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Programming humanoid robots with new motor skills through human demonstration
is a promising approach to endowing humanoids with new capabilities in a relatively

quick and intuitive manner. This paper presents an automated software system to en-

able our humanoid robot to learn a generalized dexterous motor skill from relatively
few demonstrations provided by a human operator wearing a telemetry suit. Movement,

end effector, stereo vision, and tactile information are analyzed to automatically seg-

ment movement streams along goal-directed boundaries. Further combinatorial selection
of subsets of markers allows final episodic boundary selection and time alignment of

tasks. The task trials are then analyzed spatially using radial basis functions [RBFs] to

interpolate between demonstrations using the position of the target object as the motion
blending parameter. A secondary RBF solution, using end effector paths in the object
coordinate frame, provides precise end-effector positioning and orienting relative to the

object. Blending of these two solutions is shown to both preserve quality of motion while
increasing accuracy and robustness of object manipulation.

Keywords: Learning by Demonstration; Action Parsing.

1. Introduction

The ability to quickly teach humanoid robots new motor skills by human demon-
stration continues to be an important area of research (see 1 for a review). Some of
the earliest work in this area is called learning by demonstration. In this approach,
the robot (often a robotic manipulator) learns how to perform a new task by visually
observing a human perform the same task. In task-level imitation, the robot learns
how to perform the physical task of the demonstrator, such as stacking blocks2 or
peg insertion3, by acquiring a high-level task model (such as a hierarchy of goal
states and the actions to achieve them) from observing the effects of human move-
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ments on objects in the environment. Learning by demonstration generally breaks
down into two tasks - motion temporal segmentation, and spatial interpolation.

In other work with highly articulated humanoid robots, learning by demonstra-
tion has been explored as a way to achieve efficient learning of dexterous motor
skills4,5. The state-action space for such robots is prohibitively large to search for a
solution in reasonable time. To address this issue, the robot observes the human’s
performance, often using both object and human movement information provided
visually to estimate a control policy for the desired task. The human’s demonstra-
tion helps to guide the robot’s search through the space, providing it with a good
region to initiate its own search. If given knowledge of the task goal (in the form
of an evaluation function), robots have learned to perform a variety of physical
tasks—e.g., learning the game of ”ball in cup” or a tennis forehand6,7 by utilizing
both the demonstrator’s movement and that of the object.

1.0.1. Demonstrations via Telemetry

Guidance of an action with a telemetry suit is an often used alternative approach11,8.
Fagg9,10 has used this, along with tactile feedback, to study grasping actions, but
has not generalized to tasks in general.

Similarly, Peters et. al.11 have explored teaching NASA JSC’s Robonaut tool
use skills through teleoperation, segmenting the action into known primitives, and
interpolating these to form full actions. This method required manual parameter
addition and tweaking for adequate results. It is difficult in the examples shown to
test the limitations of the segmentation techniques, because the input examples were
very similar, so it is possible that many techniques would segment these correctly.
More difficult animations and input data were not available.

In our technique, no manual parameters or motion features are added, and all
parameters are generated for the specific trial data, so that all data is processed
autonomously, and more difficult scenarios and data inputs with more noise are still
segmented accurately.

1.1. Segmenting Movement and Motion Interpolation

Baldwin and Baird12 pinpoint the need to discern intention in human actions. As
stated, the fundamental goal of this research is to discover ”What kind of informa-
tion about intentions and intentionality is actually available in the surface flow of
agents’ motions?” Identifying the relevant statistical patterns of motion, and how
predictive they are of the human’s underlying intentions is an important topic of
investigation.

Similar work is necessary for robot learning through demonstration. A robot
might possess the mechanical ability to complete a task [eg. grasping a ball, moving
it to a cup, releasing it in the cup] but how can a robot recognize this task when
demonstrated? If it uses actions it already knows, how might it blend these together
to form a newly observed action?
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Many have explored these issues. Matarić13,8,14 and Jenkins15 have explored
the mean-squared velocity of joints to segment motion along intentional boundaries
(see section 3.0.1). Principal Components Analysis is used to represent a movement
trajectory with known primitives. Others such as Tennenbaum et. al16 combine PCA
with multidimensional scaling. Error tolerance in these methods remains a difficult
issue. Examples used were typically very similar and of insufficient difficulty to test a
segmentation algorithm’s generalizability. Upon initial use of the Matarić technique,
segmentation was not performed properly without manual manipulations.

