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In this paper, we propose a learning algorithm for the action selection mechanism in the EGO 
architecture, which is designed for autonomous behavior control of a humanoid robot. The 
concept of behavior value is introduced for action selection. The behavior value of each 
behavior module depends on external stimuli and internal states, and the behavior module 
with the highest behavior value is selected according to the situation. We address the 
importance of learning the behavior value of each behavior. We describe how to compute 
behavior values for behavior modules through interaction with humans and environment. We 
implemented the learning algorithm on QRIO SDR-4X II, a small humanoid robot, and 
confirmed that for a given interaction-driven behavior module, a high behavior value is 
obtained when interacting with a friendly user. A similar result is obtained for a proper color 
painted ball for the soccer play behavior module. 
 
Keywords: EGO architecture, behavior value, learning, QRIO SDR-4X II. 

 
 

1. Introduction 
 
We have previously described the autonomous behavior control architecture, the 
EGO Architecture, for consumer entertainment applications1. For the purpose, we 
developed a small humanoid robot QRIO SDR-4X (hereinafter QRIO). It is 
required for such a robot to walk around in a home environment, to respond to 
social cues and other stimuli, to find and identify users, and to communicate with 
users naturally. There are many embedded technologies in the robot, such as 
real-time dynamic walking control, map-building of the environment, human 
detection and identification, speech recognition and synthesis, and natural language 
processing for verbal communication. Most of all, it is important for the robot to 



behave spontaneously and naturally and the EGO architecture is developed for 
such purposes. 
From a Behavior Control Architecture point of view, proper behavior coordination 
is one of the most important issues. In many Behavior Based architectures1, 
behaviors are controlled by so called “releasers”, which are carefully designed and 
debugged by a human. Usually, the releasers are described by a TRUE-FALSE 
logic table, and one releaser that evaluates to TRUE activates the corresponding 
behavior in the situation2.  
In EGO architecture, we assign a “behavior value” to each behavior module, and 
behaviors are coordinated based on that value. The behavior value could be 
considered similar to a Q-value in reinforcement learning, where the action with 
the highest Q-value is selected to get the higher reward. In a similar way, the 
behavior with the highest behavior value is selected to regulate the internal 
variables. The details of this process are described later in this paper, but in short 
the internal variables must be regulated to remain within certain ranges. This is a 
key factor for autonomous or spontaneous behavior in the EGO architecture. 
Returning to the action selection issue, since a releaser is programmed manually, 
the behavior value is also usually programmed or assigned manually. However, if 
many behaviors are added and the robot acts in a real world environment, it is 
difficult to determine these behavior values manually. Moreover, in some cases it is 
impossible to determine the behavior values accurately before the robot actually 
interacts with the environment. For example, if there are a user (USER-A) who 
likes to interact with the robot and another user (USER-B) who doesn’t, the robot 
should determine the behavior value of the interaction behavior module in such a 
way that a higher behavior value for USER-A and a lower behavior value for 
USER-B are set. These values cannot be assigned before the robot actually 
interacts with users.  
We already presented the Emotionally Grounded Symbol concept3, 4 in previous 
works, where symbols are grounded to an emotional system.  
In the remainder of this paper, we first describe an overview of the EGO 
architecture, followed by the method used to compute the behavior values and how 
to properly coordinate behaviors based on those values. Then we describe how to 
learn the behavior values through interactions with the environment. We also 
describe several implementations and present the results of experiments using 
QRIO. Then, we review related works and discuss some features of the EGO 
architecture with respect to the learning mechanism. 
Since the EGO architecture is inspired by ethological studies5, we often use 
terminology from animal ethology to describe robot`s behaviors; for example, we 
call “EAT” a battery charge behavior and we call “NOURISHMENT” an internal 
variable that corresponds to battery charge level. 
We should also note that in literature “action selection” and “behavior selection” 
are often used interchangeably. In the following, we choose the term “behavior 
selection” because “action” has a more primitive meaning than “behavior”. 
However, when we refer to other articles, we generally try to use the original 



terminology. 
 
