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The GuRoo is a 1.2m tall, 23 degree of freedom humanoid constructed at the University of 
Queensland for research into humanoid robotics. The key challenge being addressed by the 
GuRoo project is the development of appropriate learning strategies for control and 
coordination of the robot’s many joints. The development of learning strategies is seen as a 
way to side-step the inherent intricacy of modeling a highly non-linear multi-DOF biped 
robot. This paper outlines the approach taken to generate an appropriate control scheme for 
the joints of the GuRoo.  The paper demonstrates the determination of local feedback control 
parameters using a genetic algorithm. The feedback loop is then augmented by a predictive 
modulator that learns a form of feed-forward control to overcome the irregular loads 
experienced at each joint during the gait cycle. The predictive modulator is based on a 
Cerebellar Modeled Articulated Controller (CMAC) architecture. Results from tests on the 
GuRoo platform show that both systems provide improvements in stability and joint control 
tracking. 

1. Introduction 
Humanoid robots typically have many joints, and each joint is subject to complex and 
varying loads as the robot moves about. These loads are mostly due to the effect of 
gravity on the robot’s mass, but also include centrifugal and Coriolis forces from the 
robot’s complex motion. In addition, joints may become loaded and unloaded as the 
robot lifts and places its feet.  
 It is challenging to design controllers that maintain a high level of tracking and 
stability performance under such a range of load conditions. Typically the problem is 
addressed by calculating the forward model of the torques on the joints and appropriately 
compensating1. However humanoid robots are difficult to model mathematically and 
hence analytical determination of feed forward dynamics for model based control can be 
both a complicated and time consuming process.  In addition, contact with the 
unpredictable loads from the real world and human interaction further complicates the 
modeling problem.  
 Biological controllers do not use an accurate model of the system rather incremental 
adjustment of control parameters is performed, based on the experience of the system.  
Initial response may be quite crude, but over time appropriate control parameters are 
learnt. Neural networks hold some promise in the field of trajectory control with the 
ability to learn system dynamics without an explicit representation of a robot’s 
configuration.   



 This paper presents a biologically inspired control scheme as a two-stage approach.  
A Genetic Algorithm determines a set of feedback control parameters based on a fitness 
function minimizing both tracking error and vibration experienced by each joint.  This 
process is performed offline on a simulator.  The tuned feedback system is augmented 
with a feedforward system that uses an on-line learning algorithm based on a Cerebellar 
Modeled Articulated Controller (CMAC) neural network.  The GuRoo humanoid robot 
with its high degree of freedom and non-linear dynamics forms a suitable platform to 
apply the system.  

1.1. Previous Work 

There are numerous traditional methods available to the control engineer to tune 
feedback controllers. A vast amount of material has been published in the area. A 
summary of the most popular techniques is given in O’Dwyer2. It should be noted 
however, that most of these deal with the tuning of a single controller in isolation.  Since 
the early 1990’s, Genetic Algorithms (GAs) have been successfully used to tune PI and 
PID controllers3,4,5.  As with more traditional approaches to tuning, most of these GA 
methods have only been applied to single controllers although Bomfin et al.6, use GAs to 
simultaneously tune multiple power system damping controllers.  
 This use of GA’s within the humanoid field of research differs from other approaches 
in its tuning of control parameters as opposed to the generation of complete walking 
gaits.  Endo et al7 employ a GA to determine the necessary joint velocities required to 
maintain stable walking.  Shan et al8 makes use of a central pattern generator to provide 
the required joint commands.  The CPG consists of a set of neurons for each joint, with 
each neuron comprising a pair of neural oscillators.  The weights between connecting 
neurons are determined through the use of a genetic algorithm.  
 The use of a cerebellum models for motion control has been studied in the past.  
Infants of approximately 5 months of age display multiple accelerations and 
decelerations when moving an arm9.  This series of sub-movements eventually guides 
the arm to the desired position.  Over time, and with more experience, the child learns 
the required muscle movements to smoothly guide the arm.  This shows that the human 
body is not born with a perfect plant model, but in fact learns it through experience.   
 The Cerebellum Model Articulated Controller (CMAC) developed by Albus10 is an 
artificial neural network architecture based on the human cerebellum.  It is well suited to 
the application of robot motor control with a simple algorithm, fast learning and ability 
to generalize.   
 Fagg et al11 implemented a CMAC control system on a 2 degree of freedom arm, 
actuated by three opposing sets of muscles.  The CMAC is responsible for the co-
ordination of these three actuators to control the two joints.  When the CMAC does not 
bring the arm to the required position, an additional external CMAC was engaged that 
produces short sharp bursts of motor activity until the target was reached.  Once the 
desired position was reached, the trial was terminated and a new trial initiated.  Over 
time, the external CMAC was made redundant as the original CMAC correctly learned 
the required muscle commands.  
 Collins and Wyeth12 used a CMAC to generate the required velocities needed for a 
mobile robot to move to a waypoint.  Significant sensory delay was introduced that 
would cripple a traditional control system.  The CMAC was able to learn the system 
dynamics, compensate for this delay and produce the required signals necessary to move 
to the waypoint with a smooth velocity profile. 