Similarly, for Motion interpolation, Radial Basis Functions are most commonly
used to interpolate between actions at known positions, to generate motions at ar-
bitrary positions. The most accurate robotic spatial interpolation demonstrations11

still possesses large errors for even theoretical data inputs, which cause repeated
task failure.

1.2. Approach

To address the shortcomings of previous works, we have developed an automated
software system (see Figure 1) to allow our humanoid robot to learn generalized
motor skills from demonstrations given by a human operator via teleoperation. Data
is captured as the human guides the robot through a task in different parts of its
workspace. Joint angle and end effector motions are measured through time, and
the motion is segmented into possible goal-directed streams, which are then weeded
to find final episodic boundary selection, and thus time align tasks.

We then analyze the trials with radial basis functions, to interpolate tasks to
other parts of the workspace. An analysis of the tasks from the object’s reference
frame and in the robot’s reference frame, along with motion variances in each frame,
leads to an objectivity measure of how much any part of an action is absolutely ori-
ented and how much is object-based. A secondary RBF solution using end effector
paths from the object reference frame provides precise end-effector path planning
relative to the object. The objectivity measure is used as a blending weight between
solutions, to preserve quality of motion [initial RBF solution] and provide accuracy
and robustness in object interactions [the secondary RBF solution]. Our improve-
ments in spatial interpolation are currently only employed on the animated robot
model due to non-linearities in the mechanical system; however, we have devised a
new system that provides zero theoretical motion error, contrary to previous work.

2. Data Capture and Task Data Integration

This section provides an overview of the hardware and software systems used to
capture the human task demonstration data. Figure 2 shows the hardware layout
involved in this recording system, which then goes on for software processing.

We use a Teleoperation suit (a ’Gypsy Suit’ made by Animazoo) to measure
the operator’s joint angles through time, with 42 joints recorded. Table [1] lists the
joints used in this analysis. The Gypsy Suit Display Recording Software allows suit
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Fig. 1. The layout of the skynet learning by demonstration software. Data is captured by a teleop-

eration suit, stereo vision cameras, and a tactile sensor, and travels into the software, as a task is

demonstrated repeatedly. From these task trials, several stages analyze the motion primitives and
episode boundaries that make up these larger sequences, so they can be properly time-aligned and

compared. Once this time alignment is complete, the trials are analyzed spatially, to determine
how the action changes based on the movement of the object the robot is interacting with, and

from this, a generalized motion sequence is generated for any object position, providing a general

solution to that action for all objects in the robot’s workspace.
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Fig. 2. The hardware layout for Leonardo’s task recording and playback system. Motion is cap-
tured from the teleoperation suit, while tactile information and stereo vision data are grabbed

concurrently, each traveling through its own hardware processor, and onto the network, where it
is all saved by the recording computer. Meanwhile, the teleoperation suit data is passed onto the

Leonardo control computer and is used to control Leonardo in real time.

calibration. Tactile feedback information is measured using Force Sensitive Resistors
[FSRs] (made by Interlink Electronics) mounted in the robot’s hands, responding
to forces from under 1N to over 100N, also polled at 60 Hz. All data is transferred
by our Intra-Robot Communications Protocol [IRCP] network and stored. A stereo
vision camera (made by Videre Design) is used to locate Leonardo’s objects. These
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Fig. 3. Leonardo the humanoid robot, possessing 65 degrees of freedom that allow it to interact

expressively, as well as perform simple object manipulations. Here Leonardo is surrounded by some
of the buttons it uses in object manipulation tasks.

cameras consist of two CMOS sensors. The stereo visual data is analyzed at 10
Hz yielding approximately 240 levels of depth perception to locate objects with an
accuracy of 0.5” in position. All data is captured at 60 Hz.

Table 1. A list of all the teleoperation suit joints employed in the action recording process.

