Biologically Inspired Joint Control for a Humanoid Robot

DAMIEN KEE
School of Information Technology and Electrical Engineering
University of Queendand,
S Lucia, Australia, 4072
damien@itee.ug.edu.au

GORDON WYETH
School of Information Technology and Electrical Engineering
University of Queendand,
S Lucia, Australia, 4072
wyeth@itee.uq.edu.au

JONATHON ROBERTS
Commonwealth Science and Industry Research Organisation
Information and Communication Technology
PO Box 883, Kenmore, Australia, 4069
Jonathon.Roberts@csiro.au

The GuRoo is a 1.2m tall, 23 degree of freedom maidaconstructed at the University of
Queensland for research into humanoid robotics. KEyechallenge being addressed by the
GuRoo project is the development of appropriatenieg strategies for control and
coordination of the robot’'s many joints. The depefent of learning strategies is seen as a
way to side-step the inherent intricacy of modelmdnighly non-linear multi-DOF biped
robot. This paper outlines the approach taken tegge an appropriate control scheme for
the joints of the GuRoo. The paper demonstraesiétermination of local feedback control
parameters using a genetic algorithm. The feedbmmk is then augmented by a predictive
modulator that learns a form of feed-forward cohttm overcome the irregular loads
experienced at each joint during the gait cyclee Pnedictive modulator is based on a
Cerebellar Modeled Articulated Controller (CMAC)chitecture. Results from tests on the
GuRoo platform show that both systems provide im@neoents in stability and joint control
tracking.

1. Introduction

Humanoid robots typically have many joints, andhepnt is subject to complex and
varying loads as the robot moves about. These laaglsnostly due to the effect of
gravity on the robot’'s mass, but also include ¢irgal and Coriolis forces from the
robot's complex motion. In addition, joints may bete loaded and unloaded as the
robot lifts and places its feet.

It is challenging to design controllers that mainta high level of tracking and
stability performance under such a range of loadditions. Typically the problem is
addressed by calculating the forward model of tihgues on the joints and appropriately
compensating However humanoid robots are difficult to modeltheamatically and
hence analytical determination of feed forward dyits for model based control can be
both a complicated and time consuming process. addition, contact with the
unpredictable loads from the real world and hunraaraction further complicates the
modeling problem.

Biological controllers do not use an accurate mofi¢he system rather incremental
adjustment of control parameters is performed, dhasethe experience of the system.
Initial response may be quite crude, but over tapgropriate control parameters are
learnt. Neural networks hold some promise in tiddfiof trajectory control with the
ability to learn system dynamics without an explicepresentation of a robot’s
configuration.

This paper presents a biologically inspired cdréaheme as a two-stage approach.
A Genetic Algorithm determines a set of feedbacdhticd parameters based on a fitness
function minimizing both tracking error and vibiati experienced by each joint. This
process is performed offline on a simulator. Tineet feedback system is augmented
with a feedforward system that uses an on-lineniegralgorithm based on a Cerebellar
Modeled Articulated Controller (CMAC) neural networ The GuRoo humanoid robot
with its high degree of freedom and non-linear dyita forms a suitable platform to
apply the system.

1.1. Previous Work

There are numerous traditional methods availableh® control engineer to tune
feedback controllers. A vast amount of material baen published in the area. A
summary of the most popular techniques is giverDiBwyer®. It should be noted
however, that most of these deal with the tuning eingle controller in isolation. Since
the early 1990’s, Genetic Algorithms (GAs) haverbsaccessfully used to tune Pl and
PID controllerd*® As with more traditional approaches to tuningstmof these GA
methods have only been applied to single contmbdthough Bomfiret al.°, use GAs to
simultaneously tune multiple power system dampigtrollers.

This use of GA’s within the humanoid field of raseh differs from other approaches
in its tuning of control parameters as opposedhto deneration of complete walking
gaits. Endcet al’ employ a GA to determine the necessary joint \iéscrequired to
maintain stable walking. Shanal® makes use of a central pattern generator to peovid
the required joint commands. The CPG consists sdtaf neurons for each joint, with
each neuron comprising a pair of neural oscillatofie weights between connecting
neurons are determined through the use of a geaslgticithm.

The use of a cerebellum models for motion contraé been studied in the past.
Infants of approximately 5 months of age display ltipie accelerations and
decelerations when moving an drmThis series of sub-movements eventually guides
the arm to the desired position. Over time, anthwiore experience, the child learns
the required muscle movements to smoothly guideathe This shows that the human
body is not born with a perfect plant model, butdat learns it through experience.

