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Progress in the field of humanoid robotics and the need to find simpler ways to program
such robots has prompted research into computational models for robotic learning from
human demonstration. To further investigate biologically inspired human-like robotic
movement and imitation, we have constructed a framework based on three key features
of human movement and planning: optimality, modularity and learning. In this paper
we describe a computational motor system, based on the minimum variance model of
human movement, that uses optimality principles to produce human-like movement in a
robot arm. Within this motor system different movements are represented in a modular
structure. When the system observes a demonstrated movement, the motor system
uses these modules to produce motor commands which are used to update an internal
state representation. This is used so that the system can recognise known movements
and move the robot arm accordingly, or extract key features from the demonstrated
movement and use them to learn a new module. The active involvement of the motor
system in the recognition and learning of observed movements has its theoretical basis
in the direct matching hypothesis and the use of a model for human-like movement
allows the system to learn from human demonstration.

1. Introduction

Our goal is to create robots that are both flexible and adaptable, and which can
interact with humans in an environment that does not require any special consid-
erations for the robot. Humans working with robots in a natural way will require
a more natural means to programme them than through a computer terminal.!
Robots should be able to learn from human demonstration and from each other,?
widening their adaptability and reducing complex programming. Since we want
robots to perform actions more like humans, our starting point is to look at how hu-
mans move, interact and learn from each other. This biologically inspired approach
to robotics allows us to draw upon studies from neuroscience and neurophysiology
to help design the function of the robotic system.?

Recent work on mirror neurons (neurons that fire both when an action is ob-
served and performed) in humans*® and growing evidence for a simulation theory
of mind®7 point to a direct link between visual perception and the motor system in
humans. This link has been used as the basic idea behind several successful robotic
imitation systems.?® To allow greater correspondence between demonstrated and
imitated movements, we have looked at producing a motor system for a robot arm
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that acts along the principles of the human motor system. To this end, we have
constructed a framework based on three key features of human movement and
planning: optimality, modularity and learning. In this framework a well-established
optimal control scheme is adapted to implement a biologically-plausible model of
human movement. The movement planning part of the control scheme lends itself
well to a modular implementation. When a movement is observed, each module
produces motor commands to update the internal state representation, allowing
the system to simulate the demonstration. If the goal of the movement is achieved,
the system can then use the selected motor commands to move the robot arm, or
extract features of the demonstrated movement to use in creating a new module.

We begin by exploring what is meant by "human-like" movement, and outline
relevant computational theories of human movement production and planning. We
then briefly discuss the suggested link between perception and action, and introduce
a computational model for imitation based on this idea that incorporates the model
for human-like movement. We then describe the implementation of the optimal
control scheme and the imitation system, and present results both in simulation
and for a robot arm.

2. Models of Human Movement
2.1. Features of Human Movement

A wide range of studies have shown that human upper limb movements have cer-
tain invariant features.? 191112 Some of these features are a result of the physical
motor system; the spring-like nature of muscles or the interplay between agonis-
tic and antagonistic muscles. Of more relevance to a robotic system that does not
have these physical attributes are other features that emerge as a product of the
underlying motor representation and the neural commands sent to the muscles.
Any computational model of the motor system should aim to capture and explain
these features in a biologically realistic manner.

One of the main features is that of smoothness of movement. Despite the al-
most infinite number of possible ways in which the hand can be moved to a target,
in fast visually guided point-to-point reaching movements the path of the hand is
roughly straight, while the motions of the joints are complex. The velocity of the
hand follows a bell-shaped curve with a single maximum, resulting in smooth ac-
celeration. Although there is variation in the exact hand path, the common feature
of smooth movement with the hand moving in a straight line between points holds
both between individuals and between trials.

Another key feature is the trade-off between speed and accuracy known as Fitts’
Law - the faster a movement occurs, the less accurate the final hand position, and

vice versa.?
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2.2. Optimal Control

For even the simplest tasks, such as point-to-point reaching movements, there are
many possible paths that the hand could move along and many possible velocity
profiles for it to follow. Even if both the path and the velocity profile have been
determined, the inverse kinematics problem means that there are many combina-
tions of joints angles that can achieve the required trajectory. However, not all
trajectories or sets of joint angles are equal. Motor planning can be thought of as
the process of selecting one solution from these many possibilities that is consistent
with the goal of the task.