 
2. EGO ARCHITECTURE OVERVIEW 
 
In this section, the individual software components of the EGO Architecture are 
briefly explained. Fig. 1 provides an overview. Please refer to the paper for more 
details on the EGO Architecture6. 
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Fig. 1 Overview of the EGO Architecture 

 
 
2.1. Short Term Memory (STM) 
 
STM integrates the results of perception. From audio perception, STM receives the 
result of not only speech recognition but also sound source direction by 
multi-microphone localization. Regarding vision perception, STM can store and 
provide the result of face recognition with its associated direction and distance 
computed from stereovision. In the case that both, audio and visual directions, are 
the same, STM merges the results to indicate that they are from the same user. 
STM can also compute the relative positions of detected objects (face, ball, etc.) 
through kinematics. Thus STM can store and recall results located outside of the 
limited view range. 
 
 
2.2. Long term memory (LTM) 
 
LTM associates the recognition results with an internal state. For example, LTM 
can associate an acquired name with an identified object or an identified voice, and 



change the internal state associated with the particular target object8. 
 
 
2.3. Internal state model (ISM) 
 
ISM maintains various internal state variables. It alters their values depending on 
the passage of time and incoming external stimuli. Basically, a behavior module is 
selected in order to keep these internal state variables within proper ranges. ISM is 
the core for spontaneous behavior and response generation to external stimuli. 
 
 
2.4. Emotion model (EM) 
 
EM has 6+1 emotions: ANGER, DISGUST, FEAR, JOY, SADNESS, SURPRISE, 
and NEUTRAL. They are based on Ekmann’s proposal7. Each emotion has an 
associated value8. 
 
 
2.5. Situated behavior layer (SBL) 
 
The Behavior control part is organized into three SBL modules, D-SBL 
(Deliberative SBL), N-SBL (Normal SBL) and R-SBL (Reflexive SBL). D-SBL 
realizes the behavior control for deliberative behavior, N-SBL realizes the behavior 
control for homeostatic behavior, and R-SBL realizes the behavior control for 
quick responses. 
Each SBL controls selection and activation of behavior modules. Each behavior 
module has two basic functions: Monitor and Action. Monitor function periodically 
and concurrently creates a value, which is called the behavior value (BV), using 
internal state variables and external stimuli. It indicates how relevant the behavior 
is for the situation (e.g., observing an object, a sound event, etc.). The details of 
this computation are described below.  
Behavior selection is based on the BVs either by a Greedy method, where a 
maximum BV is selected, or by a soft-max policy, where a larger BV is selected 
with larger probability. Selected behavior modules are given execution permission. 
Availability of necessary resources for execution, e.g., head, arm, speaker, etc., are 
also considered in the competition. In the case where there is no resource conflict 
among behavior modules, all of them are given execution permission and they 
execute concurrently. 
After a behavior module is granted execution permission, the Action function 
actually performs the behavior; it is implemented as a state machine. Each node 
can output, for example, a motion command (designed motion command, walk 
command, tracking command, etc.) and can decide state transition depending. 
Figure 2 shows a behavior module and the associated process. 
A tree structure is used to organize the behavior modules. An abstract behavior can 



be divided into concrete sub-behaviors. For the example, as shown in Fig. 3, 
“Soccer” can be decomposed into “Search ball”, “Approach ball” and “Kick ball”. 
Also “Approach ball” can be decomposed into “Go to ball by walk”, “Track ball by 
head”, “Speak for approach”, etc. 
In the parent behavior module in the tree structure, a monitor function can also 
determine the BV considering the child BVs instead of relying only on the internal 
state variables and external stimuli. The Action function of a parent module can 
also use a child behavior module instead of a motion command6, 9. 
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Fig. 3. Tree structure of behavior modules 

 
 
3. LEARNING BEHAVIOR VALUE 
 
In this paper, we focus on the learning of BV’s to realize homeostatic behavior in 
the Normal Situated Behavior Layer (N-SBL). Performing a behavior causes 
changes in the internal state variables. Each behavior module evaluates how much 
the internal state changes as a result of performing the activity. This association is 
learned in each behavior module. The evaluation and learning of BV are described 
in detail in the following subsection. 
 