1.2. Paper Overview 

Section 2 describes The GuRoo, the humanoid platform constructed at the University of 
Queensland, to which the research is applied. Section 3 presents the genetic algorithm 
approach used to obtain a set of PI control parameters for each joint.  These parameters 
are compared to a set of hand tuned parameters.  Section 4 outlines the CMAC neural 
network implemented on the robot.  A crouching experiment is undertaken and results 
from before and after the implementation of the system are presented.  The final section 
draws conclusions from these results and discusses where these results may lead. 

2. GuRoo Project 
GuRoo is a fully autonomous humanoid robot (Figure 1) designed and built in the 
University of Queensland Robotics Laboratory13. The robot stands 1.2 m tall and has a 
total mass of 40 kg, including on-board power and computation. GuRoo is currently 
capable of a number of demonstration tasks including balancing, walking, turning, 
crouching, shaking hands and waving. 
 The eventual aim of the project is to construct a robot that can play a game of soccer 
with or against human players or other humanoid robots.  The current aim is to achieve 
reliable and robust locomotion.  GuRoo has been designed to mimic human form and 
function to a limited extent, taking into consideration conflicting factors of function, 
power, weight, cost and manufacturability.  
 

 
Figure 1 : The GuRoo humanoid robot with a schematic showing the degrees of freedom.  



2.1. Electro-Mechanical Design 

The robot has 23 joints in total. The legs and spine contain 15 joints that are required to 
produce significant mechanical power, most generally with large torques and relatively 
low speeds. The other 8 joints drive the head and neck assembly, and the arms with 
significantly less torque and speed requirements.   
Table 1 outlines the type and axis of actuation of each motor. Due the high power / low 
velocity nature of these joints, large gearboxes are used which contribute to the length of 
the actuators which in turn lead to unnaturally wide legs. 
 The centre of gravity of each leg lies outside the line of the hip rotation, and as such, 
the legs naturally swing inwards.  The motors that drive the roll axis of the hip joints are 
each supplemented by a spring with a spring constant of 1 Nm/degree. These springs 
serve to counteract the natural tendency of the legs to collide, and help to generate the 
swaying motion that is critical to the success of the walking gait. 

Table 1: Type and axis of each DoF.  "2 x" indicates a left and right side.  

Joint Type Axis No. 

