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This paper presents an overview of our work towards building humanoid robots that can work
alongside people as cooperative teammates.  We present our theoretical framework based on a novel
combination of Joint Intention Theory and Collaborative Discourse Theory, and demonstrate how it
can be applied to allow a human to work cooperatively with a humanoid robot on a joint task using
speech, gesture, and expressive cues.  Such issues must be addressed to enable many new and
exciting applications for humanoid robots that require them assist ordinary people in daily activities
or to work as capable members of human-robot teams.
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1. Introduction

Many new applications for autonomous robots in the human environment require them to
help people as capable assistants or to work alongside people as cooperative members of
human-robot teams1,2. For instance, humanoid robots are being developed to provide the
elderly with assistance in their home. In other applications, humanoids are being
developed to serve as members of human-robot teams for applications in space
exploration, search and rescue, construction, agriculture, and more. In the future, we
expect to see more applications for robots that share our environment and tools and
participate in joint activities with untrained humans. This poses the important question of
how robots should communicate and work with us.

1.1 Beyond Robots as Tools to Robot Partners

Robots today treat us either as other objects in the environment, or at best they interact
with us in a manner characteristic of socially impaired people. For instance, robots are
not really aware of our goals and intentions. As a result, they don’t know how to
appropriately adjust their behavior to help us as our goals and needs change. They
generally do not flexibly draw their attention to what we currently find of interest so that
their behavior can be coordinated and information can be focused about the same thing.
They do not realize that perceiving a given situation from different perspectives impacts
what we know and believe to be true about it. Consequently, they do not bring important
information to our attention that is not easily accessible to us when we need it.  They are
not deeply aware of our emotions, feelings, or attitudes. As a result they cannot prioritize
what is the most important to do for us according to what pleases us or to what we find to
be most urgent, relevant, or significant. Although there have been initial strides in these
areas2, there remains significant shortcomings in the social intelligence of robots. As a



result, robots cannot cooperate with us as teammates or help us as assistants in a human-
like way. Consequently, human-robot interaction often is reduced to using social cues
merely as a natural interface for operating (supervising) the robot as a sophisticated tool.
This sort of master-slave arrangement does not capture the sense of partnership that we
mean when we speak of working “jointly with” humans.

Rather than viewing robots as semi-autonomous tools that are directed via
human supervision, we envision robots that can cooperate with humans as capable
partners. For instance, consider the following collaborative task where a human and a
humanoid robot work together shoulder-to-shoulder. The shared goal of the human and
the robot is to assemble a physical structure using the same tools and components.  To
work as a team, both must be in agreement as to the sequence of actions that will be
required to assemble the structure so that the robot can manage the tools and components
appropriately. If the robot must use some of the same tools to assemble parts of the
structure in tandem with the human, it must carry out its task while being careful not to
act in conflict with what the human teammate is trying to do (e.g., hoarding tools,
assembling parts of the structure out of sequence). Hence, for the human-robot team to
succeed, both must communicate to establish and maintain a set of shared beliefs and to
coordinate their actions to execute the shared plan

Human-robot collaboration of this nature is an important yet relatively
unexplored kind of human-robot interaction3. This paper describes our efforts to move
beyond robots as tools or appliances to robots that interact with humans as capable and
cooperative partners. We apply our theoretical framework based on joint intention theory4

and collaborative discourse theory6,20 to enable our expressive humanoid robot, Leonardo
(Figure 1), to work shoulder-to-shoulder with a human teammate on a joint task.

  

Figure 1: Leonardo is a 65-degree of freedom (DoF) fully embodied humanoid robot that stands approximately
2.5 feet tall. It is designed in collaboration with Stan Winston Studio to be able to express and gesture to people
as well as to physically manipulate objects. The left picture shows the robotic structure, the center picture shows
the robot when cosmetically finished, the right shows a simulated version of the robot.

2. Theoretical Framework

For applications where robots interact with people as partners, it is important to
distinguish human-robot collaboration from other forms of human-robot interaction.
Whereas interaction entails action on someone or something else, collaboration is
inherently working with others5,6,7. Much of the current work in human-robot interaction
is thus aptly labeled given that the robot (or group of robots) is viewed as a tool capable
of some autonomy that a remote human operator commands to carry out a task8,9,10. 



What characteristics must a humanoid robot have to collaborate effectively with
its human collaborator? To answer this, we look to insights provided by joint intention
theory4,7. According to collaborative discourse theory6,20, joint action is conceptualized as
doing something together as a team where the teammates share the same goal and the
same plan of execution. Sharing information through communication acts is critical given
that each teammate often has only partial knowledge relevant to solving the problem,
different capabilities, and possibly diverging beliefs about the state of the task

Bratman5 defines certain prerequisites for an activity to be considered shared
and cooperative; he stresses the importance of mutual responsiveness, commitment to the
joint activity and commitment to mutual support. Cohen and his collaborators4,7,11 support
these guidelines and but also predict that an efficient and robust collaboration scheme in a
changing environment with partial knowledge commands an open channel of
communication. Communication plays an important role in coordinating teammates’ roles
and actions to accomplish the task. It also serves to establish and maintain a set of mutual
beliefs (also called common ground) among the team members.

