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Abstract. This paper presents a learning approach for a humanoid robot to reach for
objects in its environment. Instead of assuming that the exact forward kinematics of the
arm are given, we address the reaching problem by first learning the forward kinematics
with a radial basis function network (RBFN) through autonomously gathered training
samples. The learned forward model is subsequently used to construct Jacobian matrices
to incrementally generate straight reaching trajectory exhibited by humans. We show
that if the learning parameters are set appropriately, a RBFN trained on a small number
of samples corrupted by perception noise can still lead to high reaching accuracy. The
size of the training set can be further reduced without severe performance degradation
if limited visual feedback is used to aid reaching after the end effector has been moved
into the neighborhood of the desired object.
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1. Introduction

Most robotic literature dealing with the reaching problem focuses almost exclu-
sively on the aspect of inverse kinematics. A large number of solutions to inverse
kinematics are based on the Resolved Motion Rate Control (RMRC) scheme pro-
posed by Whitney and its extension proposed by Liegeois, both of which require
the exact forward kinematics for the computation of local Jacobian matrices.1,2

Such a requirement does not present a problem for high-precision robotic assembly
systems, but for a research platform, or for most consumer goods, this requirement
is unrealistic due to wear and tear on typical systems.

Additionally, for a biological system, such as human, the parameters of the arm
are not readily available and change gradually over the lifespan of the individual.
Human infants typically start goal-directed reaches around 4 to 5 months of age.
Adult-level reaching proficiency cannot be achieved until they are 3 years old.3

Suggested models of how to learn reaching without prior knowledge of the arm
parameters can be grouped into two categories, both of which require a series of
random arm movements to be performed beforehand to build up a training set.
Models in the first category attempt to learn inverse kinematics without building
a forward model.4,5 After the learning, a direct mapping either from task space
vector x to joint vector θ or from ẋ to θ̇ is constructed. Such an approach is usually
complicated by the fact that inverse kinematics is a one-to-many mapping.6 Special
caution must be taken to ensure the accuracy of the learned inverse model.

Models in the second category use the training set to build a forward model and
then use this forward model to solve the inverse kinematics problem.7,8 Such an ap-
proach is inspired by adaptive control theory and usually requires the identification
of the underlying system before control can be performed.9

We have adopted this indirect learning approach to study reaching arm move-
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ments in a humanoid robot. First a radial basis function network (RBFN) is used to
learn forward kinematics of the arm from a training set consisting of autonomously
gathered samples. After the RBFN is trained, local Jacobian matrices are generated
through differentiation of the radial basis functions in the hidden layer. In this way,
the existing efficient and flexible solutions to inverse kinematics based on RMRC
and its extensions can be exploited to generate reaching trajectories.

Short learning time and high reaching accuracy despite perceptual noise are the
two most important factors that determine the applicability of our approach on a
physical robotic platform. Two contributions of this paper are a detailed description
of the parameter tuning process for the RBFN training and a characterization of the
influence of perceptual noise on the reaching accuracy. We show that with optimized
parameters, high reaching accuracy can be achieved with a small training set which
requires only a short time to construct, even if only proprioceptive feedback is
available during the reaching movement. The size of the training set can be further
reduced if we allow a one-time visual feedback to aid reaching after the end effector
has been moved into the neighborhood of the desired object.

This paper is organized as follows. Section 2 presents the hardware and software
platform of our humanoid robot and the system architecture for learning reaching.
Section 3 characterizes our approach to forward kinematics learning and describes
our solution to inverse kinematics. Section 4 presents the parameter tuning process
for forward kinematics learning and simulation results for reaching accuracy. Section
5 presents the experimental results for an implementation of this strategy on a
humanoid robot. The paper is concluded with a discussion.