Head/Neck RC Servo Pitch + Yaw 2 
Shoulder RC Servo Pitch + Roll 2x2 
Elbow RC Servo Pitch 2x2 
Spine DC Brushed Pitch + Roll + Yaw 3 
Hip DC Brushed Pitch + Roll + Yaw 2x3 

Knee DC Brushed Pitch 2x1 
Ankle DC Brushed Pitch + Roll 2x2 

 TOTAL 23 

2.2. Distributed Control Network 
A distributed control network controls the robot (Figure 2), with a central computing hub 
that sets the goals for the robot, processes the sensor information, and provides 
coordination targets for the joints. The joints have their own control processors that act 
in groups to maintain global stability, while also operating individually to provide local 
motor control. The distributed system is connected by a CAN network. In addition, the 
robot requires various sensor amplifiers and power conversion circuits. 
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Figure 2: Block diagram of the distributed control system 



2.3. Sensors 

The GuRoo currently has encoders on each of the high powered DC motors, able to 
provide rotational position to a resolution of 0.001 of a degree.  An inertial measurement 
unit consisting of 3 rate gyroscopes and 3 accelerometers has been obtained that is 
currently being integrated into the system. Provision has been made for the future 
inclusion of pressure sensors on the soles of the feet and a stereo vision system.  

2.4. Software 

The software comprises four major parts: the simulator, gait generation, joint controller 
software and low level firmware.  The gait generation and joint control software have 
standard API’s (Figure 3) and can be compiled to either the simulator or the low level 
firmware to be run on the actual robot.  The joint velocities required by the joint 
controllers are provided by the gait generator module.    

2.4.1 Gait Generation Software 

Different gaits such as walking and crouching are used to evaluate the control 
architecture presented, and while not the focus of the paper, are briefly described below. 
 The gait generator yields walking gaits that are inherently Zero Moment Point (ZMP) 
stable, and are based on a constrained locus of motion14. The offline gait generator 
makes use of a low-resolution simulation and evolutionary computation. This approach 
involves learning a rough solution with an approximated model.  Evolutionary 
computation is used for evolving walking gaits from a random population. Each gene is 
encoded to represent the motion sequence in terms of ankle positions.  Limited 
information of the model on separation of legs and ratio of upper leg to lower leg is used 
for the calculation of inverse kinematics. An approximate mass distribution of the robot 
body is used for calculating the ZMP. The fitness is then measured by comparing the 
estimated ZMP trajectory of the playback of a motion sequence with a desired ZMP 
trajectory that meets stability criteria (with the projection of ZMP lying within the 
support polygon).   
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 After generations of evolution, a solution for a stable gait pattern for the 
approximated model results.  This pattern can then be used for the generation of 
trajectories for the legs, calculating the velocities of the joints at 50Hz.   
 The gait generator module can also generate smooth arbitrary motion of limbs for 
crouching, bowing and waving. Joint velocities follow a sinusoidal velocity of the form: 

where �  is the desired joint velocity, 
�
 is the desired change in  joint angle and T is the 

period of the movement.  This profile ensures the joint experiences zero acceleration at 
the start and end of each movement which minimises the jerk and vibration.  Zero 
velocity at the start and end of each trajectory allow for smooth transitions between 
trajectories. 

2.4.2 Joint Controller Software 

Located in the robot are two types of joint controllers, five DC brushed motor controllers 
and one RC servo motor controller.  The CAN interrupt routine updates the desired joint 
velocities.  The RC controller runs a single timer interrupt routine that sets the required 
pulse length for each RC servo motor based on the desired joint velocity. 
 An interrupt driven CAN routine updates the desired joint velocity for each motor 
controlled by a DC motor controller.  A second timer interrupt occurs at 250Hz to run 
the motor control routine.  The actual velocity is the change in encoder readings over 
time.  The motor control routine calculates the error between the actual velocity and the 
desired velocity.  A PWM value is calculated from this error using a Proportional-
Integral control law.  The PI control terms are software based and can by adjusted 
dynamically at any point in the gait.   
 The current is measured every control loop and the PWM waveform generated is 
modified to keep within a software set current limit. 