Joint Number Joint Name

1 Torso Rotation
2 Hip Front Back
3 Hip Side Side
4 Right Shoulder In/Out
5 Right Shoulder Forward/Backward
6 Right Upper Arm Rotation
7 Right Elbow In/Out
8 Right Forearm rotation
9 Right Wrist In/Out

As the operator guides the robot through a task, the telemetry, tactile feedback,
and visual object identification data are recorded simultaneously. We low-pass the
data to allow for smoother derivative calculation. The Robotics Toolbox17 is used to
create a kinematic model of Leonardo’s torso-right arm subsystem to analyze joint
and end-effector motions. Motions involving both hands are not currently dealt with
by this system.
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3. Improving Episode Analysis

In order to analyze the separate trials of an action spatially, we first time-align the
trials so that each part of a complex action happens simultaneously to other trials.
This is typically done using episode analysis, where motions are analyzed in order to
segment them into constituent sub-actions. These sub-actions, known as episodes,
are then aligned. Simple time averaging of complex actions is often insufficient -
key features, such as absolute end effector minima, become sufficiently misaligned
so that an averaging of motions loses salient features present in every trial. For
instance, a typical trial might consist of a reach, grasp, release, and recoil; only
with full alignment of these motions will we see the qualities present in each. Figure
4 shows that even if we normalize the times of trials and average the motion to
produce somewhat clean results, important aspects of the motion are left unresolved.
Notably, the maxima and minima are not aligned. As a result, the joint will never
reach the extremes that it would if the maximal and minimal points were better
aligned. Therefore, we argue that a better technique is needed to automatically
determine the natural boundaries between episodes.
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Fig. 4. A view of three example joint actions, averaged in length, and then the resultant average

motion. Note that the maxima and minima of the original motions are lost, due to misalignment.

3.0.1. The Matarić Segmenting Technique

The most commonly employed technique of auto-segmentation action streams13,15

is based on the observation that when humans engage in a complex action, they
typically change direction and speed between each segment of that action, with an
associated acceleration. Matarić13 exploits this fact, by looking for changes in the
overall motion of the joints involved in the robot.

To find episode boundaries, the technique works as follows. Generate the Mean
Squared Velocity (MSV) of the joints, as shown in Eq. 1, where N represents the
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number of joints, and q(i) is the position of joint i.

MSV (t) =
N∑

i=1

(
dq(i)
dt

)2

. (1)

For each time t, if MSV (t− 1) ≤ c and MSV (t) ≥ c, search through the remaining
times until finding u such that MSV (u) > kc, for some c and k, chosen in advance.
If a time u is found, then this value of t is an episode beginning. Switching inequal-
ities yields the method to find episode endings. A more detailed description of the
Matarić segmenting technique is given in13,15. This technique looks for sufficiently
low joint motion that reach sufficient highs, and vice versa.

Figure 5 shows the MSV during a button push, with marked episode beginnings
and endings, for three trials. The episodes correspond to the reach, push down,
release, and retract phases. The last two phases are analyzed as one episode, as the
retraction from the button and the retraction back to the starting phase do not in-
volve much slowdown. The Matarić technique, mentioned or employed in13,15,8,14,11,
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Fig. 5. MSV analysis of a button push, for three different trials. Episode beginnings and endings
are marked as noted in the legend. The lower graph shows the tactile feedback data. As seen in the

episode graphs, this separation corresponds with the reaching to grasp for the button, the press
of the button, and the retract from the button action, which involves retraction from the button,

as well as back to the starting position.

often has special adjustments made to deal with certain implementations. For ex-
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ample 11 combined the general MSV analysis with an analysis of the maxima and
minima of the elbow joint [on Robonaut]. This requires manual tweaks, and is a
feature that changes for every action. Below are improvements that automatize this
system.

3.0.2. Modifications to the Mataric Segmenting Technique

c and k are manually tuned to create proper episodes, and certain boundaries are
missed here, due to the lack of tactile feedback. The goal is to find all possible
boundaries, and later discern the boundaries common to all trials.

