behaviors , had played crucial roles in language development especially in

pairing verbs and objects.

5.1. Modeling and task setting

Figure 7 (a) illustrates the RNNPB scheme used in the co-learning of the word

sequences and their corresponding behavior patterns. The linguistic module on the

left-hand side receives word sequences, beginning with a \start symbol" for each

sequence. The behavior module on the right-hand side receives sensory-motor se-

quences. During co-learning, word sequences are bound to the corresponding be-

havior sequences. More speci�cally, PBl in the linguistic module and PBb in the
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Red Object
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Green Object

Starting Position

Mobile Robot at

Fig. 8. The task environment consists of red, blue and green objects placed in left, center, and
right positions, respectively. The mobile robot is at the starting position.

behavior module are simultaneously updated, under the constraint that the di�er-

ence between these two vectors be minimized for each bound sequence. In the ideal

situation, PBl and PBb become equal at the end of co-learning for each sequence.

Figure 7 (b) illustrates the RNNPB scheme utilized in the recognition and genera-

tion phases. The PBl in the linguistic module is determined by recognizing a given

word sequence. Its vector is set to PBb in the behavior module for generating the

corresponding behavior.

The mobile robot experiment is conducted in the environment shown in Figure 8,

where red, blue, and green objects are located in the left, center, and right positions

respectively in front of a white rear wall. The robot learns to \POINT" with its

arm, \PUSH" with its body, and \HIT" with its arm these three objects repeatedly

associated with corresponding sentences. Each sentence consists of two words, a

verb followed by a noun. The verbs used are point, push, hit, and the nouns are

red, blue, green, left, center, right. There can be 9 di�erent combinations of behavior

categories and 18 di�erent sentences in this setting. Note that \red", \blue" and

\green" turn out to be equivalent to \left", \center" and \right", respectively, in

this task context. In order to investigate the generalization capability, especially in

the linguistic learning, only 14 sentences out of 18 possible sentences are trained.
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5.2. Results and analysis

Recognition and generation tests were conducted after learning was completed.

The appropriate corresponding behaviors were generated for all 18 word sequences,

including the 4 unlearned ones. In order to analyze the internal structures self-

organized in the co-learning process, a phase space analysis was conducted for PBl

and PBb. In this analysis, the original 6-dimensional PB space was projected onto

the 2-dimensional surface determined by principal components analysis. In Fig-

ure 9 (a) the PBl vectors, corresponding to all possible 18 word sequences, are

plotted in the 2-dimensional space. The PBl vector is inversely computed during

the recognition of each word sequence in the linguistic module. The PBl vectors for

4 unlearned word sequences are surrounded by dashed circles. Figure 9 (b) shows

the PBb vectors that are determined for 90 behavior sequences in the co-learning

phase. Figure 9 (c) shows the averaged PBb vector for each of 9 behavior categories.

There are some interesting �ndings in these �gures. First in Figure 9 (a), two

congruent sub-structures can be observed among the PB points corresponding to

word sequences. There are 6 word sequences, each of which has the same verb

followed by one of 6 nouns. All 3 of the hexagons, made up of the 6 PB points for

each verb, seem to be congruent. Similarly, 6 congruent triangles can be seen for

the 3 verbs preceded by the same noun. This doubly congruent structure is crucial

for representing the compositionality hidden in the learned sentences i.e.{ each verb

can be followed by one noun in the same noun set. The combinatorial relationship

between the verbs and the nouns is well represented in the multiplication of these

two congruent structures. An interesting fact is that this structure was self-organized

without using all possible combinations of word sequences during learning. However,

4 PB points, corresponding to unlearned word sequences, are actually found to

come to the right positions in the structure when they are inversely computed in

the recognition processes (thus correct behaviors can be successfully generated for

them). This sort of generalization became possible because each word sequence

is learned not as an independent instance, but rather in the form of relational

structures among others, which is the compositionality of nouns and verbs in the

current case.