2.4.3 Humanoid Simulator 

The simulator is based on DynaMechs15, a dynamic simulation tool for multi-chained, 
star configured robots.  It has been adapted to include specific characteristics of the 
GuRoo, including the distributed nature of the control architecture and the CAN bus.  
The GuRoo's chest is modelled as a mobile base with 5 chains arranged in a star 
configuration representing the arms, legs and head.  The modified Denavit-Hartenburg 
parameters and CAD surface area provide the graphical representation of the robot as 
seen in Figure 4.  Mass distribution information in the form of inertia tensors is 
combined with actual motor characteristics to provide realistic interactions between 
links.  The simulator provides the same interface as the firmware, with the ability to read 
encoders, measure current consumption and to transmit and receive CAN packets. 

2.4.4 Firmware 

The firmware present on each joint controller board provides direct access to the sensors, 
motor drivers and CAN bus.  The firmware is accessed by a set of generic high level 
functions in the Joint Control module.  The nature of these generic functions allows the 
control code to be microcontroller independent. 
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Figure 4 : Screenshot from the DynaMechs based simulator. 

3. Control Parameters 
The aim of the GuRoo project is to create a humanoid robot that can perform human-like 
motions, such as walking, crouching, reaching and kicking a ball. In order for these 
motions to be realised, it is essential that the lowest-level controllers, the joint 
controllers, perform well.  Each joint controller is implemented as a simple PI controller 
around joint velocity. Each joint must therefore be tuned; good values of the P and I 
gains must be found for each of the 15 high-powered lower joints.   
 It should be realised that all joints must remain active during all phases of a motion. 
Even the act of standing up straight and remaining still requires all joints to be active. 
GuRoo simply slumps to the floor if it loses power. This implies that all 15 joint 
controllers must be tuned simultaneously in order to achieve the best outcome. An 
oscillation in one joint caused by a poorly tuned controller, will affect the performance 
of every other controller due to subsequent vibration and motion (generated at that joint) 
being transmitted through the robot to all the other joints. 

3.1. Reducing the problem 
Each of the 15 joints must be tuned simultaneously, each with two gains (a P and an I 
gain), making 30 gains in total.  However, there is symmetry in GuRoo, and the legs can 
be considered to be identical. Hence, the problem maybe reduced to finding 18 gains (6 
for the spine and 12 for a leg).  In order to simplify the problem, we can restrict the 
possible values of the gains to a range that we know is roughly correct. It is unrealistic to 
tune all 15 controllers simultaneously without restricting the values of the gains. The 
robot must actually walk most of the time during the tuning experiments.   
 The PI controllers are implemented on the motor controller boards. These boards 
have limited processing power and hence the controllers have been implemented using a 
bit shifting strategy for speed. Hence, the P and I gains are not floats, but integers with 
unit values of 1, 2, 4 and 8 which corresponds to bit shifting values of 0, 1, 2 or 3. This 
allows gains to be represented as a 2-bit number. When the output of the PI control law 
is computed, the proportional error and integral error are shifted the number of bits 
corresponding to the P and I gains respectively. The 36 bit genome was constructed by 



concatenating the 18 x 2 bit gains.  From experimentation a range of gains that allow 
GuRoo to walk (at least very roughly) was gathered.   
 The GuRoo simulator provides a suitable environment on which to run a GA. 
Running the GA on the real robot would be difficult due to the constant need to move 
the robot back to the starting position every run and the problem that a poor run, where 
the gains are sub-optimal, may result in a highly unstable robot, which may fall over.   

3.2. Fitness function — tracking and smoothness 

As with all applications of GAs the key to success is finding the best fitness function that 
describes the performance of the system. In the case of GuRoo’s joint controllers, of 
most interest is the optimization of two measures, tracking performance (minimising 
error) and tracking smoothness. The biggest single problem with the hand-tuned 
controllers was the noisy tracking performance which would give the robot a high 
frequency shake.  The overall fitness function, f, used was therefore based on two 
separate fitness functions based on tracking error ( ft ) and smoothness ( fs): 
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where pj
err(t) is the joint tracking error of joint j at time t. 