This can be formulated as an optimal control problem, where the trajectory is
produced by attaching a cost to some characteristic of the movement, such as the
hand velocity or energy expended in the muscles, and then selecting control signals
to move the arm in such a way as to minimise some function of this cost. To which
aspects of the movement we assign a cost determines which trajectory is followed.
Our goal then becomes to select the aspect of the movement on which to apply the
cost function so that we capture the required features of human movement.

Cost functions, or optimisation criteria, for modelling limb movements and hand
trajectories fall into one of two categories - kinematic or dynamic solutions. In
kinematic solutions the cost function is based upon the geometric or time-based
properties of the motion, and the state of the limb could be represented, for ex-
ample, in terms of joint angles or the Cartesian position of the hand. In dynamic
solutions the cost function is based on the dynamics of the arm and the state could
be represented, for example, in terms of joint torques or forces acting on the hand.
Examples of cost functions from each category are given in the next section.

2.3. Minimum Jerk and Minimum Torque

An example of a kinematic solution to the optimal control problem for human
movement is the minimum jerk model. It has been suggested that smoothness of
movement could be an explicit goal of the system.!! The measure of smoothness
chosen by Flash and Hogan was the "jerk" of a movement, defined as the square
of the derivative of the Cartesian hand acceleration. Their results show a good
match between the predicted and actual trajectories. This suggests that there is a
kinematic representation of movement at higher levels of the motor system. Some
features of the measured movements however, such as a slight asymmetry in the
velocity profile, were not captured by the model.

In contrast to the purely kinematic minimum jerk model, a model was proposed
that used a dynamic objective function.'? Uno et al. argued that while the minimum
jerk model successfully captured the behaviour of reaching movements, it is unlikely
that movements are determined independently of dynamic quantities of the arm
such as length, load, torque or external force. The authors defined an objective
function that minimised the change in the torque at the joints. The hand paths
predicted by the model were in accordance with those predicted by the minimum
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jerk model in an area close to and in front of the body. Significant differences
were predicted however in areas further out and to the side of the body, where the
dynamics of the arm differ from those in front of the body. Experimental results
were obtained for human arm trajectories of the movements where the two models
differed in their predictions. These results showed clearly that the shape of the
hand path was dependent on the area of the workspace where the movement was
performed, as predicted by the minimum torque-change model.

2.4. Minimum Variance - Signal-dependent noise

Despite producing human-like movements, both the minimum jerk and minimum
torque-change models have a number of problems. The criteria used in those mod-
els do not include an accuracy constraint for the movement. In common with many
other optimisation criteria used to explain human movements, they also lack a
principled explanation as to why the motor system evolved to minimise these par-
ticular aspects of movement, other than that they both predict the general shape
of human reaching movements.

Harris and Wolpert'? looked at the constraints on movement that hindered
the achievement of a target goal. They suggested that the constraint with the
biggest impact would be the effect of neural noise on the accuracy of the movement.
Biological noise is signal-dependent, meaning that the standard deviation of the
noise is linearly proportional to the absolute value of the signal on which it occurs.
It is present in all neural systems and would cause deviations in the path of the arm
from the desired trajectory for a point-to-point reaching movement. The deviations
will build-up over the course of the movement, leading to variability in the final
position of the hand.

In the presence of signal-dependent noise, moving rapidly requires large control
signals, which means that the amplitude of the noise is also large, decreasing the
accuracy of the movement. Since inaccuracy requires further corrective movements
to accomplish a task, moving as rapidly as possible is not the optimal solution
for the motor control system. Lowering the amplitude of control signals decreases
the amplitude of the noise, and hence increases accuracy, but this results in slower
movements. The assumption of signal-dependent noise on the control signal there-
fore neatly explains the trade-off between movement speed and accuracy, as ob-
served in actual human reaching movements.? On this basis, it was proposed that
neural commands are selected to minimise the variance in the final hand position
for a specified movement duration to achieve some task goal.'?

As well as explaining the observed speed-accuracy trade-off, the minimum vari-
ance model also successfully predicts the smooth movement characteristics of hu-
man reaching movements. Smoothness of movement is not an explicit goal of the
minimum variance objective function as it was with the models described above,
but despite this the model predicts the characteristic straight hand paths and bell-
shaped velocity profiles of human movement. This indicates that smooth movement
is not an explicit goal of the human motor system, but is instead an emergent prop-
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erty of the movement when the motor system is subject to signal-dependent noise.
Observing the variance of the hand is also much easier than measuring the jerk or
the torque change.!* Its success at explaining so many features of human move-
ment makes the minimum variance model the most biologically realistic of the
optimisation criteria that have been suggested as being represented in the motor
system.