 



3.1. Evaluation of behavior value 
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Fig. 5. Database about expected change in the internal state variable 

 
Each BV is composed of a motivation value (Mot) and a releasing value (Rel). 
The evaluation of Mot, Rel and BV is described using as an example a behavior to 
regulate the NOURISHMENT state variable. 
From our viewpoint, NOURISHMENT directly depends on the battery charge level 
and the activity of charging-battery is a pseudo-eating behavior for which the food 



source i.e. the object of the activity is the battery station. In the following we will 
briefly refer to such a behavior using an ethological description e.g. “approach and 
eat an object” 
The motivation value is the degree to which the instinct drives the behavior module. 
It is derived from internal state variables and is composed of instinct values. 
An instinct value (Ins[i]) is designed for each specific internal state variable 
(Int[i]).  
Two examples for NOURISHMENT and FATIGUE are shown in Fig. 4 (a) and (b) 
and can be interpreted as follows. The less nourishment there is, the larger the 
instinct to eat is. Also, in the case of large amount of nourishment, this instinct 
turns negative to realize a moderation or reduction in eating behavior (satiety). 
Fatigue has a negative effect. The greater the fatigue, the lower the value of the 
instinct associated with it. 
Mot is evaluated as shown in Eq. (1). 
 

� ⋅= ][][ iInsiWMot Mot                   (1) 

where WMot[i]: Weight of Ins[i] 
 
The releasing value is the degree regarding how much an external stimulus would 
satisfy an internal state as a result of the behavior. It is derived from an internal 
state variable and the external stimuli and is composed of a satisfaction value and 
the expected satisfaction value. 
A satisfaction value (Sat[i]) is designed for each specific internal state valuable. 
Examples for NOURISHMENT and FATIGUE are shown in Fig. 4 (c), (d). 
To evaluate the expected satisfaction value (ESat[i]), the behavior module 
maintains a database on the expected change in the internal state variable (dInt[i]) 
against the result of the behavior for the given external stimuli. 
Figure 5 depicts an example where the behavior module expects a change in 
NOURISHMENT and FATIGUE when an external stimulus (OBJECT_ID, 
OBJECT_SIZE, and OBJECT_DISTANCE) is obtained. This means that when a 
target object is found which has OBJECT_ID = 1, OBJECT_SIZE = 100, and 
OBJECT_DISTANCE = 2000, NOURISHMENT would increase 20 and FATIGUE 
would increase 20 after approaching and eating the target object. 
ESat[i] and expected change in satisfaction value (dSat[i]) are shown in Fig. 4 (c), 
(d). They are interpreted as follows. When dInt0 is determined by observing an 
object0, the dSat[NOURISHMENT] is positive. On the contrary, when dInt1 is 
determined when observing another object1, for example whose size is larger than 
object0, the dSat[NOURISHMENT] is negative due to overeating. dInt for fatigue 
is related to the distance of an observed object. The farther the distance is, the more 
dissatisfaction the agent receives. 
Rel is evaluated by Eq. (2). 
 



[ ] [ ] ( ) [ ]( )� −+⋅= iESatWidSatWiWlRe dSatdSatRel 1        (2) 

where WRel[i]: Weight of (WdSatdSat[i]+(1-WdSat)ESat[i]) 
WdSat: Weight of dSat[i] against ESat[i] 

 
The term ‘releasing value’ is derived from ethological studies. When an animal 
responds to external stimuli, this is interpreted as the external stimuli releasing a 
behavior, and is thus called a releasing mechanism. In our approach, a behavior is 
released by a value derived from external stimuli. This releasing value is 
considered as an enhanced releasing mechanism. 
Finally BV is evaluated from Mot and Rel by Eq. (3). 
 

( ) lReWMotWBV MotMot −+= 1               (3) 

where WMot: Weight of Mot against Rel 
 
Note that when there is no external stimulus for the behavior module, BV is set to 0, 
so that the behavior module is never selected. 
 