The Cerebellum Model Articulated Controller (CMA@®veloped by Albu§ is an
artificial neural network architecture based onhhbenan cerebellum. It is well suited to
the application of robot motor control with a sim@lgorithm, fast learning and ability
to generalize.

Fagget al*! implemented a CMAC control system on a 2 degre&esfdom arm,
actuated by three opposing sets of muscles. Th&ACNs responsible for the co-
ordination of these three actuators to controltiie joints. When the CMAC does not
bring the arm to the required position, an addaloexternal CMAC was engaged that
produces short sharp bursts of motor activity uihtéd target was reached. Once the
desired position was reached, the trial was tertathand a new trial initiated. Over
time, the external CMAC was made redundant as tiggnal CMAC correctly learned
the required muscle commands.

Collins and Wyetlf used a CMAC to generate the required velocitielad for a
mobile robot to move to a waypoint. Significanhsery delay was introduced that
would cripple a traditional control system. The 8®1was able to learn the system
dynamics, compensate for this delay and produceeiipgired signals necessary to move
to the waypoint with a smooth velocity profile.

1.2. Paper Overview

Section 2 describes The GuRoo, the humanoid phatfmnstructed at the University of
Queensland, to which the research is applied. @e&ipresents the genetic algorithm
approach used to obtain a set of Pl control paremsdor each joint. These parameters
are compared to a set of hand tuned parameterstios& outlines the CMAC neural
network implemented on the robot. A crouching ewpent is undertaken and results
from before and after the implementation of thetesysare presented. The final section
draws conclusions from these results and discugsere these results may lead.

2. GuRoo Project

GuRoo0 is a fully autonomous humanoid robot (Figlijedesigned and built in the
University of Queensland Robotics Laboratdryrhe robot stands 1.2 m tall and has a
total mass of 40 kg, including on-board power aondhgutation. GuRoo is currently
capable of a number of demonstration tasks inctudialancing, walking, turning,
crouching, shaking hands and waving.

The eventual aim of the project is to construntlaot that can play a game of soccer
with or against human players or other humanoiet®b The current aim is to achieve
reliable and robust locomotion. GuRoo has beeigded to mimic human form and
function to a limited extent, taking into considéra conflicting factors of function,
power, weight, cost and manufacturability.

Figure 1 : The GuRoo humanoid robot with a schemati showing the degrees of freedom.

2.1. Electro-Mechanical Design

The robot has 23 joints in total. The legs and sgiontain 15 joints that are required to
produce significant mechanical power, most gengnaith large torques and relatively
low speeds. The other 8 joints drive the head astk assembly, and the arms with
significantly less torque and speed requirements.

Table 1 outlines the type and axis of actuatioeaith motor. Due the high power / low
velocity nature of these joints, large gearboxesumed which contribute to the length of
the actuators which in turn lead to unnaturallyevielgs.

The centre of gravity of each leg lies outsidelthe of the hip rotation, and as such,
the legs naturally swing inwards. The motors tirate the roll axis of the hip joints are
each supplemented by a spring with a spring cohsthh Nm/degree. These springs
serve to counteract the natural tendency of the tegcollide, and help to generate the
swaying motion that is critical to the successhef walking gait.

Table 1: Type and axis of each DoF. "2 x" indicate a left and right side.

Joint Type AXis No.
Head/Neck RC Servo Pitch + Yaw 2
Shoulder RC Servo Pitch + Roll 2x2
Elbow RC Servo Pitch 2x2
Spine DC Brushed Pitch + Roll + Yaw 3
Hip DC Brushed Pitch + Roll + Yaw 2x3
Knee DC Brushed Pitch 2x1
Ankle DC Brushed Pitch + Roll 2x2
TOTAL 23

2.2. Distributed Control Network

A distributed control network controls the roboigifire 2), with a central computing hub
that sets the goals for the robot, processes tmsoseinformation, and provides
coordination targets for the joints. The joints édkieir own control processors that act
in groups to maintain global stability, while alsperating individually to provide local
motor control. The distributed system is connedigcdh CAN network. In addition, the
robot requires various sensor amplifiers and paweewrersion circuits.

