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Abstract. In previous research, we developed an integrated platform that combined visual
scene interpretation with speech processing to provide input to a language learning model.
The system was demonstrated to learn a rich set of sentence-meaning mappings that could
allow it to construct the appropriate meanings for new sentences in a generalization task.
While this demonstrated potential promise, it fell short in several aspects of providing a
useful human-robot interaction system. The current research addresses three of these
shortcomings, demonstrating the natural extensibility of the platform architecture. First,
the system must be able not only to understand what it hears, but also to describe what it
sees and to interact with the human user.  This is a natural extension of the knowledge of
sentence-to-meaning mappings that is now applied in the inverse scene-to-sentence sense.
Secondly, we extend the system’s ontology from physical events to include spatial rela-
tions.  We will show that spatial relations are naturally accommodated in the predicate ar-
gument representations for events.  Finally, because the robot community is international
the robot should be able to speak multiple languages, and we thus demonstrate that the
language model extends naturally to include both English and Japanese.  Concrete results
from a working interactive system are presented and future directions for adaptive human-
robot interaction systems are outlined.

1   Introduction

As humanoid robots become increasingly capable of complex sensory and motor
functions, the ability to interact with them in an ergonomic, real-time and adaptive
manner becomes an increasingly pressing concern.  In a previous study, we reported
on progress in this direction, in terms of a system that could adaptively acquire a
limited grammar based on training with human narrated video events.  An overview
of the system is presented in Figures 1.  Figure 1A illustrates the physical setup in
which the human operator performs physical events with toy blocks in the field of
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view of a color CCD camera.  Figure 1B illustrates a snapshot of the visual scene as
observed by the image processing system.  Figure 1C provides a schematic charac-
terization of how the physical events are recognized by the image processing sys-
tem.

Figure 1.  Overview of human-robot interaction platform.  A.  Human user interacting with the
blocks, narrating events, and listening to system generated narrations.  B. Snapshot of visual
scene viewed by the CCD camera of the visual event processing system. C.  Temporal contact
sequence templates for recognition of touch, push, take and give events.

A B

C
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Using this platform, the human operator performs physical events and narrates
his/her events.  An image processing algorithm extracts the meaning of the events in
terms of action(agent, object, recipient) descriptors.  The event extraction algorithm
detects physical contacts between objects, and then uses the temporal profile of
contact sequences in order to categorize the events, based on the temporal sche-
matic template illustrated in Figure 1C. While details can be found in Dominey
(2003), the visual scene processing system is similar to related event extraction
systems that rely on the characterization of complex physical events (e.g. give, take,
stack) in terms of composition of physical primitives such as contact (e.g. Siskind
2001, Steels and Bailly 2003). Together with the event extraction system, a com-
mercial speech to text system (IBM ViaVoiceTM)  was used, such that each narrated
event generated a well formed <sentence, meaning> pair.

Figure 2.  Grammatical construction architecture. Processing of active and passive sentence
types in A, B, respectively.  On input, Open class words populate the Open Class Array (OCA),
and closed class words populate the Construction index. Visual Scene Analysis populates the
Scene Event Array (SEA) with the extracted meaning as scene elements.  Words in OCA are
translated to Predicted Referents via the WordToReferent   mapping to populate the Predicted
Referents Array (PRA). PRA elements are mapped onto their roles in the Scene Event Array
(SEA) by the SentenceToScene mapping, specific to each sentence type.  This mapping is
retrieved from Construction Inventory, via the ConstructionIndex that encodes the closed class
words that characterize each sentence type.