Sudden contact between the end effector and object usually signifies a new
episode, but this is often missed, as motion does not necessarily cease. We add to
the MSV a tactile factor [scaled by ctactile] to accomodate these changes:

MSVimproved, tactile(t) =
N∑

i=1

(
dq(i)
dt

)2

+ ctactile
dw(t)

dt
, (2)

where w(t) represents the tactile sensor value at time t.
We also automatically generate the Matarić parameters to compensate for over-

all high or low-motion actions. c represents the low-motion cutoff value, and k the
ratio of high-motion to low-motion necessary for an episode. We choose c and k as
such,

c = < MSV > −1
2
σMSV , (3)

k =
< MSV > + 1

2σMSV

< MSV > − 1
2σMSV

, (4)

such that ck =< MSV > + 1
2σMSV , creating a symmetric distribution about the

mean of the MSV. This automatically creates constants for the generation of several
episode boundary markers.

3.1. Future Improvements

In the future, several features will increase the episoding system’s robustness. First,
both c and k could change through a trial, allowing finer tuning of episode choices.
Also, the addition of the end effector orientation vector and of joint maxima/minima
would allow more episode boundaries to be detected, as was done manually in11.
Furthermore, using direct joint angle measurements on the robot would provide a
truer MSV than angles taken from a teleoperation suit.

4. Combinatorial Episode Selection and Canonical Motion
Creation

The goal of the previous section is to find all the possible markers for episode
separation for each trial. In real practice, different trials are disparate enough that
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the episode markers will not possess an isomorphism between trials; so, we build
a technique to search through possible subsets of markers, to determine which are
truly reliable. We choose all possible episode boundaries from all trials, and test
alignment between them to determine which markers are dominant through all
trials. Once this marker subset space is searched, we mark true episode boundaries,
and dynamically time warp the trials to align them.

4.1. Combinatorial Selection and Alignment of Episodes

In order to find the proper number of true episode boundaries, we find the minimal
size boundary set through trials, Nmin = min(|ATI

|) where ATi is the set of episode
beginning markers for trial i. We search for the best matches to this set of markers.
Trials are compared in a pair-wise sense. First, we find all valid marker subsets of
size Nmin. Then, for each subset, we time align the trials to test those marker’s
validity. To align these trials, we first find the average times for each respective
episode boundary, Maverage(j). We dynamically time warp the time series so that
the individual markers from each trial align with these average times (this is done
using Hermite polynomial splines, which allow high distortion while maintaining
monotonicity in the time series). An example of this time warping for two trials is
shown in Figure 6. A statistical correlation of the warped trials provides a measure of
alignment between the two. For each trial, this ranking is added to a subset-specific
list, to be combined with all of the iterations over all trial and subset combinations.
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In order to rank how well a subset selection works overall, we total the rankings
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that involve that subset (ie. every ranking where it is one of the two trial sets
being compared). Whichever subset possesses the highest total is chosen as the true
marker set. Figure [7] shows three trials involved in a button pressing action, the
initial set of possible episode boundary markers for each, and then the final selection
of chosen markers.
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Fig. 7. A view of three trials involved in a button pressing action. The initial possible episode
boundaries are marked in each example, as well as the final selection of markers, for use in com-

bination for a canonical motion.

4.2. Canonical Motion Creation and Results

The episode analysis aligns the time sequences of the multiple actions, so they can
be compared to generate a canonical representation of the action, to be performed
anywhere in Leonardo’s workspace. Now that the true subsets have been found, we
dynamically time warp each of the trials, so that the episode markers align with
the average time positions of the markers from all trials.

Figure [8] shows, for a button pressing trial, the final alignment between three
separate trials, as well as the averaged motion of those three trials. This is not joint
data, but the end effector MSV comparison. This is compared in the same Figure
to the MSV data purely averaged, without the use of the alignment methods.

Figure [9] shows the importance of this analysis: the resultant three dimensions
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Fig. 8. A button pressing trial, with final MSV analyzed alignment on three trials. This view of
the aligned MSV is compared to the original time averaged MSV, which has lost almost all of its

distinctive features.

of end effector travel, after episodic alignment, for the same button pressing action.
When the systems are aligned, we generate a motion that is cleaner than the orig-
inal input systems, and yet reaches the important areas that the original motions
reached. The default averaged motion did not resemble the original inputs in terms
of their spatial progression, due to the problems from time misalignment.