Serial
4>[Head + Arms Controller]<—>
Spine Controller]<—>
\ 4

External [Right Hip Controller]1—?
Computer
[Left Hip Controller]<—>
[Right Leg Controller]<—>

[Left Leg Controller]4—)

sng NvO

Figure 2: Block diagram of the distributed control system

2.3. Sensors

The GuRoo currently has encoders on each of thie payered DC motors, able to
provide rotational position to a resolution of QLQff a degree. An inertial measurement
unit consisting of 3 rate gyroscopes and 3 acceleters has been obtained that is
currently being integrated into the system. Provishas been made for the future
inclusion of pressure sensors on the soles ofetbieand a stereo vision system.

Robot Low Level Code / Simulator

>
—
|

|

|

|
—»
|

|

s—

|

|

1

|

|

|

|

|

|

|

|

|
—

—_ (2]

(2] (2] - —

S B s 8 5 ® e

= o <= 8 £ o [

o | a 2 3 I g

S Z S92 z o

b O A g ______ 3) ~

I T B ! |

Set Motor Read Gait

Position Control Trajectory Generation
CAN interrupt Timer interrupt CAN interrupt

RC joint ?_-‘_I External

Setpoints

controller Computer

DC joint controller x 5

Figure 3 : Block diagram of common software moduleand the interface used by both the real robot
and the simulator.

2.4, Software

The software comprises four major parts: the sitouojagait generation, joint controller
software and low level firmware. The gait genenatand joint control software have
standard API's (Figur@) and can be compiled to either the simulatorherlow level
firmware to be run on the actual robot. The jowelocities required by the joint
controllers are provided by the gait generator nedu

2.4.1 Gait Generation Software

Different gaits such as walking and crouching aseduto evaluate the control
architecture presented, and while not the focub@paper, are briefly described below.

The gait generator yields walking gaits that ateerently Zero Moment Point (ZMP)
stable, and are based on a constrained locus dbmibtThe offline gait generator
makes use of a low-resolution simulation and evohatry computation. This approach
involves learning a rough solution with an approxied model. Evolutionary
computation is used for evolving walking gaits framnandom population. Each gene is
encoded to represent the motion sequence in teffmankie positions. Limited
information of the model on separation of legs eatib of upper leg to lower leg is used
for the calculation of inverse kinematics. An apgintate mass distribution of the robot
body is used for calculating the ZMP. The fitnesghen measured by comparing the
estimated ZMP trajectory of the playback of a motsequence with a desired ZMP
trajectory that meets stability criteria (with tipeojection of ZMP lying within the
support polygon).

After generations of evolution, a solution for #lde gait pattern for the
approximated model results. This pattern can thenused for the generation of
trajectories for the legs, calculating the vel@stof the joints at 50Hz.

The gait generator module can also generate smaybitrary motion of limbs for
crouching, bowing and waving. Joint velocities dall a sinusoidal velocity of the form:

ol

wherew is the desired joint velocity) is the desired change in joint angle dnig the
period of the movement. This profile ensures tiiatjexperiences zero acceleration at
the start and end of each movement which minimikesjerk and vibration. Zero
velocity at the start and end of each trajectofgvalfor smooth transitions between
trajectories.

2.4.2 Joint Controller Software

Located in the robot are two types of joint corexd, five DC brushed motor controllers
and one RC servo motor controller. The CAN intptmoutine updates the desired joint
velocities. The RC controller runs a single tinrgerrupt routine that sets the required
pulse length for each RC servo motor based oneheatl joint velocity.

An interrupt driven CAN routine updates the desijeint velocity for each motor
controlled by a DC motor controller. A second tinmgerrupt occurs at 250Hz to run
the motor control routine. The actual velocitythe change in encoder readings over
time. The motor control routine calculates theelretween the actual velocity and the
desired velocity. A PWM value is calculated frohist error using a Proportional-
Integral control law. The PI control terms aretsafe based and can by adjusted
dynamically at any point in the gait.

The current is measured every control loop andRWM waveform generated is
modified to keep within a software set current timi

2.4.3 Humanoid Smulator

The simulator is based on DynaMeths: dynamic simulation tool for multi-chained,
star configured robots. It has been adapted ttudiecspecific characteristics of the
GuRoo0, including the distributed nature of the ooinarchitecture and the CAN bus.
The GuRoo's chest is modelled as a mobile base Withains arranged in a star
configuration representing the arms, legs and hellte modified Denavit-Hartenburg
parameters and CAD surface area provide the gralptepresentation of the robot as
seen in Figure 4. Mass distribution information the form of inertia tensors is
combined with actual motor characteristics to pilevirealistic interactions between
links. The simulator provides the same interfax¢ha firmware, with the ability to read
encoders, measure current consumption and to treasthreceive CAN packets.