The <sentence, meaning> pairs were provided as training input to a learning model
whose architecture is depicted in Figure2.  The model integrates two powerful theories
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of language acquisition to yield a robust learning capability.  The essential problem
the model is designed to address is that of mapping grammatical structure of sentences
onto the semantic structure of their meanings.  As illustrated in Figure 2 A and B, the
problem of this mapping is not trivial, because a given language consists of a large
ensemble of possible mappings.  The first principle inherent in the model is that in-
stead of representing <sentence, meaning> mappings in terms of a generative gram-
mar, these mappings can be represented directly in a structured inventory of gram-
matical constructions that are nothing more than these mappings.  Growing evidence
both from studies of human language development (Tomasello 1999, 2003), and adult
processing (Ferreira 2003, Sanford & Sturt 2002) indicate that a substantial compo-
nent of language behavior can be accounted for in this manner.  That is, that language
production and comprehension is based on the re-use (including recombination) of
existing templates, in a context in which the templates (i.e. grammatical constructions)
can be learned by straight-forward mechanisms as illustrated in Figure 2.  This does
not exclude existence of truly generative mechanisms for construction and decoding
new grammatical forms.  However. for our purposes, in the domain of human-robot
interaction, the ability to rapidly acquire relevant constructions in relatively restricted
domains should prove quite useful.  Indeed, as will be illustrated below, this capability
will be of particular interest, as the meaning can include both descriptions, interroga-
tions and commands.

If the language capability consists of a structured inventory of grammatical con-
structions, then the problem remains concerning how this inventory is managed.  This
is where the second great principle of developmental linguistics comes in: the cue
competition hypothesis of Bates and MacWhinney (1982).  They propose that across
languages, there is a limited set of possible cues including word ordering regularities
and the use of grammatical function words (e.g. to, by, from, that, was), that code the
argument structure of sentences, that allows the determination of “who did what to
whom.”  Thus, as illustrated in Figure 2, the ensemble of closed class words together
form  "construction index" that serves as an index into an associative memory that
stores the appropriate transformations.  This memory store is referred to  as the Con-
structionInventory in Figure 2.  In a series of experiments (Dominey 2003a, b) we
have demonstrated that the system can thus learn an extensive set of grammatical
constructions, including those in Table 1.

Example Sentences and Meanings
1. The block pushed the cylinder.

Push(block, cylinder)
2. The cylinder was pushed by the block.

Push(block, cylinder)
3. The block gave the cylinder to the

moon.
Give(block, cylinder, moon)

4. The cylinder was given to the moon by
the block.

Grammatical Constructions
1. Agent verb object.  (Active)

Verb(agent, object)
2. Object was verbed by agent.  (Passive)

Verb(agent, object).
3. Agent verbed object to recipient. (Da-

tive)
Verb(agent, object, recipient)

4. Object was verbed to recipient by
agent. (Dative passive)
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Give(block, cylinder, moon)

Dual-Event Relative Constructions
6. The block that pushed the cylinder

touched the moon.
push(block, cylinder), Touch(block,
moon)

7. The block was pushed by the moon that
touched the cylinder.
Touch(moon, cylinder), Push(moon,
block)

17. The cat was given from the dog to the
block that pushed the cylinder.
Push(block, cylinder), Give(dog, cat,
block)

18. The cylinder that was pushed by the
block gave the cat to the dog.
Push(block, cylinder), give(cylinder,
cat, dog).

Dual-Event Conjoined Constructions
27. The block pushed the cylinder and the

moon.
Push(block, cylinder), Push(block,
moon)

28. The block and the cylinder pushed the
moon.
Push(block, moon), Push(cylinder,
moon)

29. The block pushed the cylinder and
touched the moon.
Push(block, cylinder), Touch(block,
moon).

30. The moon and the block were given to
the cylinder by the cat.

Give(cat, moon, cylinder), Give(cat,
block, cylinder).

Action1(agent1, object2, recipient3).

6. Agent1 that verb1ed object2 verb2ed
object3.
Acion1(agent1,object2),   Action2
(agent1, object3)
7. Object3 was action2ed by  agent1
that action1ed object2.
Action1(agent1,object2), Action2
(agent1, object3)
17. Ag3 act2ed obj4 to recip1 that
act1ed obj2
Action1(agent1,object2), Action2
(agent3,object4,recipient1)
 18. Obj4 was act2ed from ag3 to recip1
that act1ed obj2
Action1(agent1,object2), Action2
(agent3, object4,recipient1)

27. Agent1 action1 object1 and object.
Action1(agent1, object1),
Action1(agent1, object2)

28. Agent1 and agent3 action1ed object2.
Action1(agent1, object2),
Action1(agent3, object2)

29. Agent1 action1ed object2 and action2
object3.
Action1(agent1, object2),
Action2(agent1, object3)

30. Object2 and object3 were action1ed
to recipient4 by agent1.

Action1(agent1, object2, recipient4),
Action1(agent1, object3, recipient4)

