
NAVIGATION AMONG MOVABLE OBSTACLES :
REAL-TIME REASONING IN COMPLEX ENVIRONMENTS

MIKE STILMAN 1

JAMES J. KUFFNER 1,2

1 Robotics Institute, Carnegie Mellon University,
5000 Forbes Ave. Pittsburgh, Pennsylvania 15213, USA

robot@cmu.edu, kuffner@cs.cmu.edu

2 Digital Human Research Center,
National Institute of Advanced Industrial Science and Technology (AIST),

2-41-6 Aomi, Koto-ku, Tokyo, Japan 135-0064

In this paper, we address the problem of Navigation Among Movable Obstacles (NAMO):
a practical extension to navigation for humanoids and other dexterous mobile robots. The
robot is permitted to reconfigure the environment by moving obstacles and clearing free
space for a path. Simpler problems have been shown to be P-SPACE hard. For real-world
scenarios with large numbers of movable obstacles, complete motion planning techniques
are largely intractable. This paper presents a resolution complete planner for a subclass
of NAMO problems. Our planner takes advantage of the navigational structure through
state-space decomposition and heuristic search. The planning complexity is reduced to
the difficulty of the specific navigation task, rather than the dimensionality of the multi-
object domain. We demonstrate real-time results for spaces that contain large numbers
of movable obstacles. We also present a practical framework for single-agent search that
can be used in algorithmic reasoning about this domain.

Keywords: NAMO; navigation; manipulation; planning; motion; movable obstacles.

1. Introduction

Advances in humanoid robotics have brought about the development of software sys-
tems for robot interaction with real-world environments. Furthermore, architectures
for motion planning have allowed humanoid robots to construct adaptive plans for
walking, grasping and other primitive behaviors. These developments pave the way
towards higher level planning that enables the exhibition of human-like reasoning
in addition to human-like physical action.

In this paper, we explore the domain of Navigation among Movable Obstacles
(NAMO). A human planning to move through a cluttered space does not simply
avoid every obstacle. Rather, the human will often reposition chairs, doors and other
movable objects while navigating. These actions open free-space for paths when a
plan through the original space is difficult or impossible. For humans, the ability
to move objects is an integrated component of navigation. For robots, although
numerous algorithms for force control and ZMP-based walking have enabled robots

1

2 M. STILMAN and J. KUFFNER

to conform to variations in the environment, little work exists that would allow
robots to conform the environment to the robot’s goals.

Not only is NAMO a natural extension to the current capabilities of humanoid
robots, it presents challenging research problems for theoretical motion planning, as
well as practical applications ranging from industrial manipulation to urban search
and rescue. Pure locomotion or manipulation problems generally address planning
among a fixed set of rigid objects. We are concerned with a world rich in objects,
some of which may need to be repositioned in order for the robot to achieve its goal.
Thus, in addition to planning locomotion, the robot must decide which objects need
to be moved, if any, and solve the manipulation problem required to move them.
The ability to perform such analysis is not only applicable to small-scale office en-
vironments, but also to complicated unstructured navigation. For instance, current
work in urban search and rescue focuses on small mobile robots or snakes. These
robots are highly effective at search, since they can access obstructed environments
by avoiding obstacles.1 However, rescue efforts still largely rely on humans entering
dangerous scenes. This is precisely due to the human ability to intuitively deter-
mine safe methods for clearing paths and our dexterity in carrying out such plans.
Although replacing the human in hazardous search and rescue may be a long term
initiative, we propose the NAMO domain as an initial step from locomotion to-
wards this fascinating research area. In our work, we examine a practical though
simplified formulation of the NAMO problem. We discuss potential variations in the
problem statement, the notion of optimality, as well as descriptions of sub-problem
classes. Finally, we present a prototype planner that takes advantage of the under-
lying navigational C-space to construct real-time intuitive solutions to a wide range
of NAMO problems.

2. Problem Statement

For simplicity in algorithmic analysis we restrict our domain to a planar projection
of a continuous three dimensional environment. The environment contains:

• R - a humanoid or dexterous mobile robot equipped with a gripper arm.
• L - a set of polygonal Fixed Obstacles that the robot must avoid in navigation.
• M - a set of polygonal Movable Obstacles that can be manipulated by the robot

through the application of forces at allowable contact points. Each Oi ∈ M has
planar dynamic properties: Center of Mass, Mass and Moment of Inertia.

Given an initial configuration of the robot and environment, the robot’s task is to
assume a target configuration or goal. A solution should consist of a motion plan
that iterates walking, grasping and moving obstacles until the robot is at the goal.

We consider that an optimal plan for the NAMO domain will first move the least
number of obstacles and second use the least amount of Work. We define Work in
the standard dynamic sense of Work = Force×Distance. There are many possible
practical extensions to the definition of optimality. For example, a notion of fragility
could be introduced to indicate the risks associated with moving an obstacle.

NAVIGATION AMONG MOVABLE OBSTACLES 3

Fig. 1. A sample NAMO domain. All depicted objects are internally represented with polygons.

3. Related Work

At first glance, Navigation among Movable Obstacles is an instance of the Mo-
tion Planning domain. However, the complexity of this problem is prohibitive to
the conventional application of complete motion planning algorithms. Consider a
closed, planar world that contains a robot and N obstacles. Suppose we attempt
a resolution-complete version of the problem using search over a discretized 2-D
planar projection of the 3-D world. Let the configuration of the robot base be rep-
resented by CR = (x, y, θ), with resolution m in x, y and c in θ. The generic size of
the robot C-space |CR| = O(m2c). Analogously, for each object |Oi| = O(m2c). The
full motion search space is the product of these subspaces, CR×O1×O2× . . .×On,
and therefore has O(m2N+1cN+1) world states. Furthermore, for K directions of
object motion, the branching factor of a brute force search is NK. If K = 6, N > 5
(a rather primitive problem), this domain quickly surpasses reasonable limits of
computational resources of memory and time. Gordon Wilfong first showed that a
simplified variant of this domain is NP-hard.2 More recent work has demonstrated
NP-completeness results for trivial problems where blocks can only be pushed on a
planar grid.3

The challenges of this domain are not restricted to a large search space. We are
also required to consider navigation, environment contact and manipulation of the
obstacles. For a comprehensive discussion of NAMO, let us consider works in these
fields and the aspects of our problem that they address. In terms of navigation,
our robot is asked to work in a configuration space that will change over time. In
particular, certain obstacles may move and therefore alter the space.