3. Imitation

The term #mitation is used generally throughout the literature to refer to similar
but related processes which have subtle distinctions.!> When learning by imitation,
a system is given the ability to engage in imitative behaviour which then serves as
a mechanism for reinforcing further learning and understanding. Learning to imi-
tate requires that the system learns how to solve the correspondence problem (see
below) through experience. The focus of this work however is on learning by demon-
stration, which would seem at first to be identical to learning by imitation. However
learning from a demonstration does not have to involve imitative behaviour. Where
it does not, the system performs task-level imitation, and learns how to perform
a task or achieve some target goal without imitating the exact behaviours of the
demonstrator.

One of the major problems for researchers in imitation is the correspondence
problem. How do humans map from the perceived state of the demonstrator to their
own body state? How do we know which parts of our bodies to move to correctly
imitate the demonstrator? This problem is even more acute for robotic imitation,
where the morphology of the robot is likely to be different from that of a human.
The robot is also likely to have less flexibility and fewer degrees of freedom than the
human demonstrator. This leads on to the problem of determining a measure of the
similarity between the demonstrator and the imitator.'5! For task-level imitation,
this measure requires the specification of some goal, such as moving the hand to a
particular target at a particular time.

3.1. Simulation Theory and the Direct Matching Hypothesis

One theory that seeks to explain the correspondence problem is simulation the-
ory, which effectively suggests that humans put themselves in the place of the
demonstrator and "simulate" the motor commands they would use to perform the
observed movements by deploying the same cognitive mechanisms. This simulation
is usually thought of as requiring the ability to give pretend inputs to our motor
system as well as the ability to take the system offline, so that the movements
are not actually performed while they are being imagined.” This is in contrast to
theory theory, which suggests that our behaviour can be explained by the use of
inferential and deductive processes that do not involve simulation,'” the principle
idea being that humans acquire a set of explanatory theories that relate external
stimuli to the unobservable internal states of the demonstrator. They can then use
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Figure 1. Architecture for an active imitation system

these theories to infer these internal states and try to match their own state to that
of the demonstrator.

The ideas behind simulation theory are also expressed in the direct matching
hypothesis, which proposes that action understanding results from a mechanism
that maps an observed action onto a motor representation of that action.'® This is
closely related to the motor theory of perception, which suggests that the motor sys-
tem is actively used in the perception of motion and the recognition of actions. The
mirror neuron system found in monkeys and posited to exist in humans as well*19
is such a mechanism. An experiment'® to monitor a subject’s gaze both when per-
forming and observing a task showed that gaze is predictive in both situations,
implying that during action observation humans carry out motor programs equiv-
alent to those used in the action. From a computational viewpoint, the required
mapping between perception and appropriate action is a very difficult process, as
visual perception takes place in a different coordinate frame from motor control.

3.1.1. Mirror Neurons

The mirror neuron system is a neural circuit in the F5 area of monkey premotor
cortex that is active both when the monkey observes another monkey or a human
grasping or manipulating objects, and when the monkey performs the same ma-
nipulation. Evidence is accumulating that a similar system exists in humans.® This
system has been put forward as the link between visual and motor representations
that is required in order for imitation and learning from observation to take place.

3.2. A Computational Model for Imitation

A model of imitation based on the link perception and action has been described
by Demiris and Hayes.? In their model, a distinction is made between passive and
active imitation. In the passive system, information from the vision system is given
to a posture estimation module which estimates the current postural state of the
demonstrator. The postures that define the movement sequence being imitated are
stored and fed into a movement matching module which produces the motor com-
mands needed to match these postures with equivalent postures by the imitator.
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This system has also been implemented for a robot head.?’ The passive system
follows a one-way perceive-recognise-act sequence?! and requires very little infor-
mation. However, it makes no distinction between known and unknown movements,
and the motor system is clearly separate from the perception system. In the active
system, shown in Fig. 1, a forward model is paired with a behaviour (equivalent
to an inverse model or motor primitive) and used to generate a prediction of that
behaviour that is compared with the next state of the demonstrator. This structure
uses prediction feedback and can therefore match a visually perceived demonstra-
tion behaviour with an equivalent one from the imitator’s set of known behaviours.
The prediction is compared to the demonstrator’s actual state and used to produce
an error signal that determines how closely a known behaviour matches the per-
ceived behaviour. In this way, known and unknown behaviours can be distinguished
and the motor system is directly involved in the perception of the demonstrated
action.