Table 1.  Sample sentences with their meanings (left column) and the corresponding abstract
grammatical constructions (right column).
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2.  Spoken Language Interaction

We thus demonstrated that the model could successfully learn 38 grammatical con-
structions, each of which allowed the system to generate the correct meaning for new
sentences that had not been used in training.  These initial  learning results were quite
promising, but of course the real test of utility is using this learned language capability
in an interactive human-robot communication scenario.  Technically there are several
issues to be addressed, including (a) use of the learned grammatical constructions to
generate sentences from visually perceived scenes, and to do so in a manner that is
appropriate from a pragmatic discourse perspective; and (b) inserting this capability
into an interactive environment coupled with speech synthesis and recognition.

2.1 Generating sentences from events.

Each grammatical construction in the construction inventory corresponds to a map-
ping from sentence to meaning.  This information can thus be used to perform the
inverse transformation from meaning to sentence.  For the initial sentence generation
studies we concentrated on the 5 grammatical constructions below.  These correspond
to constructions with two and three verb arguments in which each  of the different
arguments can take the focus position at the head of the sentence.  On the left are
presented example sentences, and on the right, the corresponding generic construction.

Sentence
1.  The triangle pushed the moon.
2. The moon was pushed by the triangle.
3. The block gave the moon to the triangle.
4. The moon was given to the triangle by the
block.
5. The triangle was given the moon by the
block.

Construction
Agent event object.
Object was event by agent.
Agent event object to recipient.
Object was event to recipient by agent.

Recipient was event object by agent.

Table 2:  Sentence and corresponding constructions for robot language generation.

This construction set provides sufficient linguistic flexibility, so that for example
when the system is interrogated about the block, the moon or the triangle after de-
scribing the event give(block, moon, triangle), the system can respond appropriately
with sentences of type 3, 4 or 5, respectively.  The important point is that each of these
different constructions places the pragmatic focus on a different argument by placing
it at the head of the sentence.  Note that sentences 1-5 are specific sentences that ex-
emplify the 5 constructions in question, and that  these constructions each generalize
to an open set of corresponding sentences.  Thus, given an input meaning in the form
event(arg1, arg2, arg3), and an optional focus item (one of the three arguments), the
system will deterministically choose the appropriate two or three argument construc-
tion, with the appropriate focus structure, in a pragmatically relevant manner.
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2.2 Real-time Interactive Environment

The next task at hand is to integrate these pieces, including (a) scene processing for
event recognition, (b) sentence generation from scene description and response to
questions, (c) speech recognition for posing questions, and (d) speech synthesis for
responding -  into an interactive environment.  The CSLU Speech Tools Rapid appli-
cation Development (RAD) (http://cslu.cse.ogi.edu/toolkit/index.html) provides  use-
ful capability in this context.  The system provides  dialog management with a flexible
and powerful graphical user interface with the global ability to link speech recognition
and synthesis to the conditional execution of code on the same machine or on remote
machines via ftp and socket protocols.  This results in a hub architecture with RAD at
the hub and the vision processing, language model, speech-to-text and voice synthesis
at the periphery.  Figure 3 illustrates the RAD flow of control configuration for our
human-robot interaction demonstration.  Here we briefly describe each state in the
dialog management system and then provide a sample dialog.

1. Start:  System initialization
2. Welcome: Says a verbal welcome to the user
3. Object_invitation:  Asks the user to move an object that the system will then name
4. Get_object_description:  executes "an object from movement" algorithm on the

"vision" file generated by the users movement.  The visual system is triggered by
any movement over a threshold velocity.  It then records at a 5Hz sampling rate
and continues until no motion occurs for at least 5 seconds, and generates an out-
put file which triggers Get_object_description.

5. Say_object_description:  executes speech synthesizer on the generated object de-
scription.

6. Another_object?: invites user to show another object
7. Want_to_go_on?: asks user if she wants to quit or go on
8. Invitation: invites user to perform an action with the blocks that the system will then

describe
9. Get_description: executes "describe event" on "vision" file.  The output sentence is

generated from the event description as described in 2.1 above.
10. Say_description: executes synthesizer on the generated description
11. Right?: ask the user if the description was right, the user then responds that either

the system was right (yes), it was wrong (no), or that there was  system error (er-
ror).  Each of these responses is processed separately and recorded in an SQL da-
tabase for offline system evaluation.