2.4.4 Firmware

The firmware present on each joint controller bganavides direct access to the sensors,
motor drivers and CAN bus. The firmware is accddsg a set of generic high level
functions in the Joint Control module. The natofeéhese generic functions allows the
control code to be microcontroller independent.

Figure 4 : Screenshot from the DynaMechs based sirator.

3. Control Parameters

The aim of the GURO00 project is to create a hunthrmldot that can perform human-like
motions, such as walking, crouching, reaching aiftikg a ball. In order for these
motions to be realised, it is essential that theeki-level controllers, the joint
controllers, perform well. Each joint controllesrimplemented as a simple Pl controller
around joint velocity. Each joint must therefore theed; good values of the P and |
gains must be found for each of the 15 high-powéreer joints.

It should be realised that all joints must remadtive during all phases of a motion.
Even the act of standing up straight and remaisiilrequires all joints to be active.
GuRoo simply slumps to the floor if it loses powdhis implies that all 15 joint
controllers must be tuned simultaneously in orderathieve the best outcome. An
oscillation in one joint caused by a poorly tuneahtcoller, will affect the performance
of every other controller due to subsequent vibraind motion (generated at that joint)
being transmitted through the robot to all the pjbats.

3.1. Reducing the problem

Each of the 15 joints must be tuned simultaneowesgh with two gains (a P and an |
gain), making 30 gains in total. However, thersyimmmetry in GuRoo, and the legs can
be considered to be identical. Hence, the problexbm reduced to finding 18 gains (6
for the spine and 12 for a leg). In order to sifgplhe problem, we can restrict the

possible values of the gains to a range that weavka@oughly correct. It is unrealistic to

tune all 15 controllers simultaneously without riesing the values of the gains. The
robot must actually walk most of the time during thning experiments.

The PI controllers are implemented on the motartrdler boards. These boards
have limited processing power and hence the cdatsohave been implemented using a
bit shifting strategy for speed. Hence, the P agdihs are not floats, but integers with
unit values of 1, 2, 4 and 8 which correspondsitslifting values of 0, 1, 2 or 3. This
allows gains to be represented as a 2-bit numbaenihe output of the PI control law
is computed, the proportional error and integrabreare shifted the number of bits
corresponding to the P and | gains respectively 3 bit genome was constructed by

concatenating the 18 x 2 bit gains. From expertat@n a range of gains that allow
GuRoo to walk (at least very roughly) was gathered.

The GuRoo simulator provides a suitable envirortmam which to run a GA.
Running the GA on the real robot would be difficdlie to the constant need to move
the robot back to the starting position every rad the problem that a poor run, where
the gains are sub-optimal, may result in a highgtable robot, which may fall over.

3.2. Fitness function — tracking and smoothness

As with all applications of GAs the key to succissBnding the best fithess function that
describes the performance of the system. In the cds5uRo00’s joint controllers, of
most interest is the optimization of two measutescking performance (minimising
error) and tracking smoothness. The biggest simgleblem with the hand-tuned
controllers was the noisy tracking performance Wwhigould give the robot a high
frequency shake. The overall fitness functiGhused was therefore based on two
separate fitness functions based on tracking éffgrand smoothnesdd:

50,30,
fl fS

f =ii\p;r(t)\$

=1t=1

=3 |o 0%

=1 t=1

wherep.(t) is the joint tracking error of jointat timet.

3.3. The GA and its parameters

The type of GA used for tuning was the ‘simple Gdéscribed in Goldbet§ The
GAlib C++ library was used to run the GAsA simple GA uses non-overlapping
populations and optional elitism, and creates dimedyn new population of individuals
each generation. The GA parameters used werelag/$ol

» Population size: 100

* Number of populations: 100

* Crossover: 60%

e Mutation: 10%

e Genome: a 36-bit long bit string of concatenate@-ft gains

The GA was run over a complete walking cycle whiohsists of eight elements:
e right foot strikes ground
e right foot on ground
* left foot toe off
» left knee straighten
» left foot strikes ground
» left foot on ground
* right foot toe off
» right knee straighten

The walking cycle is produced by the gait generatioftware described in Section

2.4.1. The simulation begins with the robot in $stending position. This pose is not part
of the walking gait and so the robot must first mdrom the standing position into a

walking pose. This takes place using an extra tements. The first cycle of the walk is

therefore ‘non-standard’ and hence the fitnesstfonds only computed over the second
walk cycle. Each walk cycle takes 6 seconds toamim 2GHz PC (real-time) and so a
complete run of a single GA individual takes 12asets. The total time to run the GA as
described above was 1000 minutes (16.6 hours). tiiatean exhaustive search for the
optimal gains would take a little over 68,000 yearsomplete on the same PC.