5. Interpolation of Motions

So far we have performed an analysis that time-aligns an action performed in dif-
ferent areas of the robot’s workspace. What remains is an analysis of the spatial
variances in the motions, to generalize the performance of these actions to the entire
workspace. Precision is important, in order to properly interact with objects.

We rely on as few input trials as possible, in order to minimize fatigue of the
teleoperator. The fewer data points causes spatial interpolation to lose precision,
and as of yet has not produced useful results. Typically several trials at each location
need to be completed to reduce noise11,18. Here we repeat not points. The algorithm
we develop captures both the quality of motion and the necessary accuracy of the
end-effector to create a useful task generalization.
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Fig. 9. Another comparison of unaligned and MSV-aligned data, this time for Leonardo’s joint

system. The images show the three dimensions of end effector motion of Leonardo’s end effector

path. Compared to the regular averaged motion, described earlier, this motion retains all maxima
and minima of the original motions, as well as important velocity/derivative data.

5.1. Switching to the Animation Model

For the remaining research we use data from motion animations generated in Maya
- our teleoperation data was imprecisely calibrated from gypsy suit to robot due
to large joint nonlinearities, and teleoperation angles are very different from the
robot’s true joint angles, due to the lack of haptic feedback. In current research we
are building a more accurate model to map these nonlinearities which restrict us
to the animation models, so that we will soon be able to use direct human input
for learning. However, the model suffices to show marked theoretical improvements
over previous methods.

5.2. Interpolation Techniques using Known Motions

We are given several time series of motions ~xi(t), all oriented involving an object at a
known position, (Ox,i, Oy,i, Oz,i), where the point ~O indicates the most salient point
of the object [i.e. for button pushing, this is the point of contact between hand and
button]. Given this information, we generate a new trajectory ~x(t) that will describe
the motion to achieve the task when the object is located at point (Ox, Oy, Oz).
The most common interpolation method for 3d time series is Verb-Adverb theory,
instantiated with Radial Basis Functions18.

5.2.1. Verb Adverb Theory and Radial Basis Functions

Verb-Adverb theory has been applied for many years, primarily for computer graph-
ics animation19. A detailed explanation of this theory is given elsewhere18 and in
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the general literature. The overview here will be brief and functional.
A Verb is a motion of some sort, i.e. ’grasping.’ The Adverb is the parameter

of the motion that we desire to change - in this case, the parameter is the object
position, although it could also refer to an emotional parameter such as ’happi-
ness’ for different models of walking, etc.. Typical verb-adverb applications do not
interact with objects; therefore, gauging their success is difficult. However, in appli-
cations with objects verb-adverb theory has been shown to be at least moderately
successful18. This work attempts to apply verb-adverb theory to a more complicated
(higher DOF) system, with fewer input trials, and with more robust output ability.

5.2.2. Radial Basis Functions

Radial Basis Functions produce for any point ~p [the adverb] a motion animation
m(~p, t) from some interpolation of input trials, or exemplars. We assume that every
specific motion is some parametrization of a general motion function, and we do
not know the function. Here, ~p = (Ox, Oy, Oz). We will derive a function for each
joint in the robot model.

Radial basis functions have the formRi(di(~p)), where di is some distance function
in the parameter space. Since it is a function of only distances, there cannot be an
affine translation of any kind - a linear or low-order polynomial representation is
often added to the radial basis function to give the general baseline quality of
motion. RBFs are compact, computationally efficient, able to interpolate sparse
data, and can be evaluated on a continuous space. The initial RBF that we use here
is R(~x, ~xi) = r = |~x− ~xi|, the standard distance function, known as the biharmonic
spline.

Now we can generate the matrix of all Radial Basis Function influences over the
points in parameter space,

D = [Dij ], where Dij = Ri(~pj),

for all i, j ∈ {1, 2, · · ·Ne}, where Ne is the number of exemplars. The general solution
to the error minimization problem is(

D T

TT 0

) (
λ

c

)
=

(
~p

0

)
,

where D is as written above, T is the trend solution (linear approximation), and λ

defines the coefficients for the purely radial solution.