3.3. The GA and its parameters 

The type of GA used for tuning was the ‘simple GA’ described in Goldberg16. The 
GAlib C++ library was used to run the GAs17. A simple GA uses non-overlapping 
populations and optional elitism, and creates an entirely new population of f individuals 
each generation. The GA parameters used were as follows: 

• Population size: 100 
• Number of populations: 100 
• Crossover: 60% 
• Mutation: 10% 
• Genome: a 36-bit long bit string of concatenated 18 2-bit gains  

 
The GA was run over a complete walking cycle which consists of eight elements: 

• right foot strikes ground 
• right foot on ground 
• left foot toe off 
• left knee straighten 
• left foot strikes ground 
• left foot on ground 
• right foot toe off 
• right knee straighten 



The walking cycle is produced by the gait generation software described in Section 
2.4.1.  The simulation begins with the robot in the standing position. This pose is not part 
of the walking gait and so the robot must first move from the standing position into a 
walking pose. This takes place using an extra two elements. The first cycle of the walk is 
therefore ‘non-standard’ and hence the fitness function is only computed over the second 
walk cycle. Each walk cycle takes 6 seconds to run on a 2GHz PC (real-time) and so a 
complete run of a single GA individual takes 12 seconds. The total time to run the GA as 
described above was 1000 minutes (16.6 hours). Note that an exhaustive search for the 
optimal gains would take a little over 68,000 years to complete on the same PC. 

3.4. Simulation Experiments 

The gains generated by the GA tuning method and the original hand-tuned gains were 
run on the simulated GuRoo over a number of walking cycles. The results for both cases 
are compared in Table 2. This table gives the break-down of the components of tracking 
and smoothness performance. From this table it can be seen that both tuning methods 
track with approximately the same overall tracking accuracy (ft). However, this is not the 
case for the smoothness measure (fs) which shows that the GA tuning method is far 
superior to the hand tuning method by a factor of 2.  

Table 2 : Comparison of fitness measures obtained on the simulator (a higher score is better). 

Tuning Method Tracking 
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sf

0.5  

Hand Tuned 0.116 0.152 
GA Tuned 0.112 0.310 

 

3.5. Real Robot Experiments 

The gains generated by the GA tuning method and the original hand-tuned gains were 
run on the real GuRoo robot over a number of walking cycles. A comparison of the 
results is given in Table 3. This table gives the break-down of the components of 
tracking and smoothness performance. From this table it can be seen that the GA tuning 
method performs best with respect to tracking and smoothness.  

Table 3 : Comparison of fitness measures obtained on the real robot (a higher score is better). 

Tuning Method Tracking 
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tf

0.5  Smoothness
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�

sf

0.5  

Hand Tuned 0.009 0.539 
GA Tuned 0.011 0.699 

 
It is interesting to note that the results differ significantly from the simulation case in that 
during the real experiments, the tracking performance was much worse, but the 
smoothness performance was slightly better. This can be explained by the fact that the 
real robot is much more compliant than the simulation model and hence ‘wobbles’ more 
when walking. This compliance has a natural smoothing tendency (hence smoother 
operation) but makes joint control challenging (hence larger tracking errors). Figure 5 
shows a comparison of the joint error tracking performance for the right ankle pitch joint 



during a section of the real walk.  This is the same section of the walk used for the 
simulation results above. The figure for the right ankle shows a remarkable difference 
between the tuning methods. The comparative gains for this joint were P=1 and I=4 for 
the hand-tuned gains, and P=2, I=1 for the GA tuned method.  This difference in gains 
produces very different results. 
 

 
Figure 5 : Comparison of joint error for the hand-tuned and GA tuned control parameters for the ankle 
pitch joint. 

