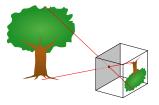
| History | Paradigms | Event-based Computation | Using the event-based paradigm | Validation | Conclusion |
|---------|-----------|-------------------------|--------------------------------|------------|------------|
| 00000   | 0000      | 0                       |                                | 0000       | 00         |
|         |           |                         |                                |            |            |


# **Event-based Computer Vision**

### Charles Clercq

#### Italian Institute of Technology Institut des Systemes Intelligents et de robotique

November 30, 2011

| History | Paradigms | Event-based Computation | Using the event-based paradigm | Validation | Conclusion |
|---------|-----------|-------------------------|--------------------------------|------------|------------|
| ●○○○○   | 0000      | 0                       |                                | 0000       | 00         |
| Pinho   | ole came  | era                     |                                |            |            |

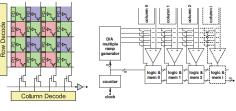


### Principle

light rays from an object pass through a small hole to form an inverted image.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

| History | Paradigms | Event-based Computation | Using the event-based paradigm | Validation | Conclusion |
|---------|-----------|-------------------------|--------------------------------|------------|------------|
| ○●○○○   | 0000      | 0                       |                                | 0000       | 00         |
| Came    | era obsc  | ura                     |                                |            |            |

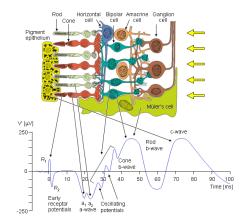



(a) 18h Century, (b) First successful perportable device for manent photograph, by artists
 Nicéphore Niépce in 1826 at Saint-Loup-de-Varennes.

### Principle

Optical device that projects an image of its surroundings on a screen.

| History<br>○○●○○ | Paradigms<br>0000 | Event-based Computation<br>O | Using the event-based paradigm | Validation<br>0000 | Conclusion |
|------------------|-------------------|------------------------------|--------------------------------|--------------------|------------|
| Flect            | ronic de          | vice                         |                                |                    |            |




(c) CMOS sensor (d) Basic architecture of a column-parallel single-slope, multi-ramp analog-to-digital converter

### Principle

The light is integrated through the photo-diode. The value of each element is read synchronously, triggered by the time.

| History<br>○○○●○ | Paradigms<br>0000 | Event-based Computation<br>0 | Using the event-based paradigm | Validation<br>0000 | Conclusion |
|------------------|-------------------|------------------------------|--------------------------------|--------------------|------------|
| Natu             | ral "dev          | vice"                        |                                |                    |            |

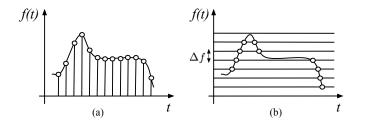


| History<br>○○○○● | Paradigms<br>0000 | Event-based Computation<br>O | Using the event-based paradigm | Validation<br>0000 | Conclusion |
|------------------|-------------------|------------------------------|--------------------------------|--------------------|------------|
| Visua            | l systen          | า                            |                                |                    |            |

# Principle 1

The first steps in seeing begin in the retina, where a dense array of photoreceptor convert the incoming pattern of light into an electrochemical signal [...] *Nassi, Callaway 2009* 

#### Principle 2


The strategy used by the mammalian visual system is to reduce the representation of the visual scene to a limited number of specialized, parallel output channels. [...] *Nassi, Callaway 2009* 

| History<br>00000 | Paradigms<br>●○○○ | Event-based Computation<br>O | Using the event-based paradigm | Validation<br>0000 | Conclusion |
|------------------|-------------------|------------------------------|--------------------------------|--------------------|------------|
| Enco             | ding              |                              |                                |                    |            |

### Two possibilities

Two ways to encode the information:

- time-driven encoding,
- data-driven encoding.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

| History<br>00000 | Paradigms<br>○●○○ | Event-based Computation<br>0 | Using the event-based paradigm | Validation<br>0000 | Conclusion |
|------------------|-------------------|------------------------------|--------------------------------|--------------------|------------|
| -                |                   | Devel                        |                                |                    |            |

# Frame-based Paradigm

# Time-driven encoding

• fixed temporal interval, 
$$\Delta t$$
,

• 
$$I_{seq} = \{I(t_0), I(t_0 + \Delta t), \dots, I(t_0 + n\Delta t)\}$$

• 
$$I_{seq} = \{f_{0,0}(t), f_{0,1}(t), \dots, f_{M-1,N-1}(t)\}$$

 $I_{seq}$  is composed of a set of discrete functions  $f_{x,y}(t)$ , obtained by sampling all of the pixels at the same time.



| History<br>00000 | Paradigms<br>○○●○ | Event-based Computation<br>0 | Using the event-based paradigm | Validation<br>0000 | Conclusion |
|------------------|-------------------|------------------------------|--------------------------------|--------------------|------------|
|                  |                   |                              |                                |                    |            |

# Frame-based issues

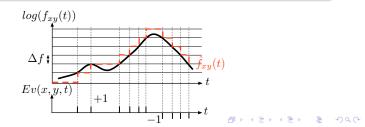
### Disadvantage

- Reduction of the dynamics,
- unnecessary redundant data,
- time and memory consuming.

The reason of those disadvantage come from the time sampling. To resolve the problem, we have to **change the sampling process** 

(日)、(四)、(E)、(E)、(E)

| History | Paradigms | Event-based Computation | Using the event-based paradigm | Validation | Conclusion |
|---------|-----------|-------------------------|--------------------------------|------------|------------|
| 00000   | ○○○●      | 0                       |                                | 0000       | 00         |
|         |           |                         |                                |            |            |


# **Event-based Paradigm**

# Sampling

• let  $t_k$  be set of times of the signal sampling,

• 
$$T = \{t_k \mid |\mathcal{F}(f