Previously, obstacles moving along specified trajectories was a problem ad-
dressed by bounding the velocities of the obstacles and augmenting the configuration
space with time.4 In doing so, a point in the free space ensures that a configuration
is valid at the given time in which it takes place. This approach has been extended
to kinodynamic domains,5 as well as real-time deformable plans.6 Work along these

4 M. STILMAN and J. KUFFNER

lines, however, focuses on a world model which the robot cannot control. In that
sense, the problems addressed can still be formulated as existence of paths through
an expanded state space.

Models of the world that support robot interaction are typically in the form
of manipulation or assembly planning. For instance, Mason and Lynch developed
bounds for stable pushing motions by a mobile robot with edge-edge contact be-
tween the robot and a specified object.7,8 They introduced a search algorithm that
would branch on possible motions within these bounds and yield stable plans for
repositioning the object among obstacles. Alami et.al. pursued a similar problem
with rigid grasping by constructing graphs of transit and transfer(manipulation)
paths for robot/object motion.9 This work was recently extended by Simeon et.al. to
handle continuous grasps and placements.10 Alternatively, researchers in humanoid
robotics have shown the potential for generalizing human motion capture in decid-
ing manipulator contact placement and quasi-static manipulation planning.11 Work
along these lines is essential for implementing a NAMO planner on an actual robot,
however it does not address the higher-level problem of deciding motions for large
numbers of objects as required by our domain.

The majority of research that deals with interactions that involve multiple ob-
jects is in assembly planning. Yet, the primary focus of this field diverges from the
characteristics of NAMO. Assembly planners generally focus on separating a collec-
tion of parts and typically ignore the robot/manipulator. Planning motions allow
unassembled parts to be removed to “infinity.”12,13 One of the largest difficulties
of the movable obstacle domain is strictly due to the unintended interactions be-
tween obstacles and the robot, since both are required to stay within a constrained
space. This complication is addressed by a less studied but highly relevant extension
of assembly planning known as the rearrangement problem.14 Rearrangement is a
number of real-world generalizations of the Sokoban puzzle: a robot is required to
move a set of objects between specified initial and final configurations.15 Although
the task of the robot is akin to the earlier mentioned manipulation work, the key
difference is that it may not be possible to directly achieve the individual object
placement goals. Rearrangement planners typically construct precedence graphs and
determine intermediate configurations for obstacles. Since intermediate configura-
tions are not specified in the problem statement, the curse of dimensionality in this
problem is very similar to NAMO. The most experimentally successful rearrange-
ment planners employ opportunistic methods in selecting object perturbations that
allow for simplified planning.14,16

All the mentioned developments in navigation, manipulation and assembly ad-
dress problems with specified final configurations. To our knowledge, the only exist-
ing planner that deals with many movable objects and specifies a single navigation
goal was developed by Chen and Hwang (CH).17 In this work, the authors allow the
robot to “shove aside” and “push forward” obstacles as the robot moves towards
the goal. Their solution consists of a navigation trajectory which minimizes the asso-
ciated cost of moving obstacles away from the robot. To generate this solution, they

NAVIGATION AMONG MOVABLE OBSTACLES 5

introduce a global planner that heuristically evaluates the cost of moving obstacles
away from randomly selected points in the domain. The planner then searches a
graph of neighboring points to form a trajectory of least cost. This trajectory is
verified by a local planner that can apply manipulation primitives to connect two
neighboring points. CH is effective on some examples, yet it has some important
drawbacks. For each robot location that is found to be reachable, the algorithm
considers only one possible trajectory that led to that event. The authors recognize
this lack of backtracking as a cause for incompleteness and show that even slight
improvements to their framework would cause exponential growth in complexity.
Furthermore, allowing all colliding objects to move jointly narrows the solution
space to plowing paths. All objects are greedily pushed away from the robot, allow-
ing it to move forward. In particular, since manipulation is restricted to validating
the connectivity of neighboring points, manipulation tasks that affect distant por-
tions of the world are never considered. For instance, in Figure 5, moving the couch
to open a path on the opposite side of the couch would not be addressed by this
planner. Although these constraints make the CH algorithm difficult to extend, it
serves as a baseline for development in the NAMO domain.

4. Overview

In the following sections, we will introduce the fundamental characteristics of
NAMO planning and describe the key tools and methods for approaching this do-
main. In Section 5, we discuss the choices for contact and actions that define a
suitable action-space for the robot. In particular, we focus on developing a space
that is well suited for real-world actions, yet can still be analyzed as a planning
domain. Section 6 develops a framework for reduced dimensionality analysis of our
large action space. We introduce the navigational C-space as both a tool for bound-
ing the complexity of object interactions, and a heuristic for guiding search. Finally,
Section 7 presents a simple and informative prototype planner based on the previous
discussion.

We show that our planner could be employed in real-time for improved robot
navigation. Due to the structure of the planning methodology, our algorithms can
easily be extended to handle future developments in multi-object reasoning. We
discuss open problems and directions of research that would greatly contribute to
the power of planning in NAMO.