4. CMAC Augmented Control 
The joints of a humanoid robot experience disturbances of markedly different 
magnitudes during the course of a walking gait. Consequently, simple feedback control 
techniques poorly track desired joint trajectories. In this section, we present a CMAC 
augmented system that learns to compensate the changes in load that occur during a 
cycle of motion. The joint compensation scheme, called Trajectory Error Learning, 
augments the existing feedback control loop on the GuRoo. 

4.1. CMAC Neural Network 

The Cerebellar Model Articulated Controller (CMAC) was first described by Albus.  
The CMAC network can be viewed as a number of lookup tables.  Each table, or 
Association Unit (AU), has the dimensions equal to the number of input variables.  
 The first step requires the inputs to the system to be quantized and scaled, giving a 
lookup address into each AU (Figure 6a).  This address is mapped to a coarser address 
space in each AU which activates a single cell known as a State Space Detector (SSD) 
(Figure 6b).  There is a weight associated with each SSD.  Each network comprises of a 
collection of n AU’s and as such for any unique set of inputs, there are exactly n SSD’s 
activated (Figure 6c).   



 

 
(a) (b) 

 
(c) 

Figure 6 : A single Association Unit.  (a) Inputs are scaled and quantised to give a single table entry.   
(b) This is then mapped to a coarser address space where a weight is obtained from the activated State 
Space Detector (SSD).  (c)  Multiple Association Units. The system consists of multiple AU’s each which 
activate a single SSD.  The weights from each SSD are summed to give an output response. 

The output signal is calculated by finding the sum of the weights of all AUs at this 
lookup address (Figure 7).  The AUs are structured such that should an input value 
change by 1 unit of resolution, all but one SSD will remain unchanged.  For example, if 
there are 10 AU’s, then a particular combination of input values will activate 10 SSD’s 
and hence yield 10 independent weights.  Should one of the inputs change by one step of 
resolution, nine of the original SSD’s will remain activated, with only one SSD 
deactivated and a new one activated.  
  As the output result is the sum of all association unit’s weights, a greater number of 
Association Unit’s results in a system that is better able to generalize the input space.  
Small deviations in an input signal, do not greatly affect the output signal.   
 

  
Figure 7 : The weights of each selected SSD is summed to give a compensating signal. 

� Compensation Signal 



 The input space is dominated by hyperplanes of plausible input combinations, with 
large empty spaces in each AU where real-life input combinations are not physically 
possible.  Hashing techniques are used to reduce the memory requirements by mapping 
the complete set of SSD’s to a smaller set of virtual SSD’s using the modulo function.  
Hash collisions occur when two or more SSD’s hash to the same virtual SSD.  This is 
not necessarily fatal, as a large number of AUs will ensure the table weight in question 
to have a minor effect on the overall output. 
 
Table weights are updated using the following rule: 

)( actdesoldnew θθ
η
αϖϖ −+=  

where: 
 �

new  = New weight value 
 �

old  = Original weight value 
 �   = Learning rate 
 �   = Number of association units 
 

�
des  = Desired joint position 

 
�

act  = Actual joint position 
  
As the output of the response of the network is the sum of the selected table weights, the 
change in weight between iterations is divided by the number of association units to 
ensure the learning rate has the same effect regardless of the number of AUs. 

4.2. Joint Position Error 

Figure 8 demonstrates the error in the left knee joint during a typical walking gait cycle. 
At t=0, the foot is lifted from the ground and becomes the swing leg.  The large error is 
indicative of the high gain necessary whilst in the single support phase, applied during 
the period of minimal load during the swing phase.  The foot regains contact with the 
ground at t=0.4. At t=0.8 the knee enters the single support phase and is heavily loaded 
as reflected in the average joint error of -3 deg.  The double support phase is active from 
t=1.2 until t=1.6 at which point the left leg again loses contact with the ground.  This 
highlights the significant variations in load that prevent the PI control loop implemented 
on each of the GuRoo’s joints from obtaining a satisfactory response.   
 TEL uses a CMAC network to supply a compensating signal to eliminate this 
position error. As a typical walking gait of a humanoid is periodic in nature any errors 
experienced by the robot are also typically cyclic in nature: for example, the joint error 
during the support phase. By observing the gait phase, the CMAC learns which parts of 
the gait require compensation. 
 