2. Experiment Setting

2.1. Hardware and software platform

Nico is an upper-torso humanoid robot modelled after the body dimensions of a
one-year-old human child. The mechanical structure has a seven-DOF head, a six-
DOF arm and and a one-DOF waist. The other arm and an additional two DOFs
in the waist are under construction. Four of the seven DOFs in the head are neck
joints for the control of head orientation, which can be sensed by a 3-axis gyroscope
mounted on the top. The vision system of Nico consists of four miniature CCD
video-cameras divided into two sets, one for each eye. In each set, there is one
long focal length camera for fovial vision and one short focal length camera for
peripheral vision. The six-DOF arm with a total length of about 300mm from
shoulder to wrist has a motion range similar to a one-year-old. Currently, a 60mm
steel shaft is attached to the wrist plate with a φ19.05mm wooden ball at the tip
as the end-effector. Each joint of Nico is driven independently by a DC motor with
an integrated high-resolution optical encoder. All motors and sensors on Nico are
connected via extension cables and respective control units to a computer rack of
sixteen nodes running the QNX real-time operating system. Nodes are connected
through a 100Mbit backbone switch and a number of direct point-to-point network



Reaching through Learned Forward Model 3

links.
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Fig. 1. (A) Mechanical design for Nico, an upper-torso humanoid designed to match the size of a
one-year-old child. (B) The kinematic structure of the robot’s arm with six degrees of freedom,
including two for the shoulder, two for the elbow and two for the wrist. (C) A detailed view of
the arm structure. A steel shaft with a wooden ball as finger tip is currently attached to the wrist
plate for easy detection of the end-effector.

A set of modular software components have been implemented on the robot,
ranging from low-level device drivers to selected higher-level cognitive functions.
During run-time, selected modules are instantiated on the same or different nodes
depending on their computation requirements. Active modules can selectively com-
municate with one another through a common communication interface. Whether
a data exchange takes place on the same node or across the network is totally
transparent to an individual module.

2.2. System architecture for reaching

The overall system architecture for learning to reach is shown in Fig. 2. A stereo
vision subsystem provides the target position, a training module constructs the
forward model and a reaching execution module generates the reaching trajectory.
The modules with dashed boundaries along with their respective data flows are
instantiated only during a training session. The training module and the reaching
execution module will be described in detail in the next two sections, so only the
stereo vision subsystem is treated here.

The stereo vision subsystem retrieves video data from the two short focal length
cameras as input. The two long focal length cameras prove to be impractical for the
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Fig. 2. System structure for learning to reach – The video frames grabbed from the eye cameras
are first corrected for radial distortion. The corrected frames are either filtered by color during a
training session or by a member from a filter repository selected by the attention system during
a test session. Information in the filtered stereo frame pair is subsequently used by the target
determination module to calculate the object position. This position is then used either by the
training manager for learning or by the trajectory generator for reaching. The latter module uses
the forward model constructed by the training manager to generate a reaching trajectory.

stereo vision needed for the reaching behavior, because their common vision field
has only a small overlap with the reachable space of the robot arm. The high radial
distortions of the two short focal length cameras are corrected by their respective
frame grabbers in real-time. The radial distortion coefficients K1 and K2 and other
camera parameters are measured for each camera through the Camera Calibration
Toolbox for Matlab developed by J.-Y. Bouguet.10 The pixel value of position (x, y)
in the corrected frame is filled with the pixel value of position (x′, y′) in the original
frame through the following equation11 —
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{
x′ = x(1 + K1r

2 + K2r
4)

y′ = y(1 + K1r
2 + K2r

4)
(1)

If values of x′ and y′ are not integers, they are substituted by their respective
integer parts. During the startup of the vision subsystem, a lookup table is built for
each camera consisting the mappings from (x, y) to (x′, y′) for all possible (x, y).
The pre-built lookup tables enable an efficient distortion correction in real time. We
currently use a resolution of 320x240 for both cameras.

(A) (B)

Fig. 3. Original image (A) and image (B) corrected for radial distortion through Eq. (1)

During a training session the video frames are filtered by color to identify the
blob representing the finger tip. During the test sessions, the grabber outputs are
fed into a filter repository module that implements a variety of filters. An attention
module dynamically determines the filter to be applied to the grabber outputs. A
subsequent target determination module uses the processed stereo frame pair to
output a spatial position. Its inputs are basically filtered frames, each of them con-
taining at most one blob representing the finger tip. At the current stage the target
determination module simply replaces each blob with its centroid and uses two cor-
responding centroid positions to calculate the target position to reach. Throughout
all experiments described in this paper, the two eye cameras are positioned parallel
to each other, so the calculation of a target position is trivial.12