What happens when things go wrong? According to Grosz6, teammates must
share a commitment to achieving the shared goal. They cannot abandon their efforts, but
must instead continue to coordinate their efforts to try a different, mutually agreed upon
plan. Furthermore, each must be committed to hold up their end, as well as be committed
to others’ success in doing theirs6,12. Specifically, the actions and goals that each team
member adopts to do their part should not prevent the others in carrying out theirs.

Therefore, for cooperative behavior to take place, a mutual understanding for
how those internal states that generate observable behavior (e.g., beliefs, intents,
commitments, desires, etc.) of the human and the robot must be established to relate to
one another. Furthermore, both human and robot must be able to reason about and
communicate these states to each other so that they can be shared and brought in to
alignment to support joint activity. Hence, human-style cooperative behavior is an
ongoing process of maintaining mutual beliefs, sharing relevant knowledge, coordinating
action, and demonstrating commitment to doing one’s own part, helping the other to do
theirs, and completing the shared task. Our work integrates these ideas to model and
perform collaborative tasks for human-robot teams.

3. A Collaborative Task Scenario

In our experimental collaborative scenario, there are several buttons in front of Leonardo
(see Figure 2).  The human stands facing the robot across from the buttons to perform
tasks with the robot using natural social cues (e.g., speech, gesture, head pose, etc). The
buttons can be switched ON and OFF (which changes their color).  Occasionally, a button
that is pressed does not light up is considered a failed attempt.

To test our collaborative task execution implementation, we use tasks comprised
of speech recognition and understanding (section 4), vision (section 5) and simple
manipulation skills (section 6). We have designed a set of tasks involving a number of
sequenced steps, such as turning a set of buttons ON and then OFF, turning a button ON
as a sub-task of turning all the buttons ON, turning single buttons ON, and others.  This
task set represents simple and complex hierarchies and contains tasks with shared goals
(section 7).  (Please refer to the work of Lockerd & Breazeal13,33, where we present how
the robot learns a generalized task representation from human tutelage). Section 8



presents how we apply collaborative discourse to address a number of issues that arise
within a collaborative setting – such as how the task can (and should) be divided between
the participants, how the collaborator's actions need to be taken into account when
deciding what to do next, how to provide mutual support in cases of one participant’s
inability to perform a certain action, and how to maintain a clear channel of
communication to synchronize mutual beliefs and maintain common ground for
intentions and actions.

 

Figure 2: Leonardo following the human’s request to activate the middle button (left). Leonardo learns the
labels for each of his buttons by having a person point to a specific button and name it (right). In this picture,
Leonardo and the human are both attending to the same button as the robot learns what to call it.

4. The Speech Understanding System

We have been working in collaboration with Alan Schultz and his group at the Navy
Research Lab to extend their natural language understanding system to support
collaborative task-oriented dialogs and accompanying communicative and expressive
gestures with humanoid robots. The current Nautilus speech understanding system
supports a basic vocabulary, tracks simple contexts, and performs simple dialogs that
involve pronoun referents, basic spatial relations (left/right, near/far, front/back, etc.), and
shifts in point of view9 (with respect to my reference frame versus your reference frame,
etc.). The vocabulary has been tailored to support the kinds of actions (grasping, pressing,
look-at, etc.), entities (buttons, people, etc.), features (color, button-ON, button-OFF,
shape, size, etc.), and gestures (pointing, head nods, etc.) that Leonardo perceives during
his interactions with objects and people. We have been developing perceptual, cognitive,
and motor systems to support these dialogs.

5. The Vision System

Leonardo visually perceives the surrounding environment with two camera systems. The
first is a wide-angle stereo head that is placed behind the robot to provide peripheral
vision information.  This system is used to track people and objects in Leonardo’s
environment.  The second is a stereo camera (with a narrower field of view) that is
mounted in the ceiling and faces vertically downward to view Leonardo’s workspace.
This stereo camera is used to track pointing gestures and objects in the workspace in front
of Leonardo (e.g., the buttons based on their shape, size, color, and position). This visual
information is normalized to real-world coordinates and calibrated to Leonardo’s frame
of reference.  These visual systems allow the robot to detect deictic gestures (discussed



below) used by humans to refer to objects and to direct the robot’s attention to important
aspects of the shared context.

5.1 Perceiving Objects

Each button is detected and tracked via saturated color matching on the intensity data. 
Once the appropriately saturated pixels have been extracted, a pixel labeling, a clustering
and a morphology classification analysis is run over the results.  In addition, an adaptive
binary classification system is used to detect whether a button is on, using a colored LED
at the center of each button whose lighting is toggled when the button is pressed.

5.2 Recognizing Deictic Gestures

We have implemented the ability to recognize deictic gestures used by humans to refer to
objects and to direct the attention of others to important aspects of the shared context. For
instance, following a person’s direction of gaze allows people to establish joint attention
with others (see Figure 3). We have also implemented visual routines for recognizing
pointing gestures (see Figure 4). In addition, we have developed a suite spatial reasoning
routines that allow the robot to geometrically follow a human’s head pose or pointing
gesture to the indicated object referent.

Figure 3: Visualizer showing the robot and a human sharing joint visual attention on the same object. The right
image shows the visual input of a person looking at and pointing to the center button.  The left image shows the
visualization of the robot’s internal model. The human’s gaze is shown as the dark gray vector and his pointing
gesture is shown by the medium gray vector. The robot looks at the same button (robot’s dark gray vector) to
establish joint attention.