12. Any_questions?:  invites the user to ask questions
13. Block_moon_or_cylinder?:  ask the user which of the objects she wants to know

about.  Based on the user response, the focus element is identified
14. Get_query_response:  sends the focus element and the previous event description

to the “respond-to-query” algorithm.  This algorithm selects the correct grammati-
cal construction to use depending on whether the event is of 2 or three arguments,
and depending on the focus element (agent, object or reciepient) as in 2.1.

15. Say_query_reponse: executes the synthesizer with the query response, and returns
to Any_questions.
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16. Again?: offers the user to continue with another event (make_your_move_then),
or quit (goodbye).

17. Make_your_move_then:  re-invites the user to perform an event with the blocks.

Figure 3.  Rapid Application Development configuration for the Talking Robot Demonstration.

2.3 Example Dialog

Here we provide an example of  typical dialog.  Speech is indicated in italics.

Robot:  Welcome to the talking robot demonstration.  Show me an object.
Human:  (Picks up and moves the block)
Robot:  That is the block.  Another object?
Human: Yes (moves the moon)
Robot:  That is the moon.  Another object?
Human: No.
Robot:  Shall we stop or go on?
Human: Go on.
Robot:  When you are ready, make a movement with the objects so that I can see

what you are doing.  I will then describe what you did.
Human:  (picks up  the block and uses it to push  the cylinder to the moon).
Robot:  The block gave the cylinder to the moon.  Was I correct?

1
.

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16
17
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Human: Yes.
Robot:   Good for me. (stores results in database) Do you have any questions?
Human: Yes.
Robot:  Would you like to know about the block, the moon or the cylinder?
Human: The moon.
Robot:  The moon was gave the cylinder by the block.  Do you have any questions?
Human: Yes.
Robot:  Would you like to know about the block, the moon or the cylinder?
Human: The cylinder.
Robot: The cylinder was gave to the moon by the block.
….

Though the case is somewhat limited by the simplicity of the robot environment,
this example provides a view of how language can provide a useful vector for human-
robot interaction for describing and responding to questions about perceived events.

3.  Extension of the ontology to Spatial Relations

Part of the claim to be supported by this research is that the current framework can
be extended to satisfy the needs of different robot systems. We have seen how the
construction framework provides a basis for encoding the structural mappings between
sentences and meaning in an organized and generalized manner. Central to this exer-
cise is the idea that once a capability for mapping grammatical constructions to predi-
cate-argument structures has been established for events, it should extend by analogy
to any semantics that can be represented in  predicate-argument format.  Here, we will
investigate how this framework can be extended to the domain of spatial relations.
Quinn et al (2002) have demonstrated that by the age of 6-7 months, infants can  learn
binary spatial relations such as left, right, above, below in a generalized manner, as
revealed by their ability to discriminate in familiarization-test experiments.  That is,
they can apply this relational knowledge to scenes with new objects in these spatial
relations.

In theory, the predicate-argument representation for event structure that we have
described above can provide the basis for representing spatial relations in the form
Left(X,Y), Above(X,Y) etc. where X is the object that holds the spatial relation with
the referent Y.  That is, Left(X,Y) corresponds to “X is left of Y”.

In order to extract spatial relations from vision we return to the visual processing
system described above.  Based on the observations of Quinn et al. (2002) we can
consider that by 6-7 months, the perceptual primitives of Relation(X,Y) are available,
where Relation corresponds to Left, Right, Above and Below.  The mapping of sen-
tence structure onto the predicate argument then can proceed as described above for
event meaning.  One interesting problem presents itself however.

Figure 4 illustrates the spatial configuration after a human user has placed the cyl-
inder in its current position and said “The cylinder is below the triangle”.  A simple
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attention mechanism based on motion is used to select the cylinder as the target ob-
ject, but the intended referent for the “below” relation could be any one of the multiple
other objets, and so the problem of referential ambiguity must be resolved.  We hy-
pothesize that this redundancy is resolved based on two perceptual parameters.  First,
spatial proximity will be used.  That is, the observer will give more attentional prefer-
ence to relations involving the target object and other objects that are closest to it.
The second parameter is the angular  “relevance” of the relations, quantified in terms
of the angular distance from the cardinal positions above, below, left and right.  Figure
4B represents the application of this perceptual attention mechanism that selects the
relation Below(Cylinder, Triangle) as the most relevant, revealed by the height of the
peak for the triangle in 4B.