3. Forward and Inverse Kinematics

3.1. Forward Kinematics Learning

Forward kinematics is defined as a mapping F : θ → x, where θ ∈ Rn is the joint
vector and x ∈ Rm is the task space vector. It has been known in neurophysiology
that the two shoulder joints and the two elbow joints move independently of the
wrist joints for the most part during a reaching movement performed by human
subjects.13 This suggests that a reaching movement can be decoupled into first
moving the hand into the vicinity of the desired object by actuating the shoulder and
elbow joints and then aligning the hand to the object through the wrist joints. At
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the current stage, we require our robot to touch a presented object without putting
any restriction on the orientation of its end effector. This requirement eliminates
the need for recruiting the wrist joints. Only the two shoulder joints and the two
elbow joints marked in Fig. 1(B) are used. The dimensionality of the task space is
reduced to three since only the spatial position is of concern. So the final form of
the forward kinematics to be learned is simplified to F : θ → x with θ ∈ R4 and
x ∈ R3.

Learning the forward kinematics using visual feedback is essentially a proce-
dure of approximating unknown function through training samples of the form
(θi, xi)i=1,2,...,n, where n is the total number of training samples available. The
actual reach location contains noise introduced by the stereo vision system. Neu-
ral networks such as multi-layer perceptron (MLP) and radial basis function net-
works (RBFN) are commonly used for such function approximation tasks. We have
adopted RBFN for the forward kinematics learning for a number of reasons. It has
been shown that RBFNs with a set of basis functions that have a common form
but different centers can approximate any continuous input-output mapping.14 The
study of empirical risk minimization shows that the complexity of the model gen-
erated by a learning algorithm from the training data determines its generalization
performance.15 Such complexity can be directly controlled for a RBFN through re-
stricting the number of nodes in its hidden layer. We use the orthogonal least squares
algorithm (OLS) introduced by Chen et al. to increase the size of the hidden layer
gradually until the approximation error falls below a predetermined limit.16 By ad-
justing the predetermined limit, the sensitivity of the learned function to the noise
in the training data can be reduced. Unlike MLP, the linear weights between the
hidden layer and the output layer of an RBFN can be determined by the linear least
square method. In this way, the problem of being stuck in local minima commonly
encountered in the training phase of MLP is avoided. Furthermore, it has been
suggested that RBFN could be the actual learning mechanism used by biological
entities for sensorimotor transformation.17,18,19

The training manager module shown in Fig. 2 generates one random joint vector
at a time that contains for each arm joint an angular value within its limit. The
joint vector is then sent to the motor daemon to initiate the actual arm movement.
After the movement, if the finger tip of the arm is detectable by both video cameras,
the training manager receives its spatial position from the stereo vision subsystem.
This position together with its associated joint vector forms a training sample. The
whole process repeats itself autonomously until enough samples are gathered. These
samples are subsequently used to train a RBFN. After the training, the resulting
RBFN is saved for future use. The algorithmic description of the training procedure
is summarized as follows —

begin initialize samples ← {}, i ← 0

while i < sample number needed

Randomly generate joint vector θ



Reaching through Learned Forward Model 7

Send θ to the motor daemon
Wait until the arm movement is finished
x ← output of the stereo subsystem
if x is empty

continue

else

samples ← Union(samples, (θ, x))
i ← i + 1

end

end
Use samples to train a RBFN to approximate forward kinematics.
Save the result.

end

3.2. Solution to Inverse Kinematics

3.2.1. Background

Inverse kinematics solves the problem inverse to the one forward kinematics deals
with. It maps an m-dimensional task space vector into an n-dimensional joint vector.
For a redundant manipulator with n > m, the inverse kinematics is a one-to-many
mapping. In this case, the problem becomes how to select one particular solution
from multiple solutions. The most popular approach to this problem is to set some
criteria and find the particular solution which optimizes these criteria. The criteria
to be optimized can either be global or local. Global optimization is usually too
computationally expensive to be calculated on-line. Local optimization is much
more flexible and computationally less expensive.