Pointing gestures are detected by the overhead stereo camera, by employing
background subtraction in the intensity and disparity domain. To that end, our
background models are continuously updated with a two-element IIR lowpass filter. The
master detection image is computed by performing a logical AND operation on the
intensity foreground and depth foreground maps.  The foreground depth image is more
robust to illumination effects, but whereas the intensity foreground tends to suffer from
false positives, the stereo foreground more commonly suffers from undefined areas due
to correlation noise at depth discontinuities and patches of insufficient texture for stereo
matching.  We therefore perform complementary morphological cleaning operations on
each before combining them.



  

Figure 4: Computing the deictic reference to an object in the visual scene. Left, an overhead stereo camera
identifies the locations of the buttons in the scene and recognizes when a pointing gesture occurs, estimating the
location of tip of the finger and the angle of the forearm. This is passed to the spatial reasoning system (right).
This overhead viewpoint shows the buttons (medium gray), the location of the tip of the finger and base of the
forearm (dark gray), and the identified object referent (white).

To extract the extended arm from the master image, separate regions in the
master detection image are extracted via a multi-pass labeling and extents collection
algorithm.  Only the first pass operates at the pixel level, so on a computational cost basis
it is comparable to a single-pass approach.  The result regions are then sorted in
decreasing size order, and compared against a region history for one final accumulation
stage to combat any breakup of the segmented body part. The largest candidate regions
are then fit with a bounding ellipse from image moments within each region, and
evaluated for likelihood of correspondence to an arm based on orientation and aspect
ratio. The best candidate passing these tests is designated to be the pointing arm and used
to compute the gross arm orientation.

Once the arm has been extracted, we recognize whether the hand is configured
in a pointing gesture or not (see Figure 4).  We accomplish this by estimating the kurtosis
of the hand.  Since the video frame rate is fast enough that a small amount of additional
latency is acceptable, and it is not necessary to be able to reliably detect unusual pointing
gestures that last less than a fraction of a second, several adjacent video frames vote on
whether or not a pointing gesture has been detected. 

6. Object Manipulation Skills

Leonardo acquires the ability to press buttons from “internal” demonstration via a
telemetry suit worn by a human operator. In this scenario, the operator “shows” Leonardo
how to perform an action by guiding the robot using the telemetry suit. Meanwhile, the
robot records these specific actions as they are applied to objects at specific locations.
The calibrated mapping between the robot’s joint angles and the telemetry suit’s Euler
angles is learned via an imitative interaction where the human mimics a repertoire of
poses led by the robot14.

Using this approach, the human demonstrator can “show” Leonardo how to
press a button at several different locations in its workspace (typically less than 10
examples are needed). This defines the basis set of button-pressing examples that are
indexed according to 2D button location provided by the robot’s vision system. While the



robot runs autonomously, it can then interpolate these exemplars (see Eq. 1) using a
dynamically weighted blend of the recorded button pressing trajectories, based on the
Verb & Adverb animation blending technique15.

For each joint angle Jk in the robot,

€ 

Jk = Ek, i×Wi

i=1

NumExemplars

∑  (1)

Where Ek,i is the kth joint angle in the ith exemplar, and Wi is the
weight of the ith exemplar.

To determine the blend weights, we first precompute the Delaunay triangulation
of the target points. We then find the triangle of targets that encloses the new location,
and calculate the three weights such that a weighted sum of those targets is equal to the
position of the new button location.  Once the weights are determined, we can blend these
three source animations together according to the calculated weights on a per joint basis.

This process is done for each frame of the resulting movement trajectory. Thus
for each frame, each joint angle is computed using a weighted sum of the joint angles
from all of the motion-captured source trajectories for that frame.  While this type of
computation can result in an end effector position that is not linearly related to the blend
weights used, we have found that approximating this relationship as linear has been
sufficient for this case. We are currently working on improving the accuracy that will be
necessary for more demanding dexterous manipulations16.

7. Task Representation to Support Collaboration

In this section we present our task representation for collaborative action. We argue that a
goal-centric view is crucial in a collaborative task setting, in which goals provide a
common ground for communication and interaction. Humans are biased to use an
intention-based psychology to interpret an agent's actions17. Moreover, it has repeatedly
been shown that we interpret intentions and actions based on goals, not specific activities
or motion trajectories18.All of this argues that goals and a commitment to their successful
completion must be central to our intentional representation of tasks, especially if those
should be performed in collaboration with others.

7.1 Intention and Task Representation

We represent tasks and their constituent actions in terms of action tuples19 augmented
with goals that play a central role both in the precondition that triggers the execution of a
given action tuple, and in the until-condition that signals when the action tuple has
successfully completed.

Our task representation currently distinguishes between two types of goals: (a)
state-change goals that represent a change in the world, and (b) just-do-it goals that need
to be executed regardless of their impact on the world. These two types of goals differ in
both their evaluation as preconditions and in their evaluation as until-conditions.  As part
of a precondition, a state-change goal must be evaluated before doing the action to
determine if the action is needed.  As an until-condition, the robot shows commitment
towards the state-change goal by executing the action, over multiple attempts if



necessary, until the robot succeeds in bringing about the desired new state. This
commitment is an important aspect of intentional behavior7. Conversely, a just-do-it goal
will lead to an action regardless of the world state, and will only be performed once.