 
Figure 8 : Position error experienced in the left knee pitch joint over one complete walking cycle. 

4.3. System Implementation 

The method of compensating the joint error is illustrated in based on Trajectory Error 
Learning.  Trajectory Error Learning (TEL) is a biologically inspired method of robot 
motion compensation based on the CMAC where learning is driven from the difference 
between the intended trajectory of the robot and the actual trajectory measured by the 
feedback sensor (possibly after some sensory delay)18.  The system implemented on each 
joint of the robot is outlined in Figure 9.  The trajectory of the limb is expressed as a 
stream of desired joint positions which are generated by the gait generator. As the 
motion of the robot is periodic, the state of the trajectory can be expressed as the gait 
phase. The gait phase is implemented as a periodic counter, incrementing every control 
loop and resetting at the beginning of each motion cycle.   
 

 
Figure 9: Control system diagram for a single joint on the robot. The Desired Joint Position is time 
delayed when calculating position error to account for sensor delay.  Table weights are updated a set 
number of control loops after being used.  This delay is equal to the sensory delay inherent in the system. 

The desired joint position is augmented by the output of the CMAC, and passed to the 
feedback joint controller.  The inputs to the CMAC consist of the gait phase and the 
measured joint position, where the measured joint position will be subject to some delay 
with respect to the desired joint position. In this form, the CMAC is used as a predictive 
modulator; seeking to eliminate the error it expects to see based on the errors that it has 
already seen at the same point in previous cycles. The sawtooth wave of the gait phase 
gives the CMAC the point in the cycle that it is currently compensating, while the 



measured joint position accounts for different disturbance conditions that may occur at 
that point in time. If a typical gait movement is 500 gait phase units long, then a gait 
phase of 0 and 500 differ by only 1 input unit.  The CMAC is modified to reflect this.  
 The error in joint position is used to train the CMAC network.  A history of previous 
desired position commands is kept to compensate for the sensory delay experienced in 
the system.  This history buffer also ensures weight updates are performed with the 
correct time delayed error.  The error signal used to train the CMAC is as follows: 
 

)()( tacttkdesk θθξ −= −
 

where: 
 � k  = Error training signal (k) 
 

�
des(k-t) = Desired Joint Position (k - t) 

 
�

act(k)  = Actual Joint Position (k) 
 t  = Sensory Delay 
 
Thus weights are updated t control loops after they are used. 

4.4. Crouching Experiment 

To test the validity of the cerebellar modeled compensation system, a simple crouching 
motion is performed.  Motion is generated using the sinusoidal generator described in 
section 2.4.1.  This initial experiment conducted is based on a slow crouching motion 
run over a period of 6 seconds. The pitch axis motors of the hip, knee and ankle joints 
follow a synchronised sinusoidal profile with a magnitude of 18, 35 and 22 degrees 
respectively to reach the bottom of the crouch position. This test exposes the joints to a 
range of dynamic and static loads, and can be repeated many times without moving the 
robot around the laboratory.  
 For this experiment, the CMAC parameters outlined in Table 4 were chosen. The 
number of receptive units and field width were chosen to provide the necessary 
discrimination, while also providing local generalisation. The Joint Position Receptive 
Units are scaled to only the angular range experienced during the crouching motion.  The 
hashing ratio was chosen to reduce memory requirements while still keeping a low 
probability of hashing collisions.  The learning rate was tuned to provide rapid learning 
of the compensation, without learning from noise. The measured joint positions were 
subject to a delay of 40 ms, which corresponds to a delay of 3 control cycles. 
 

Table 4: CMAC system parameters. 