In the next section, we outline how this imitation model is combined with an
implementation of the minimum variance model and adapted to allow recognition
and learning of human demonstrated trajectories by a robot arm.

4. Implementation
4.1. Minimum Variance Model

There have been several computational models that have been used to investigate
the minimum variance constraint, each with a different goal. In their original pa-
per Harris and Wolpert generated trajectories for comparison with experimental
data, formulating the signal-dependent noise solution as a quadratic programming
problem.® Todorov and Jordan explored optimisation principles for motor control,
using a Kalman filter framework to produce an optimal feedback control law.?2
Miyamoto et al. used a number of processes to train a recurrent neural network
to produce the desired accelerations.!* These were then used to drive a dynamics
model of the human arm. Feng et al. carried out a detailed mathematical treatment
of the minimum variance model.?3

While each approach is perfectly valid and produces excellent simulation re-
sults, they were either computationally intensive, required long training periods
to determine relevant parameters, or were in some other way unsuitable for the
direct control of a robot arm. Instead, the ideas presented by Harris and Wolpert,
Todorov and Jordan, and Miyamoto et al. were used to produce an optimal control
method that was computationally straightforward and suitable for implementation
on a simple servomotor robot arm.

Since the human arm has seven degrees-of-freedom (DOF) and is highly kine-
matically redundant, a complete bio-mechanical model of the arm would require a
very complicated controller. Instead a simpler model was used - a two-link, two-
joint arm restricted to move in a horizontal plane, as shown in Fig. 2. Both joints
were revolute, with the first joint representing the shoulder placed at the origin
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Figure 2. The two-link planar robot arm used in these experiments

of the coordinate system. The second joint, representing the elbow, connected the
two links. The forward and inverse kinematics for such a robot arm were calculated
using a standard method.?* Many studies have used a manipulandum to restrict a
person to move their arm in a plane, providing data for comparison between the
movement of the model and actual human movement.'?

4.1.1. State Representation and System Dynamics

The discrete-time linear quadratic regulator (DLQR) optimal control system was
adapted to perform signal-dependent noise based control. Initially, the state feed-
back was assumed to be noiseless. The robot arm was modelled as a discrete time
system with noise added to the control term:

St+1 = ASt + B (ut + 'I’Lt) (1)

where s; was the state of the system and u; was the neural control signal. A and B
were fixed matrices describing the dynamics of the system. The term n; represented
Gaussian white noise with zero mean and variance ku7, which increased with the
magnitude of the control signal.

Since the theory is expressed in terms of moving the hand to a desired position,
in a desired time and with a desired accuracy, the state representation was chosen to
be the position of the end effector of the robot arm and its velocity, both measured
at time t.

St = [ZITt, &y, vary, 1]I (2)

where x; was the position of the end effector on a single axis, ; was the velocity
along that axis and var; was the positional variance.!® The fourth term, "1", was
used in the optimal control function to encode the positional error. The discrete-
time dynamics of the system were
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Ti41 = T + CL‘tAt (3)
i‘t+1 = j)t + UtAt (4)

These dynamics were put into the matrix form of Eq. (1), setting A and B as

1At00 0
0100 At
A= 0010 B = 0
0001 0

The positional variance was taken from the first element of the diagonal of the
covariance of the state distribution, calculated separately. The state representation
and the discrete-time dynamics were adapted from the supplementary notes to
Todorov and Jordan, which included a second-order model of muscle forces acting
on the hand. These were removed since the robot arm was constructed using ser-
vomotors driven by a positional signal rather than torque, and controlling the arm
to generate the required trajectories could be achieved without taking the extra
forces into account. By extending the state representation in a suitable way, the
algorithm would be equally applicable to an arm controlled by torque motors or
artificial muscles.