Tasks are represented in a hierarchical structure of actions and sub-tasks
(recursively defined in the same fashion).  Since tasks, sub-tasks, and actions are derived
from the same action tuple data structure, a tree structure is naturally afforded. It should
be noted that goals are also associated with the successful completion of an overall task
or sub-task, separate from the goals of each of the task’s constituents.

7.2 Intention and Decision-Making

When executing a task, goals as preconditions and until-conditions of actions or sub-tasks
manage the flow of decision-making throughout the task execution process. Additionally,
overall task goals are evaluated separately from their constituent action goals. This top-
level evaluation approach is not only more efficient than having to poll each of the
constituent action goals, but is also conceptually in line with a goal-oriented hierarchical
architecture. For example, consider a task with two actions.  The first action makes some
change in the world (and has a state-change goal), and the second action reverses that
change (also a state-change goal). The overall task goal has no total state change and
becomes a just-do-it goal although its constituent actions both have state-change goals.

7.3 Task manager

The task manager module maintains a collection of known task models and their
associated names. Given this set of tasks, the robot listens for speech input that indicates
a task-related request from the human partner. If the robot does not recognize the name of
the requested task, or if the robot does not know how to perform it, he looks puzzled or
shrugs his shoulders “I don’t know.”

In the case of an unknown task, the robot will learn the task's structure, its
constituent actions and goals. In case of a task that's already known, the robot will
attempt to perform the task, while at the same time refining its model of the task by
responding to human instruction and feedback. This combined learning/execution
approach allows for continuous and efficient refinement of the robot's abilities,
employing an intuitive social interface to the human teacher. For a detailed discussion of
our system's socially guided learning architecture, please refer to Lockerd et al.13,33

In the case of a known task, the task manager distinguishes between requests for
autonomous task completion and invitations to task collaboration, and starts the
appropriate execution module. If Leo is asked to do a known task on his own, then the
task manager executes it autonomously by expanding the task’s actions and sub-tasks
onto a focus stack (in a similar way to Grosz & Sidner20).  The task manager proceeds to
work through the actions on the stack popping them as they are done and, upon
encountering a sub-task, pushing its constituent actions onto the stack. The robot thus
progresses through the task tree until the task's goals are achieved.



8. Collaborative Interaction

To make the collaboration a natural human interaction, we have implemented a number
of mechanisms that people use during collaborative discourse. In particular, we have
focused on task-oriented dialogs (section 8.1), flexible turn taking (section 8.2),
communication acts to support joint activity (section 8.3), and self- assessment and
mutual support (section 8.4) for joint activity.

8.1 Gestures and Expressions for Task-Oriented Dialogs

Dialog is fundamentally a cooperative21, and we have implemented a suite of a
collaborative task-oriented conversation and gestural policies for Leonardo. Cohen et
al.11 argue that much of task-oriented dialog can be understood in terms of Joint Intention
Theory (see section 2.1). Accordingly, each conversant is committed to the shared goal of
establishing and maintaining a state of mutual belief with the other. To succeed, the
speaker composes a description that is adequate for the purpose of being understood by
the listener, and the listener shares the goal of understanding the speaker. These
communication acts serve to achieve robust team behavior despite adverse conditions,
including breaks in communication and other difficulties in achieving the team goals.

Cohen et al.11 analyzed task dialogs where an expert instructs a novice on how
to assemble a physical device. We have implemented conversation policies for those key
discourse functions identified by Cohen and his collaborators. These include discourse
organizational markers (such as “now,” “next,” etc.) that are used by the expert to
synchronize the start of new joint actions, elaborations when the expert does not believe
that the apprentice understands what to do next, clarifications when the apprentice does
not understand what the expert wants next, confirmations so that both share the mutual
belief that the previous step has been attained, and referential elaborations and
confirmations of successful identification to communicate the important context features
for each step in the task.

It is important to note that expressive cues such as the robot’s gestures and facial
expressions can be used to serve this purpose as well as speech acts (especially since
Leonardo does not speak yet). A summary of Leonardo’s cues are provided in Table 1.
For instance, Leonardo performs head nods for confirmations (and shakes is head to not
confirm), and it shrugs his shoulders with an expression of confusion to request
clarification or elaboration from the human instructor. The robot looks to the button that
is currently being named by the instructor to confirm successful identification of the
target. Leonardo then looks back to the human to confirm that it has finished associating
the label with the appropriate button and is ready to relinquish its turn (see Table 2). The
robot can demonstrate its knowledge of the button names that it has been taught by
pointing to the correct button in response to the human’s query “Which is the red
button?” This confirms that both human and robot share the same belief regarding which
the button is called by what name.



Table 1: Robot’s gestures and expressions to support transparent communication of robot's internal state to
human.

Social Cue Communicated Intention Interaction Function

Follows gesture to Object of
Attention (OOA)

Establish OOA common ground OOA set & ready for labeling

Point to object, look to object Identify a particular object as
referential focus (e.g.,
demonstrate correct association
of name with object).

Confirm mutual belief about a
particular object referent (e.g.,
successful identification of the target)

Confirming Nod (short) Confirmation (e.g., OK, got it) Update common ground of task state
(e.g., attach label, start learning, etc.)