3.4. Simulation Experiments

The gains generated by the GA tuning method andtiggnal hand-tuned gains were
run on the simulated GuRoo over a number of walkiyajes. The results for both cases
are compared in Table This table gives the break-down of the componehtsacking
and smoothness performance. From this table itbeaseen that both tuning methods
track with approximately the same overall trackamguracy f). However, this is not the
case for the smoothness measute which shows that the GA tuning method is far
superior to the hand tuning method by a factor.of 2

Table 2 : Comparison of fithess measures obtainedchdhe simulator (a higher score is better).

Tuning Method Tracking (5;0} Smoothnes(sio)
t S
Hand Tuned 0.116 0.152
GA Tuned 0.112 0.310

3.5. Real Robot Experiments

The gains generated by the GA tuning method andtiggnal hand-tuned gains were
run on the real GuRoo robot over a number of walkigcles. A comparison of the
results is given in Table 3. This table gives theak-down of the components of
tracking and smoothness performance. From thig tialglan be seen that the GA tuning
method performs best with respect to tracking andathness.

Table 3 : Comparison of fithess measures obtainechdhe real robot (a higher score is better).

Tuning Method Tracking (iOJ Smoothnes(sio)
t s
Hand Tuned 0.009 0.539
GA Tuned 0.011 0.699

It is interesting to note that the results diffgmnéficantly from the simulation case in that
during the real experiments, the tracking perforceawas much worse, but the
smoothness performance was slightly better. Thisbeaexplained by the fact that the
real robot is much more compliant than the simatatnodel and hence ‘wobbles’ more
when walking. This compliance has a natural smogthiendency (hence smoother
operation) but makes joint control challenging @etarger tracking errors). Figure 5
shows a comparison of the joint error tracking @erfance for the right ankle pitch joint

during a section of the real walk. This is the easection of the walk used for the
simulation results above. The figure for the righkle shows a remarkable difference
between the tuning methods. The comparative gainthfs joint were P=1 and 1=4 for

the hand-tuned gains, and P=2, I1=1 for the GA tumethod. This difference in gains
produces very different results.

Right Ankla (pitch)
2000 T T 1 T

T T
: : E —— Hand tuned
1500 Ay - - - — GA e : il

(e]| PR, PR R WU, S SERSIO

1 | B L uw UEe e

Joint Error (encedsr counis)

2000} - L

-3500

Time (s)

Figure 5 : Comparison of joint error for the hand-tuned and GA tuned control parameters for the ankle
pitch joint.

4. CMAC Augmented Control

The joints of a humanoid robot experience distuckanof markedly different

magnitudes during the course of a walking gait. Seguiently, simple feedback control
techniques poorly track desired joint trajectoriksthis section, we present a CMAC
augmented system that learns to compensate thgyehan load that occur during a
cycle of motion. The joint compensation schemeledallrajectory Error Learning,

augments the existing feedback control loop or@hRoo.

4.1. CMAC Neural Network

The Cerebellar Model Articulated Controller (CMA@®@Jas first described by Albus.
The CMAC network can be viewed as a number of lpokables. Each table, or
Association Unit (AU), has the dimensions equah®number of input variables.

The first step requires the inputs to the systerhet quantized and scaled, giving a
lookup address into each AU (Figure 6a). This aslslis mapped to a coarser address
space in each AU which activates a single cell knew a State Space Detector (SSD)
(Figure 6b). There is a weight associated witthea8D. Each network comprises of a
collection ofn AU’s and as such for any unique set of inputstettae exactly n SSD’s
activated (Figure 6¢).

input g input g

input p

() (b)

Al Al2 AU3

©

Figure 6 : A single Association Unit. (a) Inputs ee scaled and quantised to give a single table emgtr

(b) This is then mapped to a coarser address spaadere a weight is obtained from the activated State
Space Detector (SSD). (c) Multiple Association Uls. The system consists of multiple AU’s each whic

activate a single SSD. The weights from each SSBeasummed to give an output response.

The output signal is calculated by finding the safrthe weights of all AUs at this
lookup address (Figure 7). The AUs are structusech that should an input value
change by 1 unit of resolution, all but one SSO wemain unchanged. For example, if
there are 10 AU'’s, then a particular combinationngiut values will activate 10 SSD’s
and hence yield 10 independent weights. Shouldobtige inputs change by one step of
resolution, nine of the original SSD’s will remagrctivated, with only one SSD
deactivated and a new one activated.