5. Contact and Motion Primitives

The primary focus of our work is to develop algorithms that take maximum advan-
tage of the robot’s dexterity and the environment structure. In order to simplify the
manipulation problem, most manipulation planners restrict the domain to trans-
lational motion, pushing or prehensile manipulation.7,14,16 Yet, while reducing the
action space, these planners also reduce the solution space. In fact, many real-
world NAMO problems have simpler solutions when the motion of obstacles is not

6 M. STILMAN and J. KUFFNER

Fig. 2. A large, constrained object requiring manipulation motions that consider dynamics.

restricted.
Figure 2 is one of many examples where a large object, such as a table, is

highly constrained in motion. The size of this object makes prehensile manipulation
(constraining all the degrees of freedom) difficult. Furthermore, pure translation
or pushing motions alone cannot solve this problem. For a human, the intuitive
approach is to grasp the table at a convenient location, as shown in Figure 2.
Then, for select directions of pulling/pushing, the natural dynamics of the table
will generate the complex motion that guides it away from the constraints. Our
formulation not only adds point contact and pulling, but develops a mapping that
projects simple linear robot motion to complex transformations of the object.

To be precise, motion may be defined by sets of point contacts at vectors P from
the object COM and forces F applied by the robot. If we allow only single point
contacts to act on the object at a given time, then the mapping from the action
space of the robot to the associated planar state-space transitions of obstacles my
be modeled as:

ν̇ =
F
M

(1)

θ̈ =
|F×P|

I
(2)

In our simulation we also add viscous friction to the objects. This description of
robot motion appears compatible with the planar physical capabilities of a dexter-
ous mobile robot. It does not, however, conform to the statically stable pushing
properties discussed by Lynch.7 We assume that for slow quasi-static motion, a
local robot controller will be able to compensate for environment modeling error.
The mapping in Eqs. 1,2 highlights the two aspects of object manipulation that we
must address. Namely, how do we select the contact point P and the force F?

5.1. Contact Points

There is substantial work in grasping and manipulator/object contact.18,19 We as-
sume that within the local workspace of the robot base, existing methodology can
be used to implement a desired grasp of an obstacle at a desired contact point.
Hence, our primary concern is to define valid contacts for a mobile robot whose ma-
nipulator configuration space is largely constrained by the free-space of the robot
base. We define the following sets of points for each movable obstacle O:

P (O) = {The set of all points on the object}

NAVIGATION AMONG MOVABLE OBSTACLES 7

CP (O) ⊂ P (O) {p ∈ CP can potentially be grasped by the robot}
Natural choices for CP are the edges of a polygonal obstacle, or other line segments
that can be identified as graspable for a more involved obstacle definition.
For each p ∈ CP (O) we define:

F (p) - the set of all possible forces that can be exerted on point p.
F ′(p) ⊂ F - the subset of forces on point p that can be exerted without direc-
tional slip or loss of contact between the end-effector and the obstacle. F ′(p)
restricts the set of possible robot interactions with any point of the obstacle. It
determines whether the obstacle can be pushed or pulled from a given contact
location.

Reach(p) - the set of possible standing configurations for the robot base from
which the robot would be able to make manipulator contact with the point p.
Analogously, Reach(O) is the set of base configurations that allow the robot
to reach some p ∈ CP (O).

Let C be the configuration space of the robot base RCOM , i.e. the space that we
wish to navigate. Let Acc(RCOM) ⊂ Cfree be the currently accessible free-space at
the time of the grasp. Then, for a given obstacle, the possible grasps are defined as
follows:

AReach(O) = Reach(O)∩Acc(RCOM) is the set of all accessible configurations
of the base that allow the robot to grasp the obstacle. For a particular base
configuration b ∈ AReach(O), and a point p ∈ CP (O) where b ∈ Reach(p),
the following holds:
The robot with base configuration b can exert forces F ′(p) on point p ∈ CP (O).

5.2. Obstacle Motion through Robot Motion Primitives

In order to search the space of robot interactions with obstacles, we can choose to
consider all potential wrenches on the obstacle’s COM and then find corresponding
robot actions that would make them feasible. Although this would be resolution
complete with respect to all motions of the object, it also would be computationally
expensive due to the necessary search through possible base configurations and
actions for each wrench.

We choose an alternative formulation: sampling the possible contact points in
CP (O) and evaluating the intersection Reach(O) ∩ Acc(RCOM). This procedure
yields the set AReach(O) of accessible RCOM configurations from which O is gras-
pable and the associated grasp points p. The action space is then directly computed
by associating robot action forces with each pair (RCOM , p).

So far we have defined contacts for robot forces and assumed an existing set of
robot actions. Yet, for a high-DOF robot such as a humanoid, the complete set of
possible actions is extremely large. Furthermore, many of the robot’s actions are

8 M. STILMAN and J. KUFFNER

redundant with respect to the object and even the end-effector point. This suggests
the implementation of a small set of parametrized primitive actions that best span
the space of object manipulation.

Consider the way in which humans manipulate objects. For small objects, hu-
mans remain stationary and apply torques and forces directly to the object. For
large objects, we intuitively move our COM and apply forces using our arms, which
act as soft constraints on the motion of the object. In this work, we address the
latter case of larger objects with single-point contact. Suppose the robot base is at
configuration RCOM and the end-effector is attached to point p on the obstacle.
We allow purely translational accelerations of the robot’s COM in any direction.
The robot’s manipulator imposes a non-linear spring/damper distance constraint
between the robot’s COM and the point of contact p. Eq. 4 resembles the shallow
exponential stress-strain curve of passive human muscle.20 D is the desired distance,
U(V) = V/|V | and kp, kv are gains.

pd = RCOM +DU(p−RCOM) (3)

F = kp(epd−p − 1)− kvν. (4)

The action space is represented by translational motions of RCOM in some dis-
crete number of directions. Given an initial (RCOM , p), Eq. 1-4 can be numerically
integrated to determine actions in the domain of obstacle motion. For fixed time
steps and accelerations, robot actions are defined by the triple (RCOM , p, d), where
d is the direction of motion. The actual interactions at point p are restricted to F ′(p)
and limited to obstacle motions that may have rotational slip but not translational
slip between the end-effector and the contact point. Motions for smaller objects can
be represented similarly, by directly moving the desired contact point.