Affirming Nod (long) Affirm query (e.g., Yes, I can) Affirmation to query

Leaning forward and raising one
ear towards human

Cannot understand (unable to
recognize/parse speech)

Cues the human to repeat what was
last said

Cocking head and shrugging
(express confusion)

Cannot perform the request (lack
of understanding)

Cues the human to add information or
rectify shared beliefs (request
clarification or elaboration)

Shake head Cannot perform the request
(lack of ability)

Cues that robot is not able to perform
the request

Attention following and attention directing skills can be accompanied by
conversational policies along with gestures and shifts of gaze for repair, elaboration, and
confirmation to confirm a shared referential focus and to maintain mutual beliefs between
human and robot. For instance, these skills are of particular importance for situations
where an occluding barrier forces a robot and its human teammate to see different aspects
of the workspace as discussed in the introduction. In short, human and robot will have to
share information and direct the attention of the other to establish and maintain a set of
mutual beliefs and the same referential focus.

In addition, back-channel signals (such as quick head nods) are given by the
robot to let the human speaker know that she is being understood. These are important
skills for robots that must engage humans in collaborative dialog where communication
signals (both verbal and non-verbal) are frequently exchanged to let the conversants
know that each is being properly understood by the other – and equally important, when
communication breaks down and needs to be repaired. If Leonardo cannot parse the
person’s utterance, for instance, the robot displays a look of confusion to indicate that it
is having problems understanding the speaker. A small, confirming nod is given to
indicate when the robot has understood the utterance.

8.2 Turn Taking Skills

We have supplemented our models of collaborative dialog and gesture with flexible turn-
taking skills modeled after those used by humans22. The exchange of speaking turns in
human conversation is robust despite interruptions, incomplete utterances, and the like.
Well studied by discourse theorists, humans employ a variety of para-linguistic social
cues, called envelope displays, to manage who is to talk at which times in an intricate
system of turn taking22. These paralinguistic social cues (such as raising one's brows and
establishing eye contact to relinquish one's speaking turn, or looking aside and
positioning one’s hands in preparation to gesture in order to hold one's speaking turn



when speech is paused) have been implemented with success in embodied conversational
agents23,24 as well as expressive robots25,26.

Table 2: Implemented suite of envelope displays for flexible turn taking skills.

Social Cue Communicated Intention Interaction Function
Small ear perk and slight lean
forward

Attention to human voice Cues that robot is listening and
attending to human

Break gaze, perform action Acquire floor and begin turn While the robot looks away, its
turn is in progress

Looks back at human, arms relaxed Turn is completed Relinquish turn back to human

A number of envelope displays have been implemented on Leonardo to facilitate
the exchange of turns between human and robot (see Table 2). To relinquish its turn,
Leonardo makes eye contact with the person, raises its brows, and relaxes its arms to a
lower position. As the person speaks, the robot continues to look attentively at the
speaker and perks his ears so that she knows that the robot is listening to her. When she
has finished her utterance, Leonardo lifts its arms to show initiative in taking its turn and
breaks eye contact – often looking to the object that the person referred to in her last
utterance (e.g., to one of the buttons).

8.3 Communication to Support Joint Activity

While usually conforming to this turn-taking approach, the robot can also keep track of
simultaneous actions, in which the human performs an action while Leo is working on
another part of the task.  If this is the case, Leonardo will take the human’s contribution
into account and reevaluate the goal state of the current task focus. He then might decide
to no longer keep this part of the task on his list of things to do.  However, the robot
needs to communicate this knowledge to the human to maintain mutual belief about the
overall task state. Another case of simultaneous action handling is where the human
changes the world state in opposition to Leo’s perceived task goal. In this case, the
robot’s commitment to the goal and dynamic evaluation results in Leonardo acting to
reverse the human’s simultaneous action.

Table 3: Leonardo's cues to support joint activity with human.

Social Cue Communicated Intention Interaction Function
Looks back at the human,
points to himself.

Gaze shift used to set turn taking
boundaries. Gesture indicates perceived
ability to perform an action.

Self-assessment and negotiating
sub-plan meshing.

Glances to the OOA, and
opens arms to the human.

Detects inability to perform needed
action on OOA, asking for help.

Request human partner completes
the step.

Looks at workspace. Checks and updates change in task state
due to own or other’s act.

Acknowledge change in task state
to other.

Eyes follow human action. Acknowledges partner’s action,
maintains common ground.

Acknowledge that action is
completed by other agent.

We have implemented a variety of gestures and other social cues to allow the
robot communicate his internal state during collaboration – such as who the robot thinks



is doing an action, or whether the robot believes the goal has been met  (Tables 1-3).  For
instance, when the human partner unexpectedly changes the state of the world, Leo
acknowledges this change by glancing briefly towards the area of change before
redirecting his gaze to the human. This post-action glance lets the human know that the
robot is aware of what she has done, even if it does not advance the task.

If the human’s simultaneous action contributes in a positive way to the task,
such as turning ON a button during the buttons-ON sub-task, then Leonardo will glance
at the change and give a small confirming nod to the human. Similarly, Leo uses subtle
nods while looking at his partner to indicate when the robot thinks a task or sub-task is
completed. For instance, Leo will give an acknowledgement nod to the human when the
buttons-ON sub-task is completed before starting the buttons-OFF sub-task (in case of the
buttons-ON-then-OFF task). All of these play an important role in establishing and
maintaining mutual beliefs between human and robot on the progress of the shared plan.  