As the output result is the sum of all assocriatioit's weights, a greater number of
Association Unit's results in a system that is dxetible to generalize the input space.
Small deviations in an input signal, do not greaffgct the output signal.

Compensation Signal
z >

Figure 7 : The weights of each selected SSD is summinto give a compensating signal.

The input space is dominated by hyperplanes afgitée input combinations, with
large empty spaces in each AU where real-life inparnbinations are not physically
possible. Hashing techniques are used to redecenéimory requirements by mapping
the complete set of SSD’s to a smaller set of &lr®SD’s using the modulo function.
Hash collisions occur when two or more SSD’s hasthé same virtual SSD. This is
not necessarily fatal, as a large number of AU$ eviure the table weight in question
to have a minor effect on the overall output.

Table weights are updated using the following rule:

a
wnew :wold +;(0d$ _eac[)

where:
Wnew = New weight value
Wald = Original weight value
a = Learning rate
n = Number of association units
Oes = Desired joint position
Oact = Actual joint position

As the output of the response of the network isstira of the selected table weights, the
change in weight between iterations is divided by bumber of association units to
ensure the learning rate has the same effect egardf the number of AUs.

4.2. Joint Position Error

Figure 8 demonstrates the error in the left kné# puring a typical walking gait cycle.
At t=0, the foot is lifted from the ground and bews the swing leg. The large error is
indicative of the high gain necessary whilst in firegle support phase, applied during
the period of minimal load during the swing phasghe foot regains contact with the
ground at t=0.4. At t=0.8 the knee enters the sisgipport phase and is heavily loaded
as reflected in the average joint error of -3 d&fe double support phase is active from
t=1.2 until t=1.6 at which point the left leg agdoses contact with the ground. This
highlights the significant variations in load thmevent the Pl control loop implemented
on each of the GuR00’s joints from obtaining asfatitory response.

TEL uses a CMAC network to supply a compensatimmad to eliminate this
position error. As a typical walking gait of a humo& is periodic in nature any errors
experienced by the robot are also typically cymlimature: for example, the joint error
during the support phase. By observing the gaisphthe CMAC learns which parts of
the gait require compensation.

Left Knee Joint Position Error

Error (degraes)

-20
Time {s)

Figure 8 : Position error experienced in the left kee pitch joint over one complete walking cycle.

4.3. System Implementation

The method of compensating the joint error is ilaed in based on Trajectory Error
Learning. Trajectory Error Learning (TEL) is a loigically inspired method of robot
motion compensation based on the CMAC where legrisidriven from the difference
between the intended trajectory of the robot amdattual trajectory measured by the
feedback sensor (possibly after some sensory d&laphe system implemented on each
joint of the robot is outlined in Figure 9. Thaj&ctory of the limb is expressed as a
stream of desired joint positions which are gemeraty the gait generator. As the
motion of the robot is periodic, the state of thgjdctory can be expressed as the gait
phase. The gait phase is implemented as a perodicter, incrementing every control
loop and resetting at the beginning of each matigrie.

Desired Joint Position .: + PD |
Gait o e Controller Robot
Generator Gait Phase . *

P

“| cmAC

1] .
Delay |« Measured Joint Position
L [

Figure 9: Control system diagram for a single jointon the robot. The Desired Joint Position is time
delayed when calculating position error to accounfor sensor delay. Table weights are updated a set
number of control loops after being used. This dal is equal to the sensory delay inherent in the stem.

The desired joint position is augmented by the wugs the CMAC, and passed to the
feedback joint controller. The inputs to the CMAGnsist of the gait phase and the
measured joint position, where the measured jasttipn will be subject to some delay
with respect to the desired joint position. In tliam, the CMAC is used as a predictive
modulator; seeking to eliminate the error it expdotsee based on the errors that it has
already seen at the same point in previous cy@les.sawtooth wave of the gait phase
gives the CMAC the point in the cycle that it isrremtly compensating, while the

measured joint position accounts for differentutisaince conditions that may occur at
that point in time. If a typical gait movement i8(bgait phase units long, then a gait
phase of 0 and 500 differ by only 1 input unit.eT®MAC is modified to reflect this.