Second, a cluster structure can be seen in the PBb vectors in the behavior

module, as shown in Figure 9 (b). Although there are certain distributions in each

cluster due to the perturbations in the sensory-motor sequences in the learning set,

the layout of the averaged center of those clusters seems to have the same congruent

structures as the linguistic module, as shown in Figure 9 (c). It is interesting to note

that this sort of congruent structure cannot self-organize when the behavior module

is trained without binding with the linguistic module (Sugita & Tani, 2003). The

linguistic structure a�ects the behavior module, allowing generation of the observed

congruent structure. On the other hand, the behavior constraints can also a�ect the

structure self-organized in the linguistic module. In Figure 9 (a), the PB points for

pairs of sentences ending with \red" and \left", \blue" and \center", and \green"
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Fig. 9. In each plot, the PB vectors for recognized sentences in the bound linguisticmodule (a), the
PB vectors for training behavioral sequences in the bound behavioralmodule (b), and the averaged
PB vectors of (b) over each behavioral category (c) are plotted. All the plots are projections of
the PB spaces onto the same surface determined by the PCA method.

and \right", are quite close in the space. This is due to the fact that those pairs of

nouns have the same meaning in the behavioral context in the current task.

Based on these observations, one may conclude that certain generalizations are

achieved in recognizing sentences and generating behaviors by self-organizing ade-
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Fig. 10. A user is interacting with the Sony humanoid robot QRIO SDR-4XII.

quate structures in the PB mapping, utilizing both linguistic and behavioral con-

straints.

6. Imitative interactions between a humanoid robot and users

The last experiment introduced in this review paper is about man-machine inter-

actions using a small humanoid robot developed by Sony Corp. We will discuss the

issues of the joint attentions as well as turn taking based on this experiment.

6.1. Model and task setting

The Sony humanoid robot QRIO SDR-4XII have been used as the experimental

platform in the 1st experiment (see Figure 10).

In this experiment, the robot learns multiple movement patterns shown by user's

hand movements in the learning phase. The RNNPB shown in Figure11 (a) learns

to predict how the positions of the user's both hands change in time in terms of the

sensory mapping from st to st+1 and also it learns how to change the motor outputs

correspondingly in supervised ways. The positions of the user's hands are sensed by

means of color tracking of colored balls in his or her hands. In the interaction phase,

when one of learned movement patterns is demonstrated by the user, the robot arms

are expected to move by following the pattern. When the hand movement patten

is switched from one to another, the robot arm movement pattern should switch

correspondingly. This sort of on-line adaptation can be done by conducting the

generation and the recognition processes simultaneously as a mirror system (see

Figure11 (b)). When the prediction of the user`s hand movement generates error,

the PB vector is updated toward directions of minimizing the error in real time

while the motor outputs are generated depending on the current PB values.
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Fig. 11. System con�gurations in learning phase (a) and interaction phase (b).

The results of the experiment are plotted in Figure 12. It is observed that when

the user hand movement pattern is switched from one pattern to another, the pat-

terns in the sensory prediction and the motor outputs are also switched correspond-

ingly by accompanying substantial shifts in the PB vector. Although the synchro-

nization between the user hand movement pattern and the robot movement pattern

is lost once during the transitions, the robot movement pattern is re-synchronized

to the user hand movement pattern within several steps. The experiments also

showed that the patterns once synchronized were preserved robustly against slight

perturbations in the repetitions of the user's hand movements. Our further analysis

concluded that the attractor dynamics system with its bifurcation mechanism by

the PB makes the robot system to be manipulatable by the users as well as robust

against possible perturbations.

6.2. Mutual imitation game

The previous experiments focused mainly on the adaptation in the robot side. We

conducted another experiment which focus on bi-directional adaptation in mutual

interaction between the robot and users. In this new experimental set-up, after the

robot learns multiple movement patterns in the same way as described previously,

subjects who are ignorant of what the robot learned are faced with the robot.
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Fig. 12. Switching of the robot movement pattern among three learned patterns as initiated by
switching of user hand movement. User hand position and its prediction by the robot are shown
in the �rst and the second row, respectively. The third row an the fourth row show motor outputs
and PB vector, respectively.
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The subjects are then asked to �nd as many movement patterns as possible for

which they and the robot can synchronize together by going through exploratory

interactions. Five subjects participated in the experiments. Although most of the

subjects could �nd all movement patterns by the end, the exploration processes

were not trivial for the subjects.