CMAC Parameter Value 
Joint Position receptive units 1000 
Gait Phase receptive units 1000 
Field width (AU's) 100 
Global Address Spaces 216204 
Virtual Address Spaces   10001 
Learning rate 0.005 



4.5. Results 

The learning algorithm was initially applied only to one type of joint at a time to negate 
co-evolutionary effects between different joint types.  Figure 10, Figure 11 and Figure 
12 outline the uncompensated and compensated response of each joint used in the 
crouching motion.  
 Without TEL, the joints involved in the crouching motion experience an error in 
position which is cyclic, these errors do not change from cycle to cycle and are 
dependent on the current phase of gait, with larger errors present in the second half of 
the cycle as the robot accelerates itself upwards.  In contrast, the error present in the 
compensated system steadily decreases to an acceptable noise floor. 
 
 

 
Figure 10 : Compensated and Uncompensated ankle pitch joint error during a series of crouching 
motions. 

 

 
Figure 11 : Compensated and Uncompensated knee joint error during a series of crouching motions. 



 

 
Figure 12 : Compensated and Uncompensated hip pitch joint error during a series of crouching motions. 

 
Figure 13 outlines the compensation signal generated by the CMAC for the left knee and 
is indicative of all other joints.  As can be seen the compensation signal is initially not 
present but over time increases to a cyclic signal.  As the error in position is reduced, so 
too is the change in compensation signal. 
 
 

 
Figure 13 : Compensation signal generated for the right knee during the crouching experiment. 

 
Table 5 outlines the results achieved for all pitch movements involved in the crouching 
motion.  It can be seen that a similar performance increase was obtained on all six joints 
involved in the motion. 
 
 
 
 
 



Table 5: Joint Error Reductions using the TEL system summarising peak error in position for all joints 
before and after learning.  Peaks errors are averaged over several cycles. 

Joint Peak Before Peak After Reduction 
Left Hip 500 100 80% 
Right Hip 500 100 80% 
Left Knee 800 200 75% 
Right Knee 800 200 75% 
Left Ankle 500 100 80% 
Right Ankle 500 100 80% 

 

5. Conclusion 
Hand tuning control parameters is time consuming and the resulting system is not 
guaranteed to be optimal.  By applying a genetic algorithm approach to the parameter 
selection, a set of control values with better tracking and smoothness properties was 
obtained.  
 Feedback control techniques alone however, are unsuitable for control of a humanoid 
robot.  The extreme differences in load throughout the gait, and particularly during the 
swing phase versus the single support phase, make feed-forward compensation 
necessary. Modeling the plant dynamics of a mobile body with so many degrees of 
freedom is a difficult task.  In this paper we have shown a system that learns to provide 
suitable feed forward compensation in an on-line and real-time fashion. 
 The simple crouching experiment demonstrates the existing control loop's inability to 
compensate for changes in load as a result of gravity.  The error between the desired and 
actual joint position, the trajectory error, is used by the cerebellar system to learn a 
response capable of decreasing the peak error by 80%. The experiments were conducted 
with a crouching motion on a real 23 degree of freedom humanoid and show marked 
reduction in position error of all joints with the implementation of the TEL system. 

5.1. Further Work 

In this implementation, suitable compensation of tracking error has been achieved for a 
crouching motion. It will shortly be trialed on a walking gait for improvement of 
walking performance.  In a walking gait, a humanoid encounters three distinct stages, 
single support, double support and swing phase.  The use of a genetic algorithm to 
determine an initial three sets of control parameters is shortly to be trialed. 
 The TEL system used as the basis of this work is suited to many control problems 
where a tracking error is present.  Within a humanoid robot, there are many trajectories 
that can be improved to enhance stability.  Torso inclination, location of the Zero 
Moment Point and centre of foot pressure all follow a ‘desired’ path.  Deviations to this 
path can be measured and a trajectory error calculated.  This error can be used to train a 
separate TEL structured CMAC to improve balance and walking gaits.  
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