The error in joint position is used to train thB1&C network. A history of previous
desired position commands is kept to compensatéh@osensory delay experienced in
the system. This history buffer also ensures weigidates are performed with the
correct time delayed error. The error signal usetain the CMAC is as follows:

§ = Hdes(k—t) - ‘gac[(t)
where:
& = Error training signalkj
Oesiict) = Desired Joint Positiork € t)
Oaci(y = Actual Joint Positionk]

t Sensory Delay

Thus weights are updatédontrol loops after they are used.

4.4, Crouching Experiment

To test the validity of the cerebellar modeled cengation system, a simple crouching
motion is performed. Motion is generated using shrisoidal generator described in
section 2.4.1. This initial experiment conductedased on a slow crouching motion
run over a period of 6 seconds. The pitch axis nsotd the hip, knee and ankle joints
follow a synchronised sinusoidal profile with a magde of 18, 35 and 22 degrees
respectively to reach the bottom of the crouchtmosi This test exposes the joints to a
range of dynamic and static loads, and can be tege@aany times without moving the
robot around the laboratory.

For this experiment, the CMAC parameters outlined’ able 4 were chosen. The
number of receptive units and field width were @mdo provide the necessary
discrimination, while also providing local genesaliion. The Joint Position Receptive
Units are scaled to only the angular range expeeinluring the crouching motion. The
hashing ratio was chosen to reduce memory requitesmehile still keeping a low
probability of hashing collisions. The learningeravas tuned to provide rapid learning
of the compensation, without learning from noisbe Tneasured joint positions were
subject to a delay of 40 ms, which correspondsdelay of 3 control cycles.

Table 4: CMAC system parameters.

CMAC Parameter Value
Joint Position receptive units 1000
Gait Phase receptive units 1000
Field width (AU's) 100
Global Address Spaces 216204
Virtual Address Spaces 10001

Learning rate 0.005

4.5. Results

The learning algorithm was initially applied onty déne type of joint at a time to negate
co-evolutionary effects between different jointegp Figure 10, Figure 11 and Figure
12 outline the uncompensated and compensated mspafneach joint used in the
crouching motion.

Without TEL, the joints involved in the crouchimgotion experience an error in
position which is cyclic, these errors do not clarfgpom cycle to cycle and are
dependent on the current phase of gait, with laegers present in the second half of
the cycle as the robot accelerates itself upwartscontrast, the error present in the
compensated system steadily decreases to an duleeptése floor.

600

Ankle Joint Errar

Errar (Encoder Counts)

— Uncompenzated

Compensated

-a10 i i i i i . . . ‘ . : :
10 20 il 40 a0 il 70 80 90 100 110 120
Tirme (s}

Figure 10 : Compensated and Uncompensated ankle pit joint error during a series of crouching
motions.

Knee Joint Errar

Error (Encaoder Counts)

---1----- Uncompensated
Compensated

10 20 i) 40 Al <11] 70
Time (=)

100

110 120

Figure 11 : Compensated and Uncompensated knee joierror during a series of crouching motions.

Hip Joint Error

Error (Encader Counts)

10 20 30 40 50 60 70 80 a0 100 110 120
Time (=)

Figure 12 : Compensated and Uncompensated hip pitgbint error during a series of crouching motions.

Figure 13 outlines the compensation signal gengtayehe CMAC for the left knee and
is indicative of all other joints. As can be sd¢bka compensation signal is initially not
present but over time increases to a cyclic sigéa.the error in position is reduced, so
too is the change in compensation signal.

150 Right knee Compensation Signal

100

a0 4

-a0

100 1-

150 1-

Correction {encoder counts)

-200 +

-240

-300 i i i i i ; i i i
10 20 il 40 a0 G0 70 80 40 100 110 120
Tirme (=)

Figure 13 : Compensation signal generated for theght knee during the crouching experiment.

Table 5 outlines the results achieved for all pitobvements involved in the crouching
motion. It can be seen that a similar performanceease was obtained on all six joints
involved in the motion.

Table 5: Joint Error Reductions using the TEL systen summarising peak error in position for all joints
before and after learning. Peaks errors are averagl over several cycles.

Joint Peak Before Peak After Reduction
Left Hip 500 100 80%
Right Hip 500 100 80%
Left Knee 800 200 75%
Right Knee 800 200 75%
Left Ankle 500 100 80%
Right Ankle 500 100 80%

5. Conclusion

Hand tuning control parameters is time consuming #re resulting system is not
guaranteed to be optimal. By applying a genetprithm approach to the parameter
selection, a set of control values with better kieg and smoothness properties was
obtained.