8.4 Self Assessment and Mutual Support

At every stage of the interaction, either the human should do her part in the task or Leo
should do his. Before attempting an element of the task, Leo negotiates who should
complete it.  For instance, Leo has the ability to evaluate his own capabilities.  In the
context of the button task, Leonardo can assess whether he can reach each button or not.
If he is able to complete the task element (e.g., press a particular button) then he will
offer to do so (see Table 3).  Conversely, whenever he believes that he cannot do the
action (e.g., because he cannot reach the button) he will ask the human for help..

Since Leonardo does not have speaking capabilities yet, he indicates his
willingness to perform an action by pointing to himself, and adopting an alert posture and
facial expression (Figure 5a). Analogously, when detecting an inability to perform an
action assigned to him, Leonardo’s expression indicates helplessness, as he gestures
toward the human in a request for her to perform the intended action (Figure 5b).
Additionally, Leo shifts his gaze between the problematic button and his partner to direct
her attention to what it is that the robot needs help with.

   

Figure 5: (a) Leonardo participating in a collaborative button-pressing task. (b) Leonardo negotiating his turn
for an action he is able to perform.

8.5 The Task Collaboration Module

The above social skills are then introduced into a turn-taking mechanism we call
the Task Collaboration module. The role of this module is to translate the joint intention-



represented by a task data structure as described in Section 7 – to the robot's individual
intention, which in turn drives its actions.

Figure 6: A schematic view of the Task Collaborator module. Note that the COLLAB_WAIT state can be
terminated by both explicit and implicit turn taking on the human's part; and that in the agent-agnostic
COLLAB_EXECUTING state the robot may be acting, but may also merely be following the teammate's
progress on the action goal.

At its core, the Task Collaboration subsystem is implemented as a state machine
(Figure 6) commanding the interaction flow throughout the collaboration, and triggering
the appropriate social behaviors. The collaborator module's states are defined, in rough
order of a typical interaction, as follows:

• COLLAB_NEXT – The initial state of the system, in which the robot evaluates
the currently pertinent goal, and acts upon this evaluation.



• COLLAB_ASKFORTURN – If the robot is capable of performing the next step
of the task, it will offer to take its turn.

• COLLAB_ASKFORSUPPORT – If the robot is not capable of performing the
next step of the task, it will ask for support from the teammate.

• COLLAB_WAIT – Waiting for a response from the other participant in the
interaction.

• COLLAB_EXECUTE – An agent-agnostic execution step. If the robot is
executing the current action, this happens in this state; if the human teammate is
executing a step, the robot waits in this state. In both cases the until-condition of
the current action is continually evaluated.

• COLLAB_GLANCE – Establishing common ground by glancing at an object of
attention, both for grounding in-sequence action and for joint closure on out-of-
turn action.

Since our architecture is goal-based, a typical operative step begins by
evaluating the goal of the currently pertinent task. If it has not been achieved, the robot
decomposes the task into its constituent sub-tasks and sub-actions and recursively adds
them to the focus stack. If an atomic action reaches the top of the focus stack, it is
assigned to an agent in the team. Currently this can be either AGENT_SELF or
AGENT_OTHER, but the framework allows for any number of agents. The robot then
tracks the performance on the current task step, and dynamically adjust its plan according
to the changes in goal satisfaction throughout the collaboration, as described above.

9. Performing a Task In Collaboration with People

In sum, our goal-oriented representation affords task collaboration between the robot and
a human partner. We have implemented a turn taking framework in which the human
collaborator and Leonardo can work in partnership to achieve a common goal.  This is
made possible by continually evaluating both the state of the task and the state of the
world before trying to execute an action.

We placed a high importance on communicating the robot’s perceived state of
the world and the task (recall our discussion in section 2). Goals refer to world state as
well as to activity state, establishing common ground between the robot and the human.
As a result, joint intention, attention and planning is naturally achieved. Throughout the
collaboration, the human partner has a clear idea as to Leonardo’s current singular intent
as part of the joint intent.

We have conducted a few early experiments using the framework described
herein, and have found these cues to play a significant role in establishing and
maintaining mutual beliefs between the teammates on the progress of the shared plan, and
in increasing the efficiency of the human-robot collaboration process.  Table 4 shows a
sample transcript describing typical task collaboration between Leonardo and a human
teammate. We chose to display the following simple tasks for reasons of transcript
brevity: BUTTON-ONE – Toggle button one, BUTTON-ONE-AND-TWO – Turn buttons
one and two ON. While these do not illustrate the Leonardo’s full range of goal-oriented
task representation capabilities, they offer a sense of the joint intention and
communicative skills fundamental to the collaborative discourse stressed in this section.



Table 4: Sample task collaboration on single-level task.

T Human Robot Notes

1
“Leo, let’s do task
BUTTONS”

Shrugs “I don’t know” Leo does not know this task.

2
“Let’s do task
BUTTON-ONE”

Looks at the buttons
Leo acknowledges that he understands
the task, and visibly establishes mutual
belief on the task’s initial conditions.

3 Points to himself
He can do the first (and only) part of
the task, and suggests doing so.

4 “OK, you go”
Presses button one, looking at
it

Looking away from the partner while
operating establishes turn taking
boundaries.