Figure 4.  Spatial Attention for Relation Selection. The human user shows the robot a spatial relation and
describes it.  How does the robot know which of the multiple relations is the relevant one?  A.  The cylin-
der (lower left) has been moved into its current position, and now holds spatial relations with the three
other objects.  B.  Based on parameters of (1) minimal distance from the target object and (2) minimal
angular distance from the four principal directions (above, below, left, right)..  In this case, the most rele-
vant relation (indicated by the height of the two highest peaks) is Below(Cylinder, Triangle).

We collected data training data in which human subjects demonstrated and narrated
spatial relations with the four objects.  The spatial attention mechanism extracted for
each case the most relevant spatial relation, and in well over 90% of the trails the
attentional mechanism correctly selected the appropriate relation.  The resulting
<sentence, relation-meaning> pairs were used for training in the same procedure for
active sentences and simple events. The model demonstrated successful learning of the
four object names and the four spatial relation terms, and could generalize this knowl-
edge to a new <sentence, relation-meaning> generalization data set.  This demon-

A
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strates (1) the efficiency of the spatial attention mechanism, and (2) the generalizabil-
ity of the predicate-argument approach.

4.  Extension to Japanese

While the construction framework can extend to new semantics on the meaning
side, it would also be of significant value if it were able to extend to different lan-
guages.  Indeed the construction framework is clearly cross-linguistic (Goldberg
1995).  The current experiment will test the model with sentences in Japanese.  Unlike
English, Japanese allows extensive liberty in the ordering of words, with grammatical
roles explicitly marked by postpositional function words -ga, -ni, -wo, -yotte.  This
word-order flexibility of Japanese with respect to English is illustrated here with the
English active and passive di-transitive forms that each can be expressed in 4 different
common manners in Japanese:

1. The block gave the circle to the triangle.
1.1 Block-ga triangle-ni circle-wo watashita .
1.2 Block-ga circle-wo triangle-ni watashita .
1.3 Triangle-ni block-ga circle-wo watashita .
1.4 Circle-wo block-ga triangle-ni watashita .

2. The circle was given to the triangle by the block.
2.1 Circle-ga block-ni-yotte triangle-ni watasareta .
2.2 Block-ni-yotte circle-ga triangle-ni watasareta .
2.3 Block-ni-yotte triangle-ni circle-ga watasareta .
2.4 Triangle-ni circle-ga block-ni-yotte watasareta .

In the “active” Japanese sentences, the postpositional function words -ga, -ni and –
wo explicitly mark agent, recipient and, object whereas in the passive, these are
marked respectively by –ni-yotte, -ga, and –ni.  For both the active and passive forms,
there are four different legal word-order permutations that preserve and rely on this
marking.  Japanese thus provides an interesting test of the model’s ability to accom-
modate such freedom in word order.

4.1  Japanese Constructions

Each numbered sentence below is an example of a specific abstract grammatical
construction type in Japanese whose meaning is provided in an event(argument) for-
mat following the sentence(s) corresponding to that meaning1.  The corresponding

                                                          
1 hit = tataku, hit = tataita, be hit = tatakareru, was hit = tatakareta. give = ataeru, gave = watashita, be

given = ataerareru, was given = watasareta. push = osu, pushed = tataita, be pushed = osareru, was pushed
= osareta, believe = shinjiru, believed = shinjita. itself = jibun or jishin, it = sore.
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English constructions are indicated in ()’s.  Each construction can generalize to new
sentences in which the open class elements are replaced.