Most local optimization methods are based on the Resolved Motion Rate Control
(RMRC) proposed by Whitney in 1969.1 RMRC utilizes the following equation to
solve inverse kinematics —

ẋ = J(θ)θ̇, (2)

where J(θ) is the Jacobian matrix for the current joint vector θ, ẋ is the end-effector
velocity and θ̇ is the joint velocity. For a desired position xtarget and a start position
xstart, θ is incrementally adjusted such that ẋ moves the end-effector toward the
xtarget. In the ideal case, the end-effector position coincides with xtarget at the end
of the reaching movement. For a non-redundant manipulator, J is for the most part
invertable so that Eq. (2) can be solved through

θ̇ = J−1ẋ. (3)



8 Ganghua Sun and Brian Scassellati

For redundant manipulators, J is not invertable. To address this problem, Liegois
proposed a method to solve Eq. (2) that can be expressed through

θ̇ = J#ẋ + α(J#J − In)∇H, (4)

where J# = JT (JJT )−1 is the pseudo-inverse of J ,2 H is an extra optimization
criterion to be minimized, and J#J − In is the null space of J . α(J#J − In)∇H

has no influence on ẋ and is used only to move the joint vector to a local minimum
of H. With H set to zero, Eq. (4) is simplified to a succinct form —

θ̇ = J#ẋ. (5)

The local optimization method proposed by Liegois is extremely flexible. It has
numerous extensions addressing problems such as singularity avoidance, obstacle
avoidance and optimization of multiple criteria.20,21,22 The optimization criterion
H can be changed during the run-time to satisfy different requirements during
different phases of the reaching movement. To facilitate the subsequent parameter
tuning and error analysis, we have adopted Eq. (5), Liegois’ method in its simplest
form, to solve the inverse kinematics problem based on the learned forward model.
The θ̇ obtained through Eq. (5) is the one among all possible solutions to Eq. (2)
with the minimum Euclidean norm.23

3.2.2. Incremental generation of reaching trajectories

Studies of physiology and neuroscience on human subjects have shown that Carte-
sian hand trajectories approximately follow the straight line connecting the start
position and the target position.24,25 To simulate this behavior, the end-effector is
moved from its starting position xstart toward the desired position xtarget through
a number of via-points x1, x2, ..., xn−1 on the straight line connecting xstart and
xtarget. xstart is selected from the training samples with small Z components. The
straight line between xstart and xtarget is divided into segments of a fixed length. The
last segment is of variable length. The endpoints of these segments are designated
as the via-points. Before the execution of the reaching movement, the sequence
of the joint vectors corresponding to the via-points and the xtarget is calculated
incrementally.

Eq. (5) is used to generate appropriate joint velocities over the course of the
reaching movement. In our case, the joint velocities are determined by the motor
controllers. Instead of doing velocity control, we use a modified form of Eq. (5)
shown below to calculate the joint vectors corresponding to the via-points and the
end point of the trajectory —

∆θ ≈ J#∆x. (6)
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Eq. (6) provides a very good approximation for small ∆x, because inverse kine-
matics is locally linear despite its global nonlinearity. If the exact forward kinematic
function along with all associated parameters is known, there is a well-known pro-
cedure for calculating J . What we have at hand is only a RBFN representing an
approximation of forward kinematics designated as f̃ with x ≈ f̃(θ). Thanks to
the differentiability of the Gaussian basis function, we can easily get an approxi-
mation of J by replacing the basis functions in the hidden layer of the RBFN with
their appropriate partial derivatives. For instance, in order to get an approxima-
tion of [J11, J21, J31]T for a certain θ = [θ1, θ2, θ3, θ4]T , we simply replace the basis
functions by their partial derivatives with respect to x1 and use the output of the
network as the approximation result. In this way, an approximated Jacobian matrix
J̃ can be constructed. With J substituted by J̃ , Eq. (6) is transformed into

∆θ ≈ J̃#∆x. (7)

The algorithm for the incremental generation of a reaching trajectory is sum-
marized below. The array xi,i=1,2,...n specifies the trajectory for the reaching move-
ment. The x̃i,i=1,2,...n vector is the actual trajectory swept by the end-effector over
the course of the movement. xi and x̃i are not identical but should be close to
each other. θ̃i,i=1,2,...,n are the joint vectors corresponding to x̃i,i=1,2,...n. They are
incrementally generated according to Eq. (7) for i = 1, 2, ..., n.