4.1.2. Cost Function

The DLQR defines a cost function J, in matrix form, which has been adapted for
the minimum variance model:

T—1
J =" (siQst + ujRuy + spQrst + syQnsn) (5)
t=0
where @ is the state cost measuring state deviation, Qr is the final state cost at
the end of the movement, Q) is the state cost during a post-movement period of
length N, and R is the input cost measuring input size. The DLQR problem is to
find the set of control signals {uf)qr, . ,uéﬁil} that minimises this cost function.
The values of the four matrices Q, R Q1 and @) were chosen in accordance with
the minimum variance model. Since the aim of the model is to minimise the variance
in the hand position during the post-movement period, no constraints were placed
on the state from the start of movement to the start of the post-movement period.
This meant that the state cost () was zero for the duration of the movement. The
post-movement cost Q@ is defined from the end of the movement at time ¢t = T+1
to the end of the post-movement period at time ¢ = T + N, and penalises deviation
from the target position as well as ensuring that the velocity tends to zero at the
end of the movement. The cost function J therefore becomes:
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T+N-1 T+N-1
Jow = Z (Ruf)Jr((x* —z7)’ + (wir) + (varT)2)+ Z ((w.z’t)2 + (vart)Q)
=0 t=T+1

(6)
where N is the length of the post-movement period, z* is the desired end position
of the movement and w is a scaling factor for the velocity. The structure of the
final state cost is also adapted from Todorov and Jordan, again without the terms
relating to the second-order muscle model. The first term in Eq. (6) penalises the
size of the control signals, which needed to be kept small to increase the accuracy of
the movement in the presence of signal-dependent noise. The second term ensures
that the state moves towards the desired end position at the correct time and
begins to penalise the velocity and variance at this time. The third term continues
to penalise the velocity and variance during the post-movement time, forcing the
velocity to zero and minimising the positional variance.

The state representation and cost functions chosen up to this point were suitable
for a single straight point-to-point reaching movement. However, humans can also
move through other points when reaching towards a target, for instance when we
need to reach around an obstacle. The single target point structure described so far
is easily extensible to allow a number of other points to be included in the trajectory.
The cost function was amended to include the positions of the necessary via-points.
The same idea could also be used to specify a target velocity for the via-points or
for the target position if the goal of the movement was not a stationary point.

In contrast to the target position, which by definition occurs at the end of the
movement, each via-point consisted of both the desired position and the time at
which the trajectory should pass through that position.

Jvia = Jmo + i ((35: - -Tti)Q) (7)

where m was the number of via-points, x} was the desired position for via-point ¢,
and x;, was the state value at the time specified by via-point ¢. To put this into
a convenient matrix form, an extra "1" was added to the state representation for
each via-point, in the same way as for the target position. Instead of the state cost
@ being zero for the whole of the movement period, @ at each time ¢; specified by
via-point ¢ included the desired position z}. @) at all other times remained as zero.

4.1.3. The Control Algorithm

The DLQR algorithm consists of a pre-processing step where the "cost-to-go", P,
at each time step was calculated, starting with the cost at the desired end state
and working back to the initial state. The "cost-to-go" from the current state is the
minimum cost incurred to reach the current state added to the minimum "cost-to-
go" from the next state. P at time t = T + N (i.e. the end of the post-movement
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period) is simply the final state cost . Then, for every time step back to zero, the
value of P is calculated according to Eq. (8).

Prin=Qy

Py = Qi + (APA) — (A’PtB (R+B'P,B)"" B’PtA) )

This process is called Riccati recursion and takes place before the start of the
movement. When the movement begins the value of the optimising state feedback
gain K, is calculated online for each time step from ¢t = 0 to t = T + N - 1,
according to

K,=—(R+B'Py1B) ' BP 1A (9)
This is then used in turn to calculate the DLQR control signal

uéqr = KtSt (].0)

From this the amplitude of the signal dependent noise is calculated as a value
drawn from a normal distribution with zero mean and variance k (u.?")2, where
k is a proportionality constant. The calculated noise signal is then added to the
control signal and the noisy signal is used in the state update Eq. (1).

The state representation given above, and all other equations in this section,
are shown for movement in the z-axis only. Since this model is approximating
a linear system of equations, extension to the y-axis simply involves adding the
required terms to the state representation, dynamics and cost function matrices,
and extending the dimensionality of all other matrices appropriately. The state
representation for two degrees of freedom is given by Eq. (11). As before, the "1"’s
in the state representation encode for positional accuracy.