 
3.2. Learning of change in the internal state variable 
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Fig. 6. Process of learning 

 
As mentioned in the introduction, it is difficult to set BV properly. It is also 
important that BV changes properly through interactions with the environment. 
In the evaluation of BV, each behavior module expects dInt[i] based on the 
database through external stimuli. As a result of the actions of the behavior, the 



internal state variable changes. In this paper, dInt[i] is renewed from feedback of a 
real change in internal state variables, and the parameters of BV are learned. 
Figure 6 shows the process of learning using an example of “eat a target object”. 
The behavior module evaluates BV from Int[NOURSHMENT] and external stimuli 
OBJECT_ID = 2, OBJECT_SIZE = 100.0 in the database.  
Execution of the behavior “eat the target object” results in change in 
NOURISHMENT (dIntReal[NOURISHMENT]). dInt[NOURISHMENT] for the 
given external stimuli is learned by feedback of dIntReal[NOURISHMENT] 
according to the following Eq. (4).  
 

[ ] ( ) [ ] [ ]idIntidIntidInt Real⋅+−⇐ αα1               (4) 

where α : Learning ratio 
 
For an unknown target object, the default dInt[i] is set heuristically. Even if the 
default dInt[i] is incorrect at first, it will be learned properly because dInt[i] 
grounds on real changes in the internal state variables acquired through this 
process. 
 
 
4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 
 
Let us consider two example behaviors for discussion purposes. The first behavior, 
“Kick a ball” satisfies, for example, VITALITY. A second behavior, “Interact with 
a user” satisfies e.g. INTERACTION. Two experiments are then conducted. One is 
to learn the parameters of BV through interactions with faces and balls. The other is 
to have QRIO behave autonomously based on the learned BV in the real 
environment to demonstrate validity from the viewpoint of an entertainment 
application. 
 
 
4.1. Hardware component of QRIO 
 
Figure 7 shows QRIO’s appearance. It is 580 [mm] height, approximately 7 [kg] 
with battery and possessing 38 DOF. It is a stand-alone robot with three CPUs. The 
first is for audio recognition and text-to-speech synthesis. The second CPU is used 
for visual recognition, short- and long-term memory, and the behavior control 
architecture. The third is dedicated to motion control. Remote processing power 
and robot control is also available through a wireless LAN. 
 
 
4.2. Experimental Implementation  
 
The tree structure of the behavior modules is shown in Fig. 8. The Soccer (Sc) 
sub-tree has three children: Soccer Search (ScSr), Soccer Approach (ScAp), and 



Soccer Do (ScDo). 
BV of Sc is the maximum BV among its children. 
ScAp depends on VITALITY and FATIGUE as internal state variables, and 
BALL_ID and BALL_DISTANCE as external stimuli. Specification of balls is 
shown in Table 1.  
Mot is composed of Ins[VITALITY] and Ins[FATIGUE], which are shown in Fig. 
9 (a) and (b). Rel is composed of dSat[VITALITY], dSat[FATIGUE], 
ESat[VITALITY] and ESat[FATIGUE], which are shown in Fig. 9 (d) and (e).  
dInt[VITALITY] and dInt[FATIGUE] are estimated from BALL_ID and 
BALL_DISTANCE. Default values for them are shown in Fig. 10 (a) and (b).  
The Weight parameters used for evaluation of BV are shown in Table 2. 
BV is evaluated every hundred milliseconds within each behavior module. 
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Fig. 7. Appearance of QRIO 
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Table 1 Specification of balls 

BALL_ID Color Radius [mm] Weight [g] 

0 RED 75 330 

1 GREEN 75 110 

 
Table 2 Weight parameters for evaluation of BV 

WMot WdSat WMot[VITALITY] WMot[FATIGUE] WRel[VITALITY] WRel[FATIGUE] 

0.4 1.0 0.8 0.2 0.8 0.2 

 
 