This formulation for primitive actions yields intuitive behavior in simulation
(Figure 6). On a robot platform, we assume that the spring/damper system can be
implemented through force-control and/or natural dynamics of the robot. Still, the
problem of selecting a globally optimal set of actions that span the manipulation
space without redundancy remains an open and interesting topic for future work.

6. NAMO Planning

In the previous section, we formulated a reduced search space that is restricted to
feasible real-world actions of a dexterous mobile robot. In our planner we demon-
strate how primitive actions can generate interesting solutions for the NAMO do-
main. Theoretically, we could implement a breadth-first forward planner that would
apply the primitive actions. This would be both resolution complete and metric op-
timal, yet practically intractable due to the large branching factor that results from
applying all feasible actions to all reachable obstacles.

This motivates a shift in discussion from feasible actions to useful ones, as
well as the value of moving particular obstacles. In this section we develop tools

NAVIGATION AMONG MOVABLE OBSTACLES 9

C1

C2

C3

C4

S(C1) G(C4)

C2

C3

Love Seat
Table 1
Table 2

Table 1

Table 1

Couch

Fig. 3. A simulated representation of the dynamic RCOM configuration space. The labeled sub-
spaces C1-C4 ⊂ Cfree are disjoint components of free space. Acc(RCOM) ≡ C1. On the right is
the associated DFG with labeled components of Figure 3. Note: OL(3, G) ≡ ∅.

for bounding the complexity of NAMO, and heuristic methods for dramatically
expediting forward planning.

6.1. Domain Observations

In Section 5.1, we defined C as the configuration space of RCOM , the robot base.
Suppose the robot can be safely bounded by a polygonal discretization of a circle.
We can always project an instance of NAMO into the planar C-space of navigation.
This is accomplished by the standard Lozano-Perez convolution of the circular robot
bounds and the obstacles.21 We use a circle to bound the robot because the robot
and obstacles may rotate and the robot should preserve a safe distance regardless
of configuration. Figure 3 illustrates an instance of NAMO. The obstacle bounds
are expanded to represent their associated obstacles in C.

Notice that the navigational free-space is disjoint. Let Cfree represent all the
space that RCOM could occupy. Acc(RCOM) is the subspace of Cfree that can be
reached solely by navigation from the current base configuration. In a NAMO do-
main, the initial Acc(RCOM) does not contain the goal. This points to an alternative
formulation of our problem: The task of the robot is to manipulate objects such that
the goal configuration is added to Acc(RCOM).

In Figure 3, Cfree consists of five disjoint components (four of which are labeled
C1-C4). Moving the table and then the couch would respectively add C2 and C4

to Acc(RCOM), accomplishing the NAMO task. The illustrated problem falls into
a subclass of NAMO which we label linear or LP1 by analogy to rearrangement
planning.14 LP1 is the class of problems for which disconnected components of free-
space can be connected independently by moving a single obstacle. Let us call a
keyhole the subproblem of moving one or more objects to connect two components
of Cfree. Our usage of “independently” implies that a given solution to a single
keyhole does not affect the solvability of any following subproblem.

Although LP1 covers a large number of real-world problems, it is not difficult to
construct examples that lie outside this subclass. These examples are characterized

10 M. STILMAN and J. KUFFNER

by obstacles that do not directly separate two components of Cfree but constrain the
motion of the separating obstacle. LPk would allow moving k interacting obstacles
to independently resolve a keyhole. It is also possible for obstacle motion that solves
one keyhole to interfere with the solution of another by constraining the motion of
other obstacles or directly detaching a component of Cfree.

6.2. Utilizing the Underlying Navigational Structure

Section 5 identified a search space for planning the motions of an object. This space
is parametrized by the accessible contact points AReach(O) and the motions of the
robot after grasping. Directly searching the action space for a solution to NAMO
is infeasible. However, the introduction of navigational structure allows us to con-
struct subproblems in the action space that can be solved quickly and optimally. In
this section we develop GraphConnect - a simple, resolution complete and metric
optimal algorithm that takes advantage of Cfree structure to solve problems in LP1.

For any problem in LP1, GraphConnect constructs a plan as follows: Define a set
DF of disjoint Ci ⊂ Cfree components, where S and G are components containing
the robot and goal respectively. We construct a graph DFG where each node is
an element of DF . Each edge e, connecting (Ci, Cj) of DFG, is associated with a
list OL(e) of obstacles that face both Ci and Cj . We remove all edges in DFG for
which OL(e) ≡ ∅.

Let SFG be a graph that only contains node S. We grow SFG as follows: Select
a node C1 in SFG. Select an edge e in DFG between nodes C1 and C2, where
C2 /∈ SFG. Now, assuming the robot is located in C1 ⊂ Cfree, we try to connect C1

to C2. To do this, we individually consider the motions of each obstacle in OL(e) by
means of the subprocedure Manip-Search(C1, C2, O). If the two components of
free-space can be connected, the edge s and node C2 are added to SFG. Otherwise
edge e is removed from DFG. If more than one obstacle O ∈ OL(e) can be moved
successfully, we select the plan requiring the least Work. This process is iterated
until we successfully add G to SFG, or we fail, noting that all connected nodes of
DFG have been added to SFG.