begin

initialize xstart, θstart, xtarget, step length

dist ←‖ xtarget − xstart ‖2, n ← floor(dist/step length) + 1
for i ← 1 to n− 1

x(i) ← xstart + i ∗ step length/dist ∗ (xtarget − xstart)

end
x(n) ← xtarget

x̃(0) ← xstart

θ̃(0) ← θstart

for i ← 1 to n

∆x ← x(i)− x̃(i− 1)
Calculate J̃ and J̃# for θ̃(i− 1)
θ̃(i) ← θ̃(i− 1) + J̃#∆x

if i equal n

x̃(i) ← f(θ̃(i))

else

x̃(i) ← f̃(θ̃(i))

end

end
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Output θ̃(i)i=1,2,...,n to the motor daemon.

end

4. Parameter Tuning through Simulations

4.1. Simulation Settings

An existing implementation of RBFN training with OLS in Matlab called newrb

provides us with an efficient way to conduct simulations in order to tune the asso-
ciated parameters of the forward kinematic learning and evaluate its performance.
All simulations follow a common scheme shown in Fig. 4. Instead of being used to
initiate actual arm movements, the randomly generated joint vectors are mapped
into spatial positions of the end effector through standard homogenous transfor-
mations. The transformation matrices are constructed with the parameters in the
design specification of the arm. The original stereo vision system is replaced by a
simulated version using the parameters of the actual stereo camera system on the
robot head.

Fig. 4. Architecture of Matlab simulations for tuning the associated parameters of the forward
kinematics learning and evaluating its performance. In the simulations, actual arm movements and
stereo position measurements are replaced by their corresponding simulated versions. A separate
module evaluates the approximation accuracy and the resulted reaching accuracy of the forward
model.

Fig. 5 shows the scatter plots of a set of 4000 task space positions that fall
into the overlapped vision field of the two cameras. Each of them corresponds to
a randomly generated joint vector. The ranges of motion for the four joints are
θ1 ∈ [−20◦, 120◦], θ2 ∈ [−60◦, 15◦], θ3 ∈ [−60◦, 45◦] and θ4 ∈ [0◦, 120◦]. This figure
shows the approximate extent of the actual reachable space. No position outside
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this space can be reached, because it is either out of the overlapped vision field or
has no correspondent joint vector.

Fig. 5. The scatter plots of a set of 4000 reachable task space positions that fall into the overlapped
vision field of the stereo cameras. These positions are both plotted in 3-D and projected to the
X-Z, Y-Z and X-Y planes. They show the approximate extent of the actual reachable space. Part
of the boundary of the reachable space is determined by the joint limits of the arm. The rest is
determined by the boundary of common vision field of the cameras, which can be clearly seen from
the X-Z projection that shows a straight edge on the right side.

4.2. Error Classification

The errors from the motor control system and the stereo vision system prevent the
learning of an exact forward model. The error of the motor control system is mainly
the residual positioning error of the underlying PID controllers. The error of the
stereo vision system is the result of limited camera resolution. In our case, the latter
one is dominant so that it is incorporated into the stereo vision simulation module
to study its influence on the reaching accuracy. It is also referred to as StError

throughout this section.
The cause of StError is exemplified in Fig. 6(A). As can be seen from this

drawing, all positions in the shaded area falls to the same pixel on both the left and
the right image plane, so the stereo vision system maps all positions in this area to
one common position marked by the dot. For a position x = f(θ) in the reachable
space, the associated stereo error is defined through StError(x) = st(x)−x, where
st(x) is the output of the stereo vision system for x as the input. Both x and st(x)
are defined in the coordinate system shown in Fig. 6(B).
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Fig. 6. (A) exemplifies the error of the stereo vision system through exaggerating the pixel size on
the image planes. Only a small number of pixels are shown for each image plane. Any task space
position falling into the shadowed area extended by the same pixel on each image plane yields to
the same measurement which is calculated by the stereo vision system and marked with the dot
in the center. (B) shows the coordinate system used to measure the positions in the task space.
Its origin coincides with the focal point of the right camera. The X axis points to the focal point
of the left camera. The Z axis lies on the principle axis the right camera and points outwards. The
Y axis is determined by the X and Z axes through the right hand rule.