St = [$t7 Yty Tty Yty 1, 1}/ (11)

After the state had been updated, an inverse kinematics algorithm was used to
calculate the joint angles required to position the robot arm according to the current
state. These angles were used directly to plot the simulation results. The joint angles
were then mapped on to servomotor position commands that were sent to a servo
control board to move the robot arm.

4.1.4. Task Optimization in the Presence of Signal-dependent noise (TOPS)

A powerful feature of using an optimal control scheme to implement the minimum
variance model is the ability to specify movements in terms other than reaching
to an exact set of coordinates in the workspace.!* Both the minimum jerk and
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the minimum torque models require this kind of specification, but the addition of
noise as an integral part of the systems means that repeated movements to the
same target coordinates will not end at precisely the same spot. Instead, tasks are
specified in terms of moving to a certain point with a certain level of variance. This
gives a target area, rather than a precise point, within which the goal can be said
to be achieved. This has been formalised as Task Optimization in the Presence of
Signal-dependent noise (TOPS).'* Here we return to Fitts’ Law, where the required
accuracy of the goal (set by the required variance) affects the amount of time it
takes to complete, or vice versa. This is extremely relevant for imitation, as will be
discussed in the next section.

4.2. Imitation System

As stated above, the minimum variance model has already been implemented in
several different forms. The approach outlined above draws from these previous im-
plementations, but is constructed specifically to be both computationally straight-
forward and suitable for expanding into the modular imitation model described
earlier. In the original implementation of this model,? the inverse models, or be-
haviours, were proportional-integral-derivative controllers whose gain parameters
could be adjusted within certain limits to change the behaviour. The forward mod-
els used the motor commands produced by the inverse models to predict the next
state. Each prediction altered the corresponding behaviour’s confidence level, de-
pending on how closely it matched the demonstrated trajectory. As the demonstra-
tion continued, either one behaviour would exhibit confidence levels far above the
others, in which case it could imitated, or no behaviour would match the demon-
stration, in which case learning would take place through the passive imitation
system.

In the adapted model, the PID controllers have been replaced by the optimal
controller described in the previous section. Instead of storing sets of gain parame-
ters and postures for each behaviour, the "cost-to-go" for a particular movement is
stored. The "cost-to-go" is more of a prediction than an exact plan. It is determined
by the target of the movement and is independent of the starting position. Thus,
once a "cost-to-go" for a particular target has been calculated, it can be reached
from any starting position as long as sufficient time is allowed for the movement
within the velocity constraints of the system. At each time step during a demon-
stration, the system "simulates" the motor commands it would use to produce the
demonstrated movement by running each module on a forward kinematics model.
Each "cost-to-go" is used to produce a value of K; which is combined with the
internal state information to produce a motor command. Each motor command is
used to update the internal state, and the resulting predicted states are compared
with the state of the demonstrator. The closest match is chosen to be the next
state.

As stated above, using an implementation of the minimum variance model al-
lows tasks to be specified in terms of a target area or accuracy constraint. Us-
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ing this approach, the system performs task-level imitation. At the end of the
demonstration, the predicted end position is compared with the end position of the
demonstrator. If the required goal is achieved, the imitation system can perform
the action using the robot arm. If the goal is not achieved, the system can extract
the demonstrators end position and the location of any via-points, and use these
to construct a new cost function, which in turn can be used to produce a new
"cost-to-go" module that can be added to the others. The new movement becomes
part of the system’s repertoire.

The optimal control system lends itself extremely well to task-level imitation
of this nature, since the trajectory it produces is not specified beforehand, but is
a result of the controller trying to minimise the variance of the final position. It
is possible that the system may already have a "cost-to-go" module for a target
coordinate. However, the timing of the movement may not produce movements with
the required level of accuracy for a task. In this case, a new "cost-to-go" module
to the same target coordinates would have to be constructed, but with more time
steps to increase the accuracy and achieve the movement goal.

However, not all tasks can be specified simply in terms of an end goal or target
area. Allowing via-points to be incorporated into task goals increases the number
and complexity of tasks that can be imitated by this system, the best example being
in the case of obstacle avoidance. This also means the system has a convenient way
of imitating the exact trajectory of a demonstrated movement if this is required.