There are interesting points in this new experiment as compared to the previous

one. First, the master-slave relation, which was �xed between the subjects and the

robot in the previous experiments, is no longer �xed but is instead spontaneously

switched between the two sides. Second, there are autonomous shifts among synchro-

nized patterns between the robot and the subject. Once a synchronized pattern is

achieved which, after while, breaks down, and then another pattern of synchroniza-

tion appears. One example of the interaction in imitation game is plotted in Figure

13. It is observed that joint attention to a certain movement pattern between the
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Fig. 13. Joint attention as synchronization between the robot and the subject in imitation game.
User hand position and its prediction by the robot are shown in the �rst and the second row,
respectively. The third row shows PB vectors of the RNNPB.

robot and the subject as synchronization is achieved after some exploratory phase.

It is also observed that this joint attentional state is break down once but joint

attention to another pattern is achieved again.

We speculate that appropriate analysis of these observed phenomena might shed

a ray of light on the mechanism of joint attention as well as turn taking behaviors

(Baron-Cohen, 1996; Moore & Corkum, 1994) . Although joint attention itself might

be explained simply by synchronization (Andry, Gaussier, Moga, Banquet, & Nadel,



May 27, 2004 15:14 WSPC/INSTRUCTION FILE humanoid

18 Jun Tani

2001; Ijspeert, Nakanishi, & Schaal, 2003), a more interesting question is how a joint

attention can break down and 
ip to another one spontaneously as well as how the

roles of following and followed turn take autonomously between the robot and the

subject. We propose that the coexistence of stable and unstable characteristics in the

system dynamics might be the main cause for the spontaneous shifts. The stability

originates from the synchronization mechanisms for shared memories of movement

patterns between the robot and the subjects while the instability arises from the

potential uncertainty in predicting each other's movements. (The subjects cannot

be completely sure about the pre-learned patterns of the robot and the robot cannot

predict well subject's own minded patterns.)

In the mutual interaction experiments, most of the subjects reported that they

occasionally felt as if the robot had its own \will" because of the spontaneity in

the generated interactions. It is speculated that the spontaneity originated from the

total system dynamics including the users in the loop might play an important role

in attracting people to play with entertainment robots.

7. Discussion and summary

The current paper reviewed the RNNPB, which can learn multiple behavior

schemata distributively encoded in a single network. The scheme is characterized

by the PB vector, which plays essential roles both in generating and recognizing

patterns as a mirror system by self-organizing adequate structures internally. The

model was implemented in three di�erent robot platforms. Learning to generate dif-

ferent types of dynamic movement patterns, chunking by organizing multiple levels,

linguistic-behavior binding and imitative interactions were demonstrated.

The hallmark of the current study was explaining how internal memory struc-

tures self-organized, and how such structures could account for the compositionality,

generalization and behavioral diversity observed in each experiment. The proposed

scheme di�ers signi�cantly from the localist scheme in this aspect. In the localist

scheme, no structures exist for memory organization since each behavioral schema

is memorized as an independent template in a corresponding local module. On the

other hand, in the proposed distributed representation scheme, learning is consid-

ered as not just memorizing each template of behavior patterns, but as reconstruct-

ing them by extracting the structural relationships among them.

Nevertheless, it is also true that local representation schemes have their ad-

vantages. They have fewer memory interference problems (McCloskey & Cohen,

1989). Such a characteristic is advantageous when the system is required to learn

in a dynamic environment (Wang & Yuwano, 1996). One important future research

direction is to explore an intermediate representation scheme between the two ex-

tremes of distributed and local representations. The degree of distribution in the

representation might be controlled by modulating the sparseness of activated neu-

rons in the network. If the activations become more sparse, the overlap of activated

neurons among learned patterns becomes smaller, possibly reducing interference
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between them. The degree of distribution should be determined in the trade o�

between generalization and fast learning capabilities. Such learning schemes should

be investigated in future studies.

Another important issue which is missing in the current studies is the \goal-

directedness" in generating or recognizing behaviors. Although the current imple-

mentation has achieved only trajectory level repetitions of given movement patterns,

its extensions to imitation through understanding others' goals as well as one's own

(Tomasello, 1999) are important future research topics. It is also true that many

mirror neurons are found in rather goal-directed task settings, where they seem to

encode not exact movement patterns, but their abstraction or goals (Rizzolatti et al.,

1996). Although it is speculated that our proposed level structured scheme might

be able to achieve such abstraction, further intensive studies should be required.

References

Amit, R., & Mataric, M. (2002). Learning Movement Sequences from Demonstra-

tion. In Proceedings of the IEEE International Conference on Development

and Learning (ICDL-2002) (pp. 203{208).