5 Looks back at his partner Gaze shift is used to signal end of turn

6 Nods shortly
Communicates the robot’s perceived
end of task

7
“Leo, let’s do task
BUTTON-ONE”

Looks at the buttons; points to
himself

As in steps 2-3

8 “I’ll go “ Looks at his partner

9 Presses button one Looks at button one
Acknowledges partner’s action, creates
mutual belief

10 Nods shortly Communicates perceived end of task.

11
Moves button one out of
Leo’s reach

12
“Let us do task
BUTTON-ONE”

Looks at buttons
Leo acknowledges that he understands
the task, and visibly establishes mutual
belief on the task’s initial conditions.

13
Looks at button one, then back
at the human partner; extends
his arms in “Help me” gesture.

Leo assesses his capabilities and
consequently requests support.

14 Presses button one
Looks at button one; looks
back at human; nods shortly.

Glance acknowledges partner’s action
and creates mutual belief as to the
task’s completion.

15
“Let us do task
BUTTON-ONE-AND-
TWO”

Looks at buttons
Leo acknowledges that he understands
the task, and visibly establishes mutual
belief on the task’s initial conditions

16 Points to himself
He can do the first part of the task, and
suggests doing so.

17 “OK, you go”
Presses button one, looking at
it

18
At the same time as 17,
presses button two

19
Looks at button two; looks
back at the human; nods
shortly

Acknowledges partner’s simultaneous
action, creates mutual belief as to the
task’s completion.

Note: Frames 2-14 present three collaborations on the BUTTON-ONE task (toggling a single button).   In the
first collaboration, Leo negotiates and completes the task himself.  On the second, the human partner completes
the task, and Leo’s eye gaze and gestures help to communicate mutual beliefs about the task state.  The third
time, the button is out of reach and Leo sees that he has to ask the human to complete the task.  Frames 15-19
present the BUTTON-ONE-AND-TWO task (pressing two buttons ON).  This scenario shows Leo’s ability to
dynamically take his partner’s simultaneous actions into account, again using gesture and eye gaze to maintain
mutual beliefs about the task state.

Note that in Trial 4, there is a case of simultaneous action handling, in which the
human changes the world state in opposition to Leo’s perceived task goal. In this case,



Leo’s commitment to the goal and dynamic evaluation results in the reversal of the
human’s simultaneous action.  Additional untrained user studies are currently being
designed to quantitatively evaluate these perceived performance enhancements by
comparing a functionally identical, but socially handicapped version of this system to our
current implementation (i.e., the robot performs the task with social skills and cues verses
without social skills and cues).

In summary, during the trials for the collaborative button task, Leonardo
displayed successful meshing of sub-plans based on the dynamic state changes as a result
of his successes, failures, and the partner’s actions. Leo’s gestures and facial expressions
provided a natural collaborative environment, informing the human partner of Leo's
understanding of the task state and his attempts to take or relinquish his turn. Leo's
requests for help displayed his understanding of his own limitations, and his use of gaze
and posture served as natural cues for the human to take appropriate action in each case.

As future work, we would like to improve the complexity of the task
representation as well as the interaction and dialog. Although Leonardo’s gestures and
facial expressions are designed to communicate his internal state, combining this with an
ability to speak would give the robot more precision in the information that he can
convey. We would also like to implement a richer set of conversational policies to
support collaboration. This would be useful for negotiating the meshing of sub-plans
during task execution to make this process more flexible and efficient. We continue to
make improvements to Leonardo’s task representation so that he can represent a larger
class of collaborative tasks and more involved constraints between the tasks’ action
components.

10. Discussion

In viewing human-robot interaction as fundamentally a collaborative process and
designing robots that communicate using natural human social skills, we believe that
robots will be intuitive for humans to interact. Toward this goal, we have presented our
ability to coordinate joint intentions via collaborative dialog to perform a task jointly with
a robot.   We have shown how we incorporate social acts that support collaborative dialog
– the robot continually communicates its internal state to the human partner and
maintains a mutual belief about the task at hand.  This makes working together more
efficient and transparent. In this section, we discuss our approach in the context of related
work.  Viewed in the context of joint intention and collaborative discourse framework,
our approach is significantly different than other approaches to human-robot interaction.
Our goal is broader than interaction; we try to achieve collaboration between human and
robot partners.

10.1 Collaboration vs. Interaction

As discussed in section 2, human-style cooperative behavior is an ongoing process of
maintaining mutual beliefs, sharing relevant knowledge, coordinating action, and
demonstrating commitment to doing one’s own part, helping the other to do theirs, and
completing the shared task. Using joint intention theory and collaborative discourse
theory as our theoretical framework, we have incorporated the notions of joint intentions
and collaborative communication in our implementation.  Our goal oriented task
representation allows the robot to reason about the task on multiple levels, easily sharing



the plan execution with a partner and adjusting to changes in the world state.  The robot
acts in accordance with joint intentions, and also works to communicate and establish
mutual beliefs about the task state as the interaction progresses (e.g. confirming when a
particular step is complete, and negotiating who will complete a portion of the task).