The task space vector in each training sample has a StError associated with
it, because after each random movement, the end effector position is measured
by the stereo vision system. The RBFN trained on these samples can provide us
with only an approximate forward model f̃ . For each joint vector θ, the RBFN
outputs a position vector f̃(θ). The position approximation error for θ is defined
through PosError(θ) = f(θ) − f̃(θ). The local Jacobian matrix J̃(θ) constructed
through the RBFN is also different from its true value J(θ). However, the difference
J(θ) − J̃(θ) is not a convenient measure for the Jacobian approximation error.
Instead, the Jacobian approximation error for θ is defined as JacobError(θ) =
f(θ) − x̃(n), where f(θ) is assigned to xtarget and the original algorithm is run
with line 17 substituted by x̃(i) ← f(θ̃(i)) to calculate x̃(n). In this way, the effect
of approximated Jacobian matrices on the reaching accuracy is completely isolated
from the position approximation errors because f̃ is no longer used for the trajectory
generation.

The last error category we want to define here is the actual reaching er-
ror ReachError. This error is the compound effect of StError, PosError and
JacobError. Both PosError and JacobError affect ReachError because f̃ and J̃

are used for the calculation of the reaching trajectory. The direct effect of StError

on ReachError is caused by the position perception error of the desired object.
ReachError(θ) is defined as f(θ)− x̃(n), where in contrast to JacobError(θ), x̃(n)
is calculated by assigning st(f(θ)) to xtarget and then running the original trajectory
generation algorithm.
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Fig. 7. Relationship between StError, PosError, JacobError and ReachError. StError is the
result of limited camera resolution. PosError and JacobError are caused by the approximation
error in the learned forward model. They are influenced by StError and the values of learning
parameters. ReachError is the final position error of the end effector after the reaching movement.
Its magnitude is determined by StError, PosError and JacobError.

4.3. Parameter Tuning

Each radial basis function in the hidden layer of our RBFN can be expressed as
g(x) = exp(‖ x − c ‖ ∗0.8326/spread). x is the input vector to this function, c is
the adopted center of the function g. The parameter spread controls the extent of
g’s influence in its neighborhood. Another parameter error margin is used as the
stop criterion for the learning procedure. Learning is stopped if the mean square
error of the network output averaged over the dimension of the output vector falls
below error margin2. Both spread and error margin must be specified before
training. An additional parameter to be determined is the size of the training set
(size). Setting the values of spread and size appropriately makes it possible to use
only a small number of training samples to achieve a high reaching accuracy. The
error measures defined in Section 4.2 provide us with the criteria to determine the
appropriate values for spread, error margin and size. As can be seen from Fig.
7, ReachError is the compound effect of StError, PosError and JacobError.
Through parameter tuning, we can only influence PosError and JacobError. So
only these two error measures are used for the subsequent tuning process.

Since we only have three parameters to tune, simple exhaustive search en-
ables us to find appropriate values for them. During simulations, values for
spread, error margin and size are chosen from [20, 30, ..., 140, 150](degree),
[1, 2, ..., 7, 8](mm) and [40, 80, 120, 160, 200, 400] respectively. For each particular
value combination (sp, e, si), a random training set of size si is generated. A RBFN
is trained on this training set with learning parameters set to (sp, e). A test set
of 400 samples is used to measure the performance of the trained RBFN. Each
test sample is a joint vector θi. The corresponding end effector position associated
with each θi is within the common field of view of the stereo cameras. Calcula-
tion of PosError is straight forward for each θi. We use a fixed xstart to calculate
JacobError for each θi.

The PosError averaged over the test set and all possible error margin for each
particular combination of spread and size is shown in Fig. 8(A). The PosError

averaged over the test set and all possible spread for each particular combination of
error margin and size is shown in Fig. 8(B). From Fig. 8(A), it can be seen that
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Fig. 8. Simulation results for tuning of the three parameters - spread, error margin and size -
for the learning procedure. Refer to Section 4.2 for detailed discussions.

the change of spread has a relatively large influence on the averaged PosError

when spread is small. For spread larger than 100, the change of spread no long
has any noticeable influence on the averaged PosError regardless of the size of
the training set. From Fig. 8(B), it is clear that the averaged PosError reaches
its minimum at error margin = 3mm for almost all training sets of different sizes.
The averaged PosError skyrockets when error margin is reduced below 2, which
indicates that the newrb function is unable to construct a RBFN with a very small
approximation error within the given parameter space.