Manip-Search(C1, C2, O): This routine is called with a keyhole subproblem of
NAMO consisting of two disjoint components of Cfree: C1, C2 and an obstacle
O. It returns a motion plan for a robot in C1 that connects C1 and C2 by
manipulating O, or Nil on failure. As described in Section 5, we can sample
AReach(O) and associated contact points p ∈ CP (O) that are reachable by
a robot in C1. A simple Manip-Search implementation will then conduct
a bounded breadth-first search of the robot action space after grasping the
object at each p. The sequence of actions connecting C1 and C2 yielding the
least amount of Work is returned.
Note that a successful Manip-Search changes the state of the world SW by
displacing the robot and an object. The new SW is returned by Manip-Search

NAVIGATION AMONG MOVABLE OBSTACLES 11

and stored in SFG along with the added node C2. Further calls to Manip-Search
to connect C2 with some C3 /∈ SFG will be performed in the altered SW . This
ensures the validity of the sequence of motions found by our planner. Although
Manip-Search is relatively straight forward, the task of recognizing that the
goal has been achieved is non-trivial. We discuss this challenge, and provide
one possible solution in Appendix A.

Our description of GraphConnect illustrates the potential for using a C-space
decomposition of NAMO problems to construct small subproblems that can easily
be solved by a motion planner. Furthermore, the construction of GraphConnect

allows for a simple proof of its relationship to the LP1 problem class.

Lemma 1. GraphConnect is resolution complete for problems in LP1.

Proof. Let Π be a solvable problem in LP1. We show that GraphConnect will
find a solution. By definition of LP1, there exists a sequence Ω of disjoint Cfree

components starting in S and ending in G. We show that GraphConnect will add
G to SFG by induction. In the base case, S ∈ SFG. Assume Ci is in SFG. By the
definition of LP1, a robot in Ci can independently move one obstacle O to connect
an Ω-consecutive component Cj . Let e be the edge between Ci and Cj in DFG.
Clearly, O faces both Ci and Cj , thus ob ∈ OL(e). Since Manip-Search(Ci, Cj , O)
is complete over the action space, it will find the connecting motion. Therefore, Cj

will be added to SFG. By induction, G will be added to SFG.
Trivially, there are finite numbers of edges and nodes in DFG. Every iteration of

GraphConnect either adds a node to SFG or removes an edge of DFG. Therefore,
the algorithm must either add G to SFG or find that there are no remaining edges
e that connect any Ci ∈ SFG to a Cj /∈ SFG. Hence GraphConnect terminates
in finite time and is resolution complete for problems in LP1.

In addition to completeness, we can sketch a proof that GraphConnect with
breadth-first-search is optimal for LP1 problems: Since each edge of SFG corre-
sponds to moving one obstacle, and breadth-first-search will construct an SFG

with a minimal number of edges, our solution satisfies the first criterion of NAMO
optimality. Furthermore, suppose we extend the search until all edges of solution
depth are added. Then if more than one solution is found, Manip-Search can be
used to score the Work expended on each path and satisfy the second criterion.

6.3. Improvement over GraphConnect

The last optimality result would be most interesting if GraphConnect was fea-
sible for implementation. Yet, although this algorithm dramatically reduces the
search space from brute force action-space search, its primary purpose is to con-
vey the utility of the reduced dimensional C-space structure. Practically, a NAMO
domain could have a large number Ko objects and Nf disjoint free-space com-
ponents. Constructing the graph would require an algorithm to determine which

12 M. STILMAN and J. KUFFNER

objects connect which components of free-space. Furthermore, we would need to
call Manip-Search to verify every potential connection. This seems unreasonable
for a navigation planner, since out of Ko objects we may only have to move one or
two to reach the goal.

We believe that this observation is critical for developing a real-time system.
In particular, the complexity of the problem should depend on the complexity of
resolving keyholes that lie on a reasonable navigation path, not on the complexity
of unrelated components of the world. In other words, since the purpose of NAMO
is navigation, a NAMO problem should only be difficult when navigation is difficult.

In Section 7, we present an initial answer to this challenge. We introduce a
heuristic algorithm that implicitly follows the structure of GraphConnect with-
out graph construction. To do so, we again turn to the navigational substructure
of the problem. Previously, we observed that every NAMO plan is a sequence of
actions that alter the accessible free-space Acc(RCOM). Every plan contains a path
from the initial robot state to the goal. For plans in LP1, this path contains no loops
(i.e. after entering a component of free-space, it is never advantageous to return).
Even LPk and NLP problems may have large regions that are too far removed from
the navigation path to be of any use. In our planner implementation we exploit the
notion of paths to guide the planner towards reasonable obstacle selection.

7. Planner Prototype

With the tools and results from the previous sections, we now formulate a simple and
effective planner for the NAMO domain. The planner follows a greedy, depth-first
search to generate fast heuristic plans in LP1 environments. The employed heuristic,
P, is itself a navigation planner with relaxed constraints. It is used to select obstacles
that are to be considered for motion. Following the algorithm description, we show
that its search space is equivalent to that of GraphConnect (Section 6.2). With
depth-first search, optimality is no longer guaranteed. However, the planner is much
more efficient and still resolution complete for problems in LP1.

7.1. Implemented Planner

Sub-planner P(RCOM , SW , AvoidList) is parametrized by robot location, the world
state and a list of (Oi, Ci) pairs to avoid. After generating a path estimate to the
goal, it returns the pair (O1, C1) of the first obstacle in the path, and the first
disconnected free-space. If no such path exists, P returns NIL.

P is implemented as follows: a path to the goal is found by means of A∗ on
a dense regular grid.∗ The robot cannot enter cells occupied by fixed C-space ob-
stacles or transition from a movable obstacle to another movable obstacle. Finally,
for any pair (Oi, Cj) ∈ AvoidList the robot cannot transition consecutively from
Acc(RCOM) to cells occupied by Oi and subsequently to cells occupied by Cj . The

∗Appendix A contains an example of such a grid. Notice that P constructs paths through obstacles.