Andry, P., Gaussier, P., Moga, S., Banquet, J., & Nadel, J. (2001). Learning and

communication in imitation: An autnomous robot perspective. IEEE Trans-

action on Systems, Man and Cybernetics. Part A : Systems and Humans,

31 (5), 431{444.

Arbib, M. (1981). Perceptual structures and distributed motor control. In Hand-

book of Physiology: The Nervous System, II. Motor Control (pp. 1448{1480).

Cambridge, MA: MIT Press.

Arbib, M. (2002). The mirror system, imitation, and the evolution of language. In

Imitation in animals and artefacts (pp. 229{280). Cambridge: MIT Press.

Baron-Cohen, S. (1996). Mindblindness: An essay on autism and theory of mind.

MIT Press.

Bizzi, E., Acornero, N., Chapple, W., & Hogan, N. (1984). Posture control and

trajectory formation during arm movements. J. Neurosci., 4, 2738{2744.

Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335{346.

Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes

for learning motor primitives. In Advances in Neural Information Processing

Systems 17 (pp. ??{??). Cambridge, MA: MIT Press.

Inamura, T., Nakamura, N., Ezaki, H., & Toshima, I. (2001). Imitation and prim-

itive symbol acquisition of humanoids by the integrated mimesis loop. In

Proceedings of the IEEE International Conference on Robotics and Automa-

tion (pp. 4208{4213).

Ito, M., & Tani, J. (2003a). Analysis of generalization in dynamic pattern learning.

(submitted)

Ito, M., & Tani, J. (2003b). On-line imitative interaction with a humanoid robot

using a dynamic neural network model of a mirror system. (Tech. Rep. No.



May 27, 2004 15:14 WSPC/INSTRUCTION FILE humanoid

20 REFERENCES

RIKEN-BSI-BDC-TR2003-005). RIKEN, BSI. (Submitted)

McCloskey, M., & Cohen, N. (1989). Catastrophic interference in connectionist

network. Psych. Learning Motivat., 24, 109{165.

Moore, C., & Corkum, V. (1994). Social understanding at the end of the �rst year

of life. Developmental Review, 14 (4), 349{450.

Rizzolatti, G., Fadiga, L., Galless, V., & Fogassi, L. (1996). Premotor cortex and

the recognition of motor actions. Cognitive Brain Research, 3, 131{141.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representa-

tions by error propagation. In D. Rumelhart & J. Mclelland (Eds.), Parallel

distributed processing (pp. 318{362). Cambridge, MA: MIT Press.

Sugita, Y., & Tani, J. (2003). Holistic approach to compositional semantics: a con-

nectionist model and robot experiments. In Advances in Neural Information

Processing Systems 16. Cambridge, MA: MIT Press.

Tani, J. (2002). Articulation of sensory-motor experiences by forwarding forward

model : from robot experiments to phenomenology. In From animals to

animats 7 (pp. 171{180). Cambridge, MA: MIT Press.

Tani, J. (2003). Learning to generate articulated behavior through the bottom-up

and the top-down interaction process. Neural Networks, 16, 11{23.

Tani, J., & Ito, M. (2003). Self-organization of behavioral primitives as multiple at-

tractor dynamics: a robot experiment. IEEE Trans. on Sys. Man and Cybern.

Part A, 33 (4), 481{488.

Tani, J., & Nol�, S. (1998). Learning to perceive the world as articulated: an

approach for hierarchical learning in sensory-motor systems. In R. Pfeifer,

B. Blumberg, J. Meyer, & S. Wilson (Eds.), From animals to animats 5.

Cambridge, MA: MIT Press. (later published in Neural Networks, vol12,

pp1131{1141, 1999)

Tomasello, M. (1999). The caltural origins of human cognition. Harvard University

Press.

Wang, D., & Yuwano, B. (1996). Incremental learning of complex temporal patterns.

IEEE Trans. on Neural Networks, 7 (6), 1465{1480.

Werbos, P. (1990). A menu of designs for reinforcement learning over time. In

W. Miller, R. Sutton, & P. Werbos (Eds.), Neural networks for control (pp.

67{95). Boston, MA: MIT Press.

Wolpert, D., & Kawato, M. (1998). Multiple paired forward and inverse models for

motor control. Neural Networks, 11, 1317{1329.