We use 110 and 3 as the optimal parameter values for spread and error margin

and measure the averaged PosError against different size. The result (see Fig.
8(C)) shows that the averaged PosError decreases dramatically at the beginning
but such decrease becomes much slower for size larger than 120.

For the actual experiments carried out on Nico, the error in the training set is
certainly not the same as the one used for the simulations. Uncertainties of camera
calibration, uneven illumination, using centroids for position determination all con-
tribute to a larger StError. From Fig. 8(B) we can see that if the error margin is
set too small or too large, the resulted network will deliver an averaged PosError

larger than the minimum. It is very hard to produce curves like those in Fig. 8(B)
through actual experiments. But the hidden layer size of the trained RBFN can



Reaching through Learned Forward Model 15

give us a clue to select the optimal error margin. Fig. 9(A) and 9(B) show the
relationship of averaged PosError and hidden layer size versus error margin for
spread = 110, size = 400 and 320x240 video resolution. We can see that the optimal
error margin for PosError also corresponds to the transition point of the curve of
hidden layer size. Fig. 9(C) and 9(D) show the same relationship, only with video
resolution reduced to 160x120. Lower video resolution makes the average StError

larger and also shifts the optimal error margin to the right. But the new optimal
error margin still corresponds to the transition point of the curve of hidden layer
size. This heuristics is used to select the optimal value of error margin for the
experiments conducted on Nico.

Fig. 9. (A) and (B) show averaged PosError and hidden layer size versus error margin repre-
sented by the X-axis for spread=110, size=400 and 320x240 video resolution. (C) and (D) show
the same relationships, only with the video resolution reduced to 160x120. It can be seen that the
same error margin value corresponds to both the transition point of the curve of the hidden layer
size and the minimum point of the PosError curve.

It should be noted that we have only used PosError for parameter tuning
because the curves of JacobError versus spread, error margin and size display
very similar features to those of PosError. The only differences are that the curves
of JacobError are much flatter and JacobError is typically much smaller than
PosError.

4.4. Reaching Accuracy and Visual Feedback

Fig. 10 shows the histograms of the four different error types for spread =
110, error margin = 3, size = 120. The mean and standard deviation of
ReachError is 4.03mm and 3.94mm respectively. It can be observed that the
JacobError caused by Jacobian approximation is much smaller than PosError.
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Since the reaching trajectory is precalculated, no visual feedback is used during the
reaching movement.

Fig. 10. (A),(B),(C) and (D) show the histograms of the four types of error cal-
culated on a test set of 400 samples. It can be observed that the JacobError
is much smaller than PosError on average. mean(StError)=2.20, std(StError)=1.59,
mean(PosError)=3.37, std(PosError)=2.43, mean(JacobError)=0.75, std(JacobError)=0.84,
mean(ReachError)=4.03, std(ReachError)=3.94.

Fig. 11(A) shows the ReachError histogram for spread = 110, error margin =
3, size = 40. It can be seen that with less training samples, the histogram exhibits
significantly more outliers. According to the trajectory generation algorithm de-
scribed in Section 3.2.2., the final reaching error ReachError is caused in a large
part by the error in x̃(n−1). If we allow a one-time visual feedback at the (n−1)-th
step of the trajectory generation, which essentially delivers the perceived position of
the end effector at this time step, st(f(θ̃(n−1))) instead of f̃(θ̃(n−1)) is assigned to
x̃(n−1). Since the stereo error is smaller than the position approximation error, the
one-time visual feedback should improve the reaching accuracy. Simulation result
shown in Fig. 11(B) confirms this conjecture. It shows the histogram of ReachError

for the same parameter setting if a one-time visual feedback is allowed. It is visually
very close to Fig. 10(D).