NAVIGATION AMONG MOVABLE OBSTACLES 13

Fig. 4. Path generated by initial P and final Heuristic-Plan. In this case, no backtracking was
necessary. P selected the table over the love seat because it is defined to have lower mass.

heuristic cost of entering a grid cell c is defined by:

HP(c) = (1− α)dgoal + α(W). (5)

Let W be a positive scalar value proportional to an estimate of the total work
(effort) required to move an object that spans c. W = 0 when c is unoccupied. Cur-
rently, we base W on the occupying object’s mass. The scaling factor α provides a
weighting for the relative importance of moving objects. Clearly there may be more
effective means for estimating W . However, we must be wary of their complexity
since P is called often on a reconfigurable C-space. The investigation of such heuris-
tics is another interesting topic for future work.

Our implemented NAMO planner makes use of P and Manip-Search, as described
in Section 6.2. It is a greedy heuristic search with backtracking. The planner back-
tracks locally when the object selected by P cannot be moved to connect the selected
Ci ⊂ Cfree. It backtracks globally when all the paths identified by P for connecting
Ci are unsuccessful. The following pseudo-code details the implementation:

Heuristic-Plan(RCOM , SW)
1 AvoidList ← ∅
2 PartialP lan ← ∅
3 while (O1, C1) ← P(RCOM , SW , AvoidList) 6= nil

4 do
5 if C1 = Goal

6 then return (PartialP lan append Goal)
7 (CP, Path,R′COM , S′W) ← Manip-Search(Acc(RCOM), C1, O1)
8 if Path 6= nil

9 then PartialP lan append (CP, Path)
10 FutureP lan ← Heuristic-Plan(R′COM , S′W)
11 if FutureP lan 6= nil

12 then return (PartialP lan append FutureP lan)
13 else AvoidList append (O1, C1)
14 return nil

For clarity, we have left out the generation of path plans from the current robot
position to either the object contact point or the goal. PartialP lan is described

14 M. STILMAN and J. KUFFNER

(a) (b) (c) (d)

Fig. 5. Walk-through of a generated plan: (a)Problem (b)P (c)Keyhole solution (d)Final plan

as a list of pairs: (ContactPoint, ManipulationPath). In a full implementation,
PartialP lan is a list of triples that includes the NavigationPath to the contact
point from RCOM .

7.2. Examples and Experimental Results

We have implemented the proposed planner in a dynamic simulation environment
of NAMO. The intuitive nature of Heuristic-Plan is best illustrated by a sample
problem solution generated by the planner. In Figure 5(a), we see that the C-space
of RCOM is disjoint - making this a NAMO problem. Line (3) of Heuristic-Plan

calls P (the heuristic planner). P conducts an A∗ search and finds that the least
cost path to the goal lies through the couch. The path is shown in Figure 5(b). P
also determines that the free-space component to be connected is the one containing
the goal. Line (6) calls Manip-Search to find a motion for the couch. Figure 5(c)
shows the minimum Work manipulation path that opens the goal free-space. Finally,
a motion plan to the goal completes the procedure (Figure 5(d)). The remainder of
the pseudo-code simply iterates this process when the connected free-space is not
the goal and backtracks when a space fails to be connected.

Figure 5 is particularly interesting because it demonstrates our use of Cfree

connectivity. As opposed to the local planner approach employed by CH, Manip-

Search does not directly attempt to connect two neighboring points in C. Manip-

Search searches all actions in the manipulation space to join the C-space compo-
nents occupied by the robot and current goal or subgoal. The procedure finds that
it is easiest to pull the couch from one side and then go around the table for access.
This human-like high-level decision cannot be reached by using existing navigation
planners.

Figure 5 also demonstrates a weakness of LP1 planning. Suppose the couch was
further constrained by the table such that there was no way to move it. Although
the table is obstructing the couch, the table does not explicitly disconnect any
free-space and would therefore not be considered for motion.

Figures 6 and 7 illustrate more complex examples of NAMO planning. While
computation time for Figure 5 is < 1s, the solutions for 6 and 7 were found in 6.5
and 9s respectively (on a Pentium 4 3GHz). Notice that the planning time depends
primarily on the number of manipulation plans that need to be generated for a

NAVIGATION AMONG MOVABLE OBSTACLES 15

Fig. 6. The generated plan output by our dynamic simulation NAMO planner is illustrated by
the time-lapse sequences on the right. In the lower frame, we changed the initial configuration of
the table. The initial call to P still plans through the couch, however Manip-Search finds that it
cannot be moved. The planner backtracks, calling P again and selects an alternative route.

solution. Although the largest example contains 90 movable obstacles, compared to
twenty in Figure 6, there is no sizable increase in the solution time.

7.3. Theoretical Considerations

Heuristic-Plan has clear advantages over GraphConnect in terms of both
average computation time and ease of implementation. It is also apparent that
Heuristic-Plan is not globally optimal since the algorithm is greedy with a non-
admissible (though well informed) heuristic. Note, however, that for each choice of
obstacle, the planner still selects a motion requiring the least Work. The following
Lemmas lead us to a proof of LP1 completeness for Heuristic-Plan:

Lemma 2. Let O be a movable obstacle and C1, C2 be disjoint regions of Cfree. For
C1 considered by Heuristic-Plan and for each pair (O,C2): If there exists a path
from C1 to the goal which passes through C1,O,C2 consecutively then Heuristic-

Plan will call Manip-Search(C1, C2, O).