ScSr depends only on VITALITY and is independent from external stimuli. 
Evaluation of BV is the same as for ScAp except for the values of FATIGUE, which 



are set to 0. 
ScDo depends only on VITALITY as an internal state variable and BALL_ID as 
external stimuli. Evaluation of BV is the same as ScAp except for the values of 
FATIGUE, which are set to 0. If the ball distance is not in the proper range for the 
kick motion, then BV = 0. Note that distance is not used to evaluate Rel. 
Int[VITALITY] increases proportionally with the distance after kick. It increases 
by 50 when the distance is 1000 [mm]. dIntReal is evaluated by the difference 
between the current Int and the previous one.  
The Interaction (Ia) sub-tree, composed of Interaction Search (IaSr), Interaction 
Approach (IaAp) and Interaction Do (IaDo), has the same structure as Sc except 
for internal state variable and external stimuli. INTERACTION and FACE are used 
instead of VITALITY and BALL respectively. 
In the action function of IaDo, QRIO requests interaction with the user. When the 
face comes nearer, an interaction motion command is output and Int[VITALITY] 
increases by 50 (that is dIntReal[VITALITY] = 50). On the other hand, if the face 
does not come nearer for a while, QRIO gives up on interaction. In this case, 
Int[VITALITY] does not increase (that is dIntReal[VITALITY] = 0). 
Ins[INTERACTION], Sat[INTERACTION] and the default value of 
dInt[INTERACTION] are shown in Fig. 9 (c), (f) and Fig. 10 (c) respectively. 
In the case that the distance to the detected face is not in the proper range for 
interaction, BV is set to 0. 
In our implementation, dInt[VITALITY] and dInt[INTERACTION] are learned 
with respect to each target object i.e.  BALL_ID and FACE_ID. 
Learning ratioα is set to 0.4 in Eq. (4). 
The behavior module Not Homeostasis (NH) does not serve for homeostasis, so its 
BV = 10 constantly. It outputs an idle motion command like leaning the head to one 
side, tracking a face, etc. When the BV of all homeostatic behavior modules are 
low (all internal states are satisfied), then NH is executed. 
The behavior module Event Reaction (ER) does not output any motion command. 
Instead, when an event triggering a reflexive behavior occurs, then ER reserves the 
same resources required by the reflexive behaviors, sets its BV to a high value i.e. 
BV = 100 and gets activated to prevent a homeostatic behavior module from being 
selected and executed so not to interfere with the reflexive behaviors. 
Table 3 shows the initial conditions of the internal state variables for each 
experiment. Fig. 11 shows snapshots of the experiment. 
 

Table 3. Initial condition of internal state variables 

Experiment No. Int[VITALITY] Int[FATIGUE] Int[INTERACTION] 

Experiment 1 80 10 20 

Experiment 2 20 10 80 

Experiment 3 20 10 80 

Experiment 4 20 10 20 

Experiment 5 20 10 20 



 

 (a) Kick a ball (b) Interact with a user  

Fig. 11.  Snapshots of the experiment 

 
 
4.3. Experiment of learning behavior value 
 
In Experiment 1, Ia sub-tree is active and Sc sub-tree is not active because 
VITALITY is satisfied fully. QRIO tries to search for a user, approach the user, and 
request interaction with the user. This is executed 10 times for each FACE_ID = 0, 
1. 
Figure 12 (a), (c) and (e) show the experimental results of learning 
dInt[INTERACTION]. 
The user with FACE_ID = 0 always accepts QRIO’s interaction request while user 
with FACE_ID = 1 accepts interaction every other time. (Fig. 12 (a)). 
dIntReal[INTERACTION] for each FACE_ID is shown in Fig. 12(c). 
As a result of the learning, dInt[INTERACTION] for FACE_ID = 0 gradually 
converges to dIntReal[INTERACTION] = 50.0 and becomes dInt[INTERACTION] 
= 49.9. On the other hand dInt[INTERACTION] for FACE_ID = 1 becomes 18.8 
with oscillation. (See Fig. 12 (e)) 
In Experiment 2, the Sc sub-tree is active and the Ia sub-tree is not active because 
INTERACTION is satisfied fully. QRIO tries to search for a ball, approach the ball, 
and then kick the ball. It is also executed 10 times for each BALL_ID = 0, 1. 
Figure 12 (b), (d) and (f) show the experimental results of learning 
dInt[VITALITY]. 
For the results of ball distance, the average is 436.1 [mm] for BALL_ID = 0 and 
577.9 [mm] for BALL_ID = 1. This results from the difference in ball weight. 
Since the ball with BALL_ID = 1 is lighter than the other ball, it travels further 
when it is kicked. (See Fig. 12 (b)). dIntReal[VITALITY] is obtained as shown in 
Fig. 12 (d) for each BALL_ID. 
As a result, the learned values of dInt[VITALITY] for BALL_ID = 0 is 25.4 and 
that of BALL_ID = 1 is 33.6, as illustrated in Fig. 12. 
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Fig. 12. Experimental results of learning dInt 