5.3. Application of Verb-Adverb Theory to Interpolation of

Motions

We apply the Radial Basis Function technique, to interpolate and extrapolate be-
tween known trials. To insure robustness, we apply few data points, and in unequal
spacing. For every time frame, we take the parameters and known centers, and use
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the radial basis function weighting to create the final output joint angle:

qi(t) =
n∑

j=1

αi,jqi,n(t) + an affine term, (5)

where αi,j is the weight of the jth trial for the ith joint.
Figure [10] shows the error variation as we move the object location. Near any

of the original trials, as expected, the error dissipates, but as we distance the object
from the trial space [especially when we leave the convex hull of trials] the error
increases dramatically, which causes task failure. Below a method is described that
theoretically eliminates this error.
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of a known trial [although with different z]. A value of z was chosen that was roughly the average
of trial points. Near trial points, the error tends toward zero, and when we leave the convex hull
of demo trials, the error rapidly increases.

5.4. Improvements on Motion Interpolation and Extrapolation

It is important to remind the reader that these trial motions were completed with
no error. Since they were derived from animation data, they represent a precise
task fulfillment. The error in the end effector comes from the non-linear averaging
of joint angles - this averaging affects the end effector position non-linearly.

We are looking to position an end effector relative to an object; so, viewing
motion in absolute space is not necessarily the most natural space in which to view
the positioning problem. By viewing the trials in a new coordinate frame, we will
find two improvements to the radial basis function solution: a method by which to
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gauge what parts of an action are ’object oriented’, and a method by which to reduce
interpolation error when we need to, while the action involves object interation.

5.4.1. Object Space

There are two natural ways of looking at a system involving a robot and an object -
from the perspective of the robot, and from the perspective of the object. Typically
the reference frame of the object is ignored. However, it has several advantages.

In absolute space, all trials begin with the end effector in the same position,
which slightly diverges on its path to the object. From the perspective of the object,
the opposite is true. If we view a coordinate system created from an affine translation
such that the object is at the origin, (x′, y′, z′) = (x − Ox, y − Oy, z − Oz), where
(x′, y′, z′) describes our new coordinate system, then all the trials start with the end
effector in a different space, but they converge to the same space when nearing the
object, and eventually come into contact with it at the origin. Figure [11] shows the
comparison of end effectors traveling to a button in Leonardo’s workspace, showing
divergence in absolute space, and convergence in object space.
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Fig. 11. A comparison of end effector trajectories in absolute coordinate space and the object
workspace [the transformation of which changes from trial to trial]. Note the divergence of motion

in absolute space, and convergence in object space, during a reach towards an object.

5.4.2. Variances to show ’objectiveness’

It is easy to note by a human, that when the motion is absolute (not related to
the object), the variance in the absolute frame (σabs) is minimal, and maximal in
the object frame (σob). Similarly, when the motion is oriented to the object, the
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variance in the absolute frame is maximal, but is minimal in the object frame.
This allows us to make a measure of how ’object oriented’ any section of the

motion is. A measure of the object-orientedness of the motion is found by a nor-
malized fraction of absolute variance to object variance - if the absolute variance is
lower then the motion is more absolute than object-oriented [and vice versa]. We
let

Υ(t) ≡ σabsolute(t)
σabsolute(t) + σobject(t)

represent the objectivity of the action at any time t. Figure 12 shows a graph of
a button reach, with the first plot displaying the object and absolute coordinate
system variances, and the second plot showing Υ, a measure of the objectivity of that
time in the action. Notice that, as expected, it provides a measure of an absolute
action [because all presses begin in the same rest location] phasing into a object
oriented action [because they all end up at the button].
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Fig. 12. The first plot shows a measure of variance in the absolute and object coordinate frames of

a task. The second shows Υ, the objectivity of the action at time t, displaying a smooth transition
from absolute representation to object representation.