Proof. Suppose Heuristic-Plan is called with the robot in C1. Then P is re-
peatedly called with the pair (C1, AvoidList). At each iteration, P selects some

16 M. STILMAN and J. KUFFNER

Fig. 7. A larger scale example consisting of 90 movable obstacles. Two separate plans are computed
and demonstrated in our dynamic simulation.

reachable object Oi and Cj where (Oi, Cj) /∈ AvoidList such that the path consid-
ered passes through C1,Ci,Cj consecutively (by definition of P). This is followed
by a call to Manip-Search(C1, Cj , Oi). After each iteration (Oi, Cj) are added to
AvoidList. Since there are finite obstacles and elements of Cfree, P will add ev-
ery pair through which there is a path from C1 to G. Thus if there exists a path
that consecutively passes through C1,O,C2 then P will add (O,C2) and therefore
Heuristic-Plan will call Manip-Search(C1, C2, O).

Lemma 3. If GraphConnect finds a solution to a NAMO problem, then
Heuristic-Plan will find a solution as well.

Proof. Suppose GraphConnect has found a solution. Then there exists a se-
quence of connected nodes in SFG that connects S and G. We inductively show
that Heuristic-Plan will necessarily find a path before terminating. In the base
case, S = G and P will immediately find a solution. Now let Ci and Cj be two
disjoint free-space components associated with consecutive nodes in the SFG solu-
tion sequence. Assume Heuristic-Plan has found a plan to Ci from S. Since Cj

NAVIGATION AMONG MOVABLE OBSTACLES 17

is part of SFG with an edge from Ci, there exists an obstacle O that faces both
Ci, Cj , for which Manip-Search(Ci, Cj , O) returns a valid plan. We observe:

O faces Ci implies that there exists a path P1 from any point in Ci to O that
does not enter any other obstacle. O faces Cj implies that there exists a path P2

within O that enters Cj . Trivially, there exists some path P3 from Cj to the goal.

We conclude that there exists a combined path Pathi = (P1, P2, P3) from a robot in
Ci to the goal. Furthermore, Pathi passes through Ci,O,Cj consecutively. Therefore,
when considering Ci, Heuristic-Plan will evaluate Manip-Search(Ci, Cj , O)
(Lemma 2). Since we have already established that with these parameters Manip-

Search returns a valid plan, Heuristic-Plan will find a plan from Ci to Cj and
therefore from S to Cj (by the inductive hypothesis). Consequently, by induction
Heuristic-Plan will find a plan from S to G.

Theorem 1. Heuristic-Plan is resolution complete for problems in LP1.

Proof. This result follows directly from Lemmas 1,3. Heuristic-Plan always
finds a solution whenever GraphConnect finds a solution and otherwise reports
failure in finite time. Because GraphConnect is resolution complete, Heuristic-

Plan is resolution complete.

8. Concluding Remarks

The problem of Navigation Among Movable Obstacles takes a step towards au-
tonomous robot interaction with complex unstructured environments such as those
involved in urban search and rescue applications. One direction of relevant research
is the development of robust mechanisms and controls that allow for safe navigation
and environment manipulation. In our work, we develop algorithmic solutions that
can utilize the dexterity of such mechanisms by formulating real-time high-level ma-
nipulation strategies. In particular, such plans should allow robots to reconfigure
their environments and solve difficult navigation tasks.

Although NAMO problems involving large numbers of obstacles are practically
intractable for traditional AI planning algorithms, these are problems that humans
solve regularly with relative ease. We observe that even seemingly unstructured en-
vironments contain significant structural components that humans take advantage
of. The primary contribution of our work is the development of a planning method-
ology that utilizes an intuitive decomposition of the NAMO state-space, as well
as the underlying structure of the navigation problem. The theoretical ideas intro-
duced in this paper have been realized in the form of a heuristic motion planner that
is resolution complete for a well defined subclass of NAMO problems. We experi-
mentally demonstrated that such a planner can be implemented to efficiently solve
relatively complex NAMO problems. In addition, the modular structure of the plan-

18 M. STILMAN and J. KUFFNER

ning tools developed in this work yields an adaptable basis for future developments
in robot/environment interaction.

In the class of LP1 problems solved by our planner, many questions remain for
future research. For implementing our algorithm on an actual robot, we would need
to address the effects of partial observability in both the static structure and the
dynamics of the environment. Additionally, though navigation is generally planar,
three-dimensional contact placement and large object grasping should be consid-
ered. Furthermore, the problem of selecting the most practical action space for a
robot that can affect its environment remains an open and fascinating topic for
research.

In terms of planning, future work should address larger classes of NAMO prob-
lems. These include consideration for obstacles that do not directly disconnect the
state-space but interfere with the motions to reconnect it. Three-dimensional effects
due to object stacking and partial support should also be considered. It is possible
that rearrangement planning methods that find intermediate obstacle configurations
could be used to complement our algorithm after the search has been narrowed to
smaller sets of relevant movable objects. We expect that rigorous study of these
and other methods for state-space decomposition will lead to future progress in
the capabilities of humanoid robots that includes a greater capacity for human-like
reasoning in complex domains.

Acknowledgements

We thank C. G. Atkeson for his helpful advice and support. We are grateful to
S. Siddiqi for many discussions and his contribution to the planning simulation.
This research was partially supported by NSF grants DGE-0333420, ECS-0325383,
ECS-0326095, and ANI-0224419.

Appendix A. Dynamic C-space Modification

The two algorithms described in our work make judicious use of the Manip-

Search(C1, C2, O) routine as defined in Section 6.2. Manip-Search is required
to search the available robot action space in manipulating O(Section 5). The search
should terminate when Cfree contains a path for the robot to transition from C1

to C2. Conceptually this is a clear objective that can easily be extended to higher
dimensional spaces. In terms of implementation, however, deciding whether the goal
has been satisfied is an interesting challenge.