5. Results

The inverse kinematics for the two-link, two-joint configuration of the robot arm
were well defined, so it was possible to extract reliable values for the joint angles
from the hand position coordinates. For an arm with more degrees-of-freedom not
restricted to a plane, a more complicated and less well-defined inverse kinematics
algorithm would have to be used. In the point-to-point reaching experiments shown
here control signals were calculated for an initial movement phase of duration T
= 100 time steps and a post-movement phase of duration N = 50 time steps. The
shoulder joint was defined as the origin for the movement.

The robot arm trajectories were captured using a simple webcam and algorithms
adapted from those used in the open source AR Tool Kit.2>2% As can be seen in
Fig. 3, the trajectories for the human demonstrations were captured in the same
way.

Fig. 4 shows plots generated by the computational model described in the sec-
tion above for a typical point-to-point reaching movement, from coordinates (-0.6,
0) to (0, 0.6). The smooth step changes in position and bell-shaped velocity pro-
files can clearly be seen for movement in both the z- and the y-axis. The smooth
changes in the joint angles can also be seen. The configuration of the arm as it
moves the hand through the required trajectory is shown in Fig. 5. The straight
hand path is evident in the figure.

The results shown in Fig. 6 are for movement of the robot arm, set to follow
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Figure 3. Captured images from the computer vision system, showing the makers used for tracking
the trajectories

the path as in the simulation results from coordinates (-0.6, 0) to (0, 0.6). These
results are typical of the trajectories produced by the robot arm. In each of plots
in Fig. 6, the trajectory of the robot arm is shown against the trajectory from the
computational model used to drive the servo motors. The path of the robot arm
was captured using a computer vision system that detected and tracked coloured
markers placed on the joints and at the end of the second link. As can be seen in
Fig. 6, despite small sampling errors in the vision system the path produced by the
robot arm is very close to that of the computational model.

The next set of results, shown in Fig. 7a, are plots for a similar point-to-point
reaching movement as in Figs. 4 and 5, but repeated twenty-five times. These
plots clearly show the variations in the repeated trajectory due to signal-dependent
noise. These variations between trials are typical of human-like movements, as are
the slightly curved hand paths. Fig. 7b also shows this variation between repeated
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Figure 4. Plot showing a) change in x-axis position; b) change in velocity along the x-axis; c)
change in y-axis position; d) change in velocity along the y-axis; e) change in shoulder angle; f)
change in elbow angle
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Figure 5. Plot showing simulated arm postures captured at equal time intervals during a point-
to-point reaching movement

movements, as well as clearly showing the tradeoff between the speed of a movement
and its accuracy, measured by the end point standard deviation.

Fig. 8 shows a trajectory that includes a via-point. Since the trajectory is longer,
the end point variance will be larger for a given movement time compared to the
straight line movement. This would need to be taken into account when deciding
whether the goal has been achieved at the end of a simulated movement.

The next set of results show the application of the movement system to an
imitation task. The imitation system was provided with a number of "cost-to-go"
modules for random chosen target positions. A demonstration trajectory was then
produced to a target not known by the imitation system. Figs. 9 and 10 show both
the first attempt of the system to replicate the demonstrated trajectory, which
fails, and the subsequent successful attempt after learning has taken place. In Fig.
9, the demonstrated trajectory is a simple point-to-point reaching movement to a
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Figure 6. Plots showing typical trajectories produced by the robot arm (solid line) and the simu-
lated trajectories (dotted line), a) The hand path of the robot arm in the z-y plane; b) Change
in position on the z-axis; c) Change in position on the y-axis
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Figure 8. Plot showing a more complex trajectory including a via-point

target unknown to the system. In Fig. 10, the system has a module that allows it
to reach the target, but does not pass close enough to the required via-point. A
new module is therefore learnt, including the location of the via-point.

It should be emphasised that although the imitation system can learn a module
for any given target point in the workspace, this does not mean that it could
be provided with modules allowing it to reach every point and then be able to
replicate every trajectory it observed. Even if this were the case, the addition of
via-points means that an infinite range of more complex trajectories would need
to be provided as well. This would also be time consuming and expensive in terms
of memory storage of the modules. By providing the system with only a few basic
targets, and then demonstrating task related movements, the system learns only
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those movements it needs to achieve a task. The nature of the modular system is
such that it will then to able to generalise within this set of known movements.
This is currently being extensively tested.