 
 
4.4. Experiment of autonomous behavior based on learned behavior value 
 
The experimental results of the change in BV with learned dInt are shown in Fig. 
13. 
Figure 13 (a) shows the result in Experiment 3, QRIO selects the proper behaviors 
depending on the detection of a ball and on its relative distance. QRIO is little 
satisfied with Int[VITALITY] in first kick. QRIO kicks the ball again to gain more 
satisfaction of Int[VITALITY]. After the second kick, QRIO is satisfied enough 
and stops playing soccer: in this situation, QRIO never starts playing soccer again 
even if QRIO encounters a ball. 
Note that dInt[VITALITY] changes from 33.6 to 30.5 after the first kick and from 
30.5 to 29.9 after the second kick. Because the proposed learning algorithm is 



executed online and in real time, it can then be said that the system has the ability 
to adapt to the environment. 
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(b) Experiment 4 

[1] Approaches BALL_ID = 0 
[2] Detects clap and looks to the direction 
[3] Finds FACE_ID = 1 but ignores the face 
[4] Resumes the approaches the ball 
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(c) Experiment5 

[1] Approaches a BALL_ID = 0 
[2] Detects clap and looks to the direction 
[3] Finds FACE_ID = 1 
[4] Loses the ball 
[5] Approaches the face 
[6] Interacts with the face 
[7] Int[VITALITY] is fully satisfied  
[8] Searches a ball 
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Fig. 13. Experimental results of BV 

 
 
Figure 13 (b) and (c) show results in another experimental condition as described 
in the following. In Experiment 4, the user with FACE_ID = 1 claps his hands 



while QRIO is approaching a ball; QRIO suspends the approach, looks around and 
finds the user’s face. But QRIO ignores the face, resumes the ball approach and 
kicks it. If we observe the behavior values, we see that BV[ScAp] is larger than 
BV[IaAp]. 
Figure 13 (c) shows results for a similar scenario but with a different user 
(FACE_ID = 0). This time (Experiment 5) QRIO suspends its approach to the ball, 
goes to the user and interacts with him. If we observe the behavior values, we see 
that BV[IaAp] is larger than BV[ScAp]. 
Our interpretation of Experiments 4 and 5 is as follows  
Because of the conditions in which dInt parameters are learned (see Experiment 1), 
expected rewards for selecting a given behavior depend on the environment e.g. in 
this case on the users as the ball’s color doesn’t change. Then, In Experiment 5 
QRIO prefers interaction with the user to soccer playing as there is a higher 
expected satisfaction (remember that user with FACE_ID=0 always interact with 
the robot). On the other hand, in Experiment 4 QRIO does prefer playing soccer to 
interaction with a user who rarely plays with it (remember that user with 
FACE_ID=1 does not always interact with the robot).  From a different 
perspective, QRIO develops a bond to sociable users (a user who always interact) 
and that may in turn attract such users to have further interactions with QRIO. 
Finally, it should be noted that the proposed learning algorithm is not for 
task-oriented domains but rather for entertainment applications. As such, accuracy 
is not so critical and the observed result can be considered acceptable. 
 