In related work, Kimura et al explore human-robot collaboration with vision-
based robotic arms.27 While addressing many of the task representation and labor division
aspects necessary for teamwork, it views the collaborative act as a planning problem,
devoid of any social aspect. As such, it does not take advantage of the inherent human
expertise in generating and understanding social acts. As a result, the interaction requires
the human teammate to learn gestures and vocal utterances akin to programming
commands.

Fong et al. consider a working partnership between human and robot in terms of
collaborative control, where a human and a robot collaborate in vehicle teleoperation.10

The robot maintains a model of the user, can take specific commands from the operator,
and also has the ability to ask the human questions to resolve issues in the plan or
perceptual ambiguities.  The role of the human in the partnership is to serve as a reliable
remote source of information. In contrast, our work explores collaboration where the
human and robot work together on a collocated task where both the human and the robot
can complete steps of the plan. Because the human and robot act upon a shared
environment, the robot must therefore notice changes made by the human and
dynamically reassess the plan and coordinate actions accordingly.

Some work in the field of human and virtual agent teams also has the notion of
shared plans that must be continually maintained and updated according to changes in the
world state.  For instance, Traum et al have a system in which a human is part of a team
of agents that work together in a virtual world.28 Their system addresses plan
reassessment and uses dialog models and speech acts to negotiate a plan as a team.  Roles
are attached to various steps of the plan, and an authority structure helps in negotiating
control.  Our work differs in two respects from this virtual teamwork system.   First, in
our physically embodied scenario, we explore the issues of face-to-face gestures and
socially relevant communication acts that facilitate collaboration.  Second, we do not
utilize an authority structure; instead, the robot and the human negotiate turns in the
context of a shared plan.

Employing social cues for dialog and collaboration has been investigated in the
field of embodied conversational agents (ECA). The agent’s verbal and nonverbal
communication, including gesture, gaze, and head pose has been explored in tutorial
systems, e.g. by Rickel and Johnson24 and in embodied dialog systems, e.g. Thórisson.30

On the opposite side of the spectrum, Nakano et al. have studied human means of face-to-
face grounding and implemented their findings in the design of an ECA for a
collaborative dialog system. Their agent detects and analyzes head pose and gaze of the
human and offers appropriate elaboration when needed.31 By the very nature of virtual
agents, the tasks in both cases have been primarily informational, and could therefore not
capture the physical aspects of shoulder-to-shoulder collaboration between a human and a
robot, in particular with regard to object manipulation.

Moreover, this work has been predominantly concerned with grounding in
dialog with regards to discourse contributions in a sequential dialog and neither with joint
intention, joint action, a shared workspace and hierarchical tasks. In case of the ECA
discussed above, the roles of the human and the artificial agents were clearly separated,
whereas our work stresses the case of a shared action in which the task must be divided



between the human and robotic team members. To enable this, we believe that social
skills need to be applied at every level of the interaction, and our robot maintains
grounding on the perceptual level, the object reference level and the task progression
level. Finally, it is important to note that attempts to transfer these important concepts to
the realm of autonomous agents, and in particular robotic agents have so far been rare,
rudimentary, and also curiously often information-centric.32

In sum, on one hand previous works have dealt with the scenario of a robot
being the tool towards a human’s task goal, and on the other, the human being the tool in
a robot’s task goal.  Our perspective is that of a balanced partnership where the human
and robot maintain and work together on shared task goals. We have thus proposed a
different notion of partnership than has been addressed in prior works: that of an
autonomous robot peer working with a human as a member of a collocated team to
accomplish a shared task.

In realizing this goal, we believe that robots must be able to cooperate with
humans as capable partners and communicate with them intuitively. Developing robots
with social skills and understanding is a critical step towards this goal. To provide a
human teammate with the right assistance at the right time, a robot partner must not only
recognize what the person is doing (i.e., his observable actions) but also understand the
intentions or goals being enacted.  This style of human-robot cooperation strongly
motivates the development of robots that can infer and reason about the mental states of
others, as well as communicate their own internal states clearly within the context of a
shared interaction. Our goal-driven joint intention based framework is aimed at this
promise.

11. Conclusion

This paper presents an overview of our work to build sociable humanoid robots that work
cooperatively with people using natural dialog, gesture, and social cues. We have shown
how our approach allows our robot to perform a given task cooperatively with a human
teammate. The robot collaborates with the human to maintain a common ground from
which joint intention, attention, and planning are naturally achieved. The robot is aware
of its own limitations and can work with the human to dynamically divide up the task
appropriately (i.e., meshing sub-plans), offering to do certain steps or asking the human
to perform those steps that it cannot do for itself. If the human proactively completes a
portion of the task, the robot can track the overall progress of the overall task (by
monitoring the state of the world and following the task model). Leonardo demonstrates
this understanding (e.g., using social cues such as glancing to notice the change in state
the human just enacted, or giving quick nod to the human) so they are both in agreement
as to what has been accomplished so far and what remains to be completed.

Based on the work presented in this paper, we argue that building socially
intelligent robots has extremely important implications for how we will be able to
communicate and work with humanoid robots in the future.  These implications reach far
beyond making robots appealing, entertaining, or easy with which to interact. Human-
robot collaboration is a critical competence for robots that will play a useful, rewarding,
and long-term role in the daily lives of ordinary people – robots that will be able to
cooperate with as capable partners rather than needing to be operated neither manually or
by explicit supervision as a complicated tool.
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