5.4.3. Objective Radial Basis Functions and Objective Motion Interpolation
and Extrapolation

Now we generate a new radial basis function, focused not on joint angles, but end
effector motion; and not located in the absolute coordinate system, but the object
representation space. This does not yield an explicit kinematic solution, but we will
generate one afterwards.
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In the object frame, all button grasps go toward the origin - thus, when interpo-
lating between those motions, any interpolated motion will always go to the origin
no matter where the object is located. With a RBF solution, not only the position,
but movement of the object and angles of approach and reproach from objects will
be accurately determined through the workspace. This does not occur in a typical
RBF solution; it completely eliminates location errors in animation.

5.4.4. Consequences of Objectivity and the Υ measure

Figure [13] shows the end effector path generated by the use of objective radial
basis functions, compared to the original radial basis function solution. Note that it
proceeds from roughly the correct starting area [although not precisely] to exactly
the object location area.
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Fig. 13. A 3d plot of the end effector path from the radial basis function solution, alongside the
plot of the end effector path from the objective radial basis function solution. Note that the latter

path exactly reaches the desired object.

Clearly neither of these solutions are ideal. The first solution behaves more
accurately in terms absolute behavior [in this case in the beginning of the motion],
whereas the objective radial basis function solution is more precise when interacting
with objects. Ideally we would like to blend between these solutions to form the
overall optimal solution.
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This is how we employ the objectivity factor Υ. This measure functions as a
blending weight between the two solutions. Therefore, calling ~xabsolute(t) the origi-
nal radial basis function solution, and ~xobject(t) the objective radial basis function
solution, we obtain the full solution for the end effector,

~xfinal(t) = ~xabsolute(t) + Υ(t) (~xobject(t)− ~xabsolute(t)) .

Once again, this solution does not yield joint angles, but merely an ideal overall
path. The first half of the solution yields the desired quality of motion, and the
second term, a correction to refine the end effector path, to remove all systematic
error. Figure [14] shows this blended path in 3d for the button reaching task.
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Fig. 14. A 3d plot of the final generated weighted path for the button reaching task. Note that this
path initially follows the absolute coordinate system solution, and fades to the objective solution
at the point in which the typical motions diverge.

5.4.5. Inverse Kinematic Solution

The aforementioned method provides the ideal path in task accomplishment [and is
easily generalizable to provide precise path along with orientation, thus providing
the entire 4x4 transformation matrix for the end effector at all times], in the sense
of keeping the same quality and style of motion, while placing the end effector
accurately when need be. Determining joint angles for this solution is still being
researched - we take the initial joint angle solution as the starting point and use
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an inverse Jacobian method [ie. d~q = J−1d~x] to move the end effector differentially
to the desired point xfinal(t). Employing this blindly, however, causes spurious
motions, and energy minimization and path minimization IK techniques are being
compared to improve quality of joint motion.

6. Conclusion

Overall, this technique, once combined with a better IK solution, will be able to deal
with extremely complex interactions with objects, always retaining precision during
times when precision with the object is needed, and maintaining quality of motion.
Multiple interactions with an object during a trial, as well as the movement of an
object during a trial, can all be accounted for in this scheme. Patterns of approach
toward and object or subtle changes on the manner of interaction with an object [i.e.
point of contact, etc] can be detected in this system, that are otherwise completely
ignored in a pure radial basis function solution. By extending the use of this tech-
nique to allow rotations and translations for object frame of reference, for example
in actions that involve grasping non-rotationally symmetric objects, this technique
would allow modification of behaviors for successful completion. Furthermore, for
cases such as a button press, where the initial tracking motion is dependent on ob-
ject position [placement] but the pressing stage is univeral [downward, independent
of object position], the system described above yields a solution that adequately
gauges both stages of the motion, enabling robust accomplishment of these actions.
In contrast to other currently employed techniques, this method is completely au-
tonomous, and creates theoretically zero error in its ability to successfully interact
with objects, in situations where high precision is necessary.
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13. Maja Matarić, Sensory-Motor Primitives as a Basis for Imitation: Linking Perception
to Action and Biology to Robotics. Imitation in animals and artifacts, 391-422, 2002.
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