Feedback control techniques alone however, angitabte for control of a humanoid
robot. The extreme differences in load throughbetgait, and particularly during the
swing phase versus the single support phase, makd-forward compensation
necessary. Modeling the plant dynamics of a mobddy with so many degrees of
freedom is a difficult task. In this paper we hab®wn a system that learns to provide
suitable feed forward compensation in an on-ling r@al-time fashion.

The simple crouching experiment demonstrates xtgtieg control loop's inability to
compensate for changes in load as a result oftgraV¥ihe error between the desired and
actual joint position, the trajectory error, is ddey the cerebellar system to learn a
response capable of decreasing the peak error %y Bhe experiments were conducted
with a crouching motion on a real 23 degree ofdoee humanoid and show marked
reduction in position error of all joints with ti@plementation of the TEL system.

5.1. Further Work

In this implementation, suitable compensation atking error has been achieved for a
crouching motion. It will shortly be trialed on aalking gait for improvement of
walking performance. In a walking gait, a humaneittounters three distinct stages,
single support, double support and swing phasee U3e of a genetic algorithm to
determine an initial three sets of control paramsgteshortly to be trialed.

The TEL system used as the basis of this workiii®d to many control problems
where a tracking error is present. Within a hundmobot, there are many trajectories
that can be improved to enhance stability. Tomsdination, location of the Zero
Moment Point and centre of foot pressure all follvdesired’ path. Deviations to this
path can be measured and a trajectory error cédelilarhis error can be used to train a
separate TEL structured CMAC to improve balancewalfing gaits.

Bibliography

1.

10.

11.

12.

13.

14.

15.

16

17

18

J.J Craiglntroduction to Robotics: Mechanics and Control, Third Edition. Pearson Prentice
Hall, 2004

O’Dwyer. Handbook of Pl and PID Controller Tuning Rules. Imperial College Press, 2003.

Porter and A. H. Jones. Genetic tuning of PID aulers. Electronics Letters, 28(9):843—
844, 23 April 1992.

P. Wang and D. P. Kwok. Optimal design of PID pesceontrollers based on genetic
algorithms.Control Engineering Practice, 2(4):641-648, 1994.

J. Herrero, X. Blasco, M. Martinez, J. Salcedo.i@at PID tuning with genetic algorithms
for non linear process model&AC 15th Triennial World Congress, Barcelona, Spain, 2002.

L. Bomfin, G. N. Taranto, and D. M. Falcao: Simakaus tuning of power system damping
controllers using genetic algorithm&EE Transactions on Power Systems, p163—-169, 2000.

K. Endo, T. Maeno, H. Kitano: Co-evolution of mogibgy and walking pattern of biped
humanoid robot using evolutionary. ICRA 2003: 1362-1367

J. Shan, C. Junshi, C. Jiapin: Design of CentrdateRa Generator for Humanoid Robot
Walking Intelligent Robots and Systems, pp.1930-1935, 2000.

Barto: Learning to reach via corrective movemeaf-Learning Robots Il Brainstyle
Rabotics, pp. 6/1, 1999

J.Albus: A Theory of Cerebellar Functiddathematical Biosciences Vol: 10, pp. 25-61, 1971
Fagg, N. Sitkoff, A. Barto, J. Houk: A model of @bellar Learning for Control of Arm
Movements Using Muscle Synergi€ymputational Intelligence in Robotics and Automation,
pp. 6-12, 1997

Collins, G. Wyeth: Fast and accurate mobile rotmttrol using a cerebellar model in a
sensory delayed environmertelligent Robots and Systems, pp. 233-238, 2000

Kee, G. Wyeth, A. Hood, A. Drury: GuRoo: Autonomadamanoid Platform for Walking
Gait Researchijutonomous Minirobots for Research and Edutainment, 2003

Gordon Wyeth, Damien Kee, and Tak Fai Yuk. Evolvantpcus based gait for a humanoid
robot. InIEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003),
Las Vegas, USA, October 2003.

S. McMillan: Computational Dynamics for Roboticssgms on Land and Underwater, PhD
Dissertation, Ohio State University, 1995.

. E. GoldbergGenetic Algorithmsin Search and Optimization. Addison-Wesley Pub. Co, 1989.
. M. Wall. GAlib C++ library. http://lancet.mit.edugg, 2000.

.D. Collins: Cerebellar Modeling Techniques for MebRobot Control in a Delayed Sensory
Environment, PhD Dissertation, University of Qudand, 2003