Suppose the robot applies action a to obstacle O. We need to quickly determine
whether a path (C1, C2) exists. In terms of implementation and computational
difficulty it seems daunting to formulate/maintain a complex model of all Ci. We
avoid this by depicting the entire RCOM C-space as a planar grid, where C-space
obstacles are represented by rasterizing their perimeter.22 Since the robot embodies
a cell in the C-space, we can trivially test for connectivity between C1 and C2 by

NAVIGATION AMONG MOVABLE OBSTACLES 19

O2

C2

C1

O1

1 1 1 1 1 1 1 1 1 1 1 1

1

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1

1

1

1

1

11 11

1

1

1

1

1

1

1 1 1 2 1 1 1 1 1 1 1 1

1

1

1

2

1

1 1 1 1 1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

11 11111

1

(a) (b)

Fig. 8. (a) coarsely depicts a grid implementation of RCOM C-space. A free path is illustrated
confirming the connectivity of C1,C2. Notice that O1 and O2 have overlapping projections in C.
(b) shows an update of dynamic C-space by obstacle reference counting.

locally searching for a path between any two grid cells p1 ∈ C1 and p2 ∈ C2.∗

We are left with the problem of updating the C-space in a way that would facil-
itate goal testing. Updating the discrete grid involves rasterizing the perimeter of
the obstacle in its original configuration to remove it, and rasterizing it again in the
new configuration. The difficulty lies in the fact that C-space obstacles can overlap.
Removing an obstacle requires us to clear the cells that belong to the obstacle. Due
to overlap, however, a single grid cell may belong to more than one obstacle and
should not be cleared when only one obstacle is removed. A simple binary grid
provides no tools for determining if there are other objects occupying a given cell.
A naive approach to this problem can be highly inefficient. Maintaining lists of ob-
stacles for each grid cell can add another dimension to the C-space. Alternatively,
testing other obstacles for inclusion involves unnecessary search.

We solve this problem as follows: rather than maintaining a binary grid to rep-
resent the C-space, we keep an integer grid. Each cell is represented by a counter
of the number of obstacles to which it belongs. Removing an obstacle decrements
the cell counters during rasterization, and adding the obstacle increments them.
The robot can then reach all accessible cells of 0 count. This algorithm requires no
added complexity in implementation and allows us to perform C-space updates in
time linear to the perimeter of the manipulated obstacle.

References

1. A. Wolf, H. Ben Brown Jr., R. Casciola, A. Costa, M. Schwerin, E. Shammas, and
H. Choset. A mobile hyper redundant mechanism for search and rescue task. In Proc.
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pages 2889–2895, 2003.

∗There exist more efficient methods for this test. We simply show that testing connectivity is not
difficult in the discrete C-space.

20 M. STILMAN and J. KUFFNER

2. G. Wilfong. Motion panning in the presence of movable obstacles. In Proc. ACM
Symp. Computat. Geometry, pages 279–288, 1988.

3. E. Demaine and et. al. Pushpush and push-1 are np-complete. Technical Report 064,
Smith, 1999.

4. J. H. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In
Proc. 26th Annual Symposium on Foundations of Computer Science, pages 144–154,
1985.

5. D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Randomized kinodynamic motion
planning with moving obstacles. In Workshop on the Algorithmic Foundations of
Robotics, 2000.

6. Oliver Brock and Oussama Khatib. Elastic strips: Real-time path modification for
mobile manipulation. In International Symposium of Robotics Research, pages 117–
122. Springer Verlag, 1997.

7. K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability, and plan-
ning. Int. Journal of Robotics Research, 15(6):533–556, 1996.

8. M.T. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001.
9. R. Alami, J.P. Laumond, and T. Sim’eon. Two manipulation planning algorithms. In

Workshop on the Algorithmic Foundations of Robotics, 1994.
10. T. Simeon, J. Cortes, A. Sahbani, and J.P. Laumond. A manipulation planner for

pick and place operations under continuous grasps and placements. In Proc. IEEE
Int. Conf. on Robotics and Automation,, 2002.

11. N. Pollard and J.K. Hodgins. Generalizing demonstrated manipulation tasks. In Work-
shop on the Algorithmic Foundations of Robotics, 2002.

12. M. H. Goldwasser and R. Motwani. Complexity measures for assembly sequences. Int.
J. of Computational Geometry and Applications, 9:371–418, 1999.

13. R. Wilson. On Geometric Assembly Planning. PhD thesis, Department of Computer
Science, Stanford University, 1992.

14. O. Ben-Shahar and E. Rivlin. Practical pushing planning for rearrangement tasks.
IEEE Trans. on Robotics and Automation, 14(4):549–565, 1998.

15. A. Junghanns and J. Schaffer. Sokoban: A challenging single-agent search problem.
In IJCAI Workshop on Using Games as an Experimental Testbed for AI Reasearch,
pages 27–36, 1997.

16. J. Ota. Rearrangement of multiple movable objects. In IEEE Int. Conf. Robotics and
Automation (ICRA), pages 1962–1967, 2004.

17. P.C.Chen and Y.K.Hwang. Pracitcal path planning among movable obstacles. In Proc.
IEEE Int. Conf. Robot. Automat., pages 444–449, 1991.

18. Andrew T. Miller. GraspIt!: A Versatile Simulator for Robotic Grasping. PhD thesis,
Department of Computer Science, Columbia University, 2001.

19. R. Pelossof, A. Miller, P. Allen, and T. Jebara. An svm learning approach to robotic
grasping. In IEEE Int. Conf. Robotics and Automation (ICRA), pages 3215–3218,
2004.

20. D. G. Thelen. Adjustment of muscle mechanics model parameters to simulate dynamic
contractions in older adults. Journal of Biomechanical Engineering, 2003.

21. T. Lozano-Perez. Spatial planning: a configuration space approach. IEEE Trans. Com-
put., pages 108–120, 1983.

22. J. Lengyel, M. Reichert, B.R. Donald, and D.P. Greenberg. Real-time robot motion
planning using rasterizing computer. Computer Graphics, ACM, 24(4):327–335, 90.