1(1).  block-ga circle-wo tataita.
2(1). circle-wo block-ga tataita.
The block hit the circle.
Hit(block, circle) active
3(2). Circle-ga block-ni tatakareta.
4(2). Block-ni circle-ga tatakareta.
The circle was hit by the block.
Hit(block, circle) passive
5(3). Block-ga triangle-ni circle-wo watashita .
6(3). Block-ga circle-wo triangle-ni watashita .
7(3). Triangle-ni block-ga circle-wo watashita .
8(3). Circle-wo block-ga triangle-ni watashita .
The block gave the circle to the triangle.
Gave(block, circle, triangle) active
9(4). Circle-ga block-ni-yotte triangle-ni watasareta .
10(4). Block-ni-yotte circle-ga triangle-ni watasareta .
11(4). Block-ni-yotte triangle-ni circle-ga watasareta .
12(4). Triangle-ni circle-ga block-ni-yotte watasareta .
The circle was given to the triangle by the block.
Gave(block, circle, triangle) passive
13(6). Circle-wo tataita block-ga triangle-wo oshita.
The block that hit the circle pushed the triangle.
Hit(block, circle), Pushed(block, triangle)
14(7). Block-ga circle-wo oshita triangle-ni-yotte tatakareta.
15(7). Circle-wo oshita triangle-ni-yotte block-ga tatakareta.
The block was hit by the triangle that pushed the circle.
Pushed(triangle, circle), Hit(triangle, block)
16(8). Circle-wo tataita block-ga triangle-ni-yotte osareta.
17(8). Triangle-ni-yotte circle-wo tataita block-ga osareta.
The block that hit the circle was pushed by the triangle.
Hit(block, circle), Pushed(triangle, block)
18(9). Block-ga circle-wo oshita triangle-wo tataita.
19(9). Circle-wo oshita triangle-wo block-ga tataita.
The block hit the triangle that pushed the circle.
Pushed(triangle, circle), Hit(block, triangle)
20(10). Circle-ni-yotte tatakareta block-ga triangle-wo oshita.
The block that was hit by the circle pushed the triangle.
21(27). Block-ga circle-to triangle-wo tataita.
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22(27).  Circle-to triangle-wo block-ga tataita.
The block hit the circle and the triangle.
23(28). Block-to triangle-ga circle-wo tataita.
24(28). Circle-wo block-to triangle-ga tataita.
The block and the triangle hit the circle.
25(33). Block-ga sore-wo tataita triangle-wo oshita.
The block pushed the triangle that hit it.
26(34).  Block-ga sore-ga tataita triangle-wo oshita.
The block pushed the triangle that it hit.

4.2 Learning Japanese Constructions

Employing the same method as described in the previous experiment, we thus ex-
pose the model to <sentence, meaning> pairs generated from the 26 Japanese con-
structions described below.  We predicted that by processing the -ga, -ni, -yotte and –
wo markers as closed class elements, the model would be able to discriminated and
identify the distinct grammatical constructions and learn the corresponding mappings.
Indeed, the model successfully discriminates between all of the construction types
below; based on the ConstructionIndex unique to each construction type, and associ-
ates the correct SentenceToScene mapping with each of them. As for the English
constructions, once learned, a given construction could generalize to new untrained
sentences.

This demonstration with Japanese is an important validation that at least for this
subset of constructions, the construction-based model is applicable both to fixed word
order languages such as English, as well as free word order languages such as Japa-
nese. This also provides further validation for the proposal of Bates and MacWhinney
(1982) that thematic roles are indicated by a constellation of cues including grammati-
cal markers and word order.

5.  Status and future directions:

At the current writing, the spatial relations and the Japanese construction capabili-
ties have been demonstrated but are not integrated into the interactive dialog system.
These integrations are wholly feasible and will be realized in the future.  This will
provide a quite interesting bilingual capability that can provide a quite useful took for
human teams with English and Japanese speaking members collaborating  together.
Clearly, it will also have strong demonstration impact.

More generally, the near term future goal will be to export this system to a robot
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platform that allows human-robot interaction not only about scene analysis but about
action as well.  This will provide the scenario in which language can be used to com-
mand and instruct the robot.  Human based robot instruction has often relied on imita-
tion, but clearly the use of verbal coaching and explaining will also provide a powerful
information transfer mechanism.  The current system has two important features that
should make it of interest to the humanoid robot community.  First, it is adaptable in
the system will learn the language structures adapted to a given interaction context.
Second, the system has a very flexible semantics in the form of predicate –argument
relations.  We have demonstrated that this is highly appropriate for event and spatial
relation descriptions, but it will also be highly suitable for the syntax of robot com-
mands, and should thus be of immediate practical value within the community.
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