 
5. RELATED WORK AND DISCUSSION 
 
In this paper, we presented a method for learning parameters used in the calculation 
of so called behavior values (BV). As behavior selection in EGO architecture is 
based on BV, we could argue that this method is an improvement of behavior 
selection for autonomous robots. Humphrys11 notes that action-selection algorithms 
are mainly hand-tuned and little work has been done on learning and 
action-selection. He proposes reinforcement learning for action-selection and uses 
a “house robot” for simple tasks e.g. to pick up dirt, return to a base to re-charge 
and empty its bag, etc. Multiple rewards, each one corresponding to an action, are 
learned as actions are executed; both predicted and actual rewards are learned thru 
Reinforcement Learning algorithm. Action-selection mechanism is based on 
selection of the action with the maximum reward, but there are several alternatives 
proposed, e.g. selecting the action that maximizes the collection of all rewards. In 
general Reinforcement Learning research has concentrated on one evaluation 
function or one goal; however, in real world environments there are many goals 
that should be considered at the same time. Thus, action selection has to deal with 
multiple goals in a parallel execution fashion. 
The approach described in this paper can also be considered a case of 
Reinforcement Learning, but we use a regulation mechanism of the internal 



variables as the basic mechanism for the rewards: expected changes of the internal 
variables are learned. The merit of this approach is that the reward values depend 
on both the system status (internal variables) and the environment (external 
stimuli). So, even if the environment is suitable for a particular behavior but such 
behavior is not proper to maintain the internal variables, then the expected reward 
value is low. On the other hand, even though there may be no suitable external 
stimuli to trigger a behavior, the motivation value computed from the internal 
variables may produce an increase of the behavior value and the behavior may be 
executed. For example, when there is no ball observed, but if the VITALITY is 
very low, the motivation of the soccer behavior increases so that the corresponding 
behavior value becomes the maximum one.  
Another difference from reinforcement learning lies in the tree structure of 
behaviors. In our implementation there are many behavior groups, each organized 
in a sub-tree structure designed manually. While typically in reinforcement 
learning, action selection is based on time-discounted rewards, since in our system 
we learn parameters of entire behavior groups, behavior selection evaluates the 
entire behavior of the behavior group. 
In the MOSAIC architecture12, multiple pairs of predictors and controllers are used. 
Proper controllers are selected based on the performance of the corresponding 
predictors. Predictors in MOSAIC can be considered as the Monitor functions in 
EGO. But in EGO architecture the behavior modules usually perform at a more 
abstract level than the controller in MOSAIC. As for “motivations” of the behavior, 
EGO handles multiple motivations based on the regulation rule of the internal 
variables while in MOSAIC the prediction error can be considered as a general 
internal variable for the motivation of the behavior. 
For example, in our approach, expected changes in internal variable FATIGUE for 
the approach-a-ball and interact-with-user behaviors might be different because 
each behavior module has its own database. Also, because of the relationship 
between satisfaction and internal variable values, different behaviors having the 
same expected change i.e. dInt for a given internal variables may, when executed, 
cause a different change of the satisfaction value. In other words, the robot may 
choose the behavior with the highest expected satisfaction even though the 
expected change of the internal variable is the same. 
More generally, similar behavior modules should have similar dInt against similar 
external stimuli. Generalization of the learning result should be considered. 
dInt is learned from only a target object as external stimuli. The learning from 
multi-dimensional external stimuli is one of our future works. 
In the current state, learning takes place on a limited part of the system. The 
remainder is still required to be designed. To clarify the learning-part and 
designed-part and how to realize other learning-parts are also future work. 
 
 
6. SUMMARY 
 



In this paper, we describe the learning algorithm of behavior values for the 
behavior selection problem. The essence of the learning is to make associations of 
the triples (Behavior, Target, Change of Internal Variables), so that each behavior 
module can predict the internal variables after the behavior is executed. Then, 
based on the regulation mechanism of the internal variables each behavior can 
compute its behavior value in a given situation.  
We implemented this algorithm using QRIO, and confirm that the learning results 
result in different behavior tendencies. For a friendly user, an interaction behavior 
is often selected, but for an unfriendly user, other behaviors are selected, and so on. 
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