A further point to note is that since the goals are specified in terms of an
accuracy constraint, even if a module exists to a demonstrated target position, it
may not produce a trajectory with the required accuracy. In this case, another
module would have to be learnt, with a greater number of time steps to decrease
the end point variance. The location of via-points in time as well as space is also
important, since changes in the temporal position of the same spatial via-point
results in very different trajectories, which may be critical to the task. Even though
a certain via-point location might be part of a module at a particular time step, a
new module would have to be learnt if the same via-point were passed through at
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Figure 9. From its known set of "cost-to-go" modules, the system attempts to imitate a simple
point-to-point reaching movement. The plot on the left shows this attempt, which clearly fails.
The plot on the right shows that, after learning a new "cost-to-go" module, the system is able to
replicate the demonstration.
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Figure 10. In these examples, the imitation system has a known "cost-to-go" module for the target
of the demonstration. The plot on the left shows that this goal is achieved, but that the via-point
goal is not. A new "cost-to-go" module is therefore learnt, providing the imitation system with
the ability to follow the new trajectory.



31st May 2004 16:45 WSPC/INSTRUCTION FILE
umanoids 2004 v5

18
0.1 0.1p .
. s—a Human Demonstrated Trajectory
s—a Human Demonstrated Trajectory N .
0.09 ©—=° Simulated Trajectory 0.09r ﬁ‘c'ﬂ,‘f,'? };er?nT'IE?éT;ct:?c?r/y
0.08 0.081
-0.07 —0.07
E £
50.08 5 0.061
= ]
nc_>0.05 K 0.05-
2 @
(>§0.04 g‘é 0.04r
>0.03 > 0.03
0.02 0.021
0.01 0.01r
—8.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 (10.15 -0.1 -0.05 0 0.05 0.1
X-axis Position (m) X-axis Position (m)

Figure 11. The plot on the left shows a human demonstration (red) and the imitation system’s first
attempt to replicate the movement (blue). The plot on the right shows the same demonstration
(red), the system’s trajectory after learning a new module (blue), and the trajectory produced by
the robot arm (black).

a different time. Our further work will look at the imitation of tasks involving very
specific timing, such as tapping a sequence. The temporal aspects of movement
are as important as the spatial aspects, but are not as well understood. Following
our biologically-inspired philosophy, we intend to look at neuroscientific models
of timing and time representation. How the human brain deals with timing and
coordination on different time scales is an interesting issue, one that our present
framework is well suited to investigate.

The remaining figure shows the application of the system to real human move-
ments. Fig. 11 shows a typical human point-to-point reaching demonstration and
the system’s attempts to replicate the movement. In the first plot, running the
existing modules through the internal forward kinematics model does not result in
the goal being achieved, so a new module is learnt but no movement of the robot
arm takes place. In the second plot, the new module has been learnt and the system
is able to replicate the trajectory. The simulated trajectory is then used to drive
the robot arm.

6. Conclusions and Further Work

Since we intended to integrate the perception system with the motor system to
recognise the movements of a human demonstrator, the first step was to start by
implementing a human-like motor system. The most biologically realistic of the
theories that seeks to explain the computations of the human motor system is the
minimum variance model set out by Harris and Wolpert. The results given in the
previous section demonstrate an optimal control scheme, based on this model, that
produces the required features of human-like movement on a robot arm.

To apply this scheme as the underlying motor representation for a robotic im-
itation learning scheme requires the system to be extended to include modularity.
The human brain does not have a single controller for all movements and contexts,
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but is thought to have multiple controllers that can be modified through learning.
Part of the optimal control scheme to implement the minimum variance model
is a "cost-to-go" for a given target position, calculated "off-line" from the move-
ment itself, providing a convenient modular system. The "cost-to-go" modules can
then be combined in a system for recognising actions from demonstration, such
as that described in Demiris and Hayes. Since the controller produces human-like
movement, the modular structure is appropriate for recognising human movements
from demonstration. When the system observes the demonstration, it runs each
controller module in an internal simulation and tests the trajectory against the
observed demonstrated trajectory. If the demonstration is known, it will be able to
use the appropriate controller module to imitate the movement on a robot arm. If
it is unknown, the system will be able to extract features from the demonstration,
such as the target position and the location of any via-points and use them to build
a new module. The optimal control scheme for producing human-like movement is
therefore a key component of the system for robotic imitation learning.
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