5. Experiment Results on Nico

Experiments have been carried out on Nico to test the performance of the proposed
approach. 120 samples are gathered before the forward kinematics learning. It takes
only about 15 minutes to gather a training set of this size. spread is set to 110 as
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Fig. 11. The left histogram shows the distribution of ReachError when the reaching trajec-
tory is generated without visual feedback. The values of learning parameters are spread = 110,
error margin = 3 and size = 40. Because the training set is very small, the histogram of
ReachError is more spread out and exhibits quite a few outliers. The right histogram shows
the distribution of ReachError when a one-time visual feedback is allowed during the reaching
movement. It can be seen that ReachError is drastically reduced and the distribution is visually
almost identical to Fig. 10(D).

usual. Fig. 12 shows the plot of hidden layer size versus error margin. Using the
heuristics described in Section 4.3, we set the final value of error margin to be 3.8.

Fig. 12. The curve of hidden layer size versus error margin for a training set of 120 autonomously
gathered samples. It shows a salient transition point at error margin = 3.8. Using the heuris-
tics described in Section 4.3, we use this value for training the RBFN to evaluate the reaching
performance.

After the training, we use a wooden ball of the same size as the one attached
to the wrist plate of the robot as the reaching object. The ball is fixed on the tip
of a modified retractable TV antenna that allows flexible positioning of the object.
In a test session, the ball was put into 100 different positions for Nico to reach. If a
frontal contact took place at the end of the reaching movement, it was counted as a
success. The concept of frontal contact is illustrated in Fig. 13. No visual feedback
was used throughout all reaching movements. A sequence of images capturing the
course of one successful reach is shown in Fig. 14. The final success rate of the test
session is 92%. Most of the unsuccessful movements happened when the ball was
placed near the boundary of the reachable space of the robot.
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(A) (B)

Fig. 13. (A) shows an example of frontal contact, where Nico’s finger tip touches the object on
the surface part facing the eye cameras. Small overshoot or undershoot within 9mm also counts
as a frontal contact. (B) shows an example of Nico’s finger tip moving past the object. Although
at the end of this reaching movement the finger tip also touches the object, the result does not
count as a frontal contact.

(A) (B) (C)

Fig. 14. (A),(B),(C) and (D) show a sequence of images capturing the course of one successful
reach.

6. Discussion

Through this paper, we have proposed a procedure of learning to reach through
first learning a model of the arm forward kinematics and then using the learned
model to generate reaching trajectories. An error classification scheme and the de-
tailed parameter tuning process are included in this paper. We have shown through
simulations and actual experiments that a small training set for learning the for-
ward model allows accurate reaching movements relying solely on proprioceptive
feedback. The size of the training set can be cut back further if a one-time visual
feedback is used to aid reaching when the end effector is already moved into the
neighborhood of the desired object. The modular structure of the system devised
and implemented to evaluate our approach can be easily extended to allow the
robot to reach for different objects in its environment according to the focus of its
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attention.
Interestingly, some psychological studies on human reaching behavior reveal two

important features that are also present in our system. One study conducted by R.S.
Johansson and colleagues shows that adults almost never explicitly look at their
hands during reaching movements.26 Experiments by R.K. Clifton and colleagues
show that infants can reach glowing objects in the dark without visual feedback of
their hand position.27 Our study manifests that reaching without visual feedback is
indeed possible even an approximate forward model is learned on a small training
set. A study by von Hofsten shows that the arm movements of neonatal infants
consist of multiple segments.28 This work has been confirmed by other researchers.29

The multiple segments might be the results of incremental trajectory generation,
which is the approach we use to solve inverse kinematics.

Natural extensions to the work described in this paper include exploiting visual
feedback to a greater extent to improve reaching accuracy, investigating the perfor-
mance of our learning approach if the original version of Liegois’s method instead of
its simplified form is used for trajectory generation, and learning to use additional
DOFs for reaching while avoiding the curse of dimension.
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26. R.S.Johansson, G.Westling, A.Bäckström and J.R. Flanagan. Eye-hand coordination
in object manipulation. The Journal of Neuroscience, 21(17):6917-6932, 2001.

27. R.K.Clifton, D.W.Muir, D.H.Ashmead and M.G.Clarkson. Is visually guided reaching
in early infancy a myth? Child Development, 64:1099-1110, 1993.

28. C.von Hofsten. Development of visually directed reaching: the approach phase. Journal
of Human Movement Studies, 5:160-168, 1979.

29. A.Mathew and M.Cook. The control of reaching movements by young infants. Child
Development, 61:1238-1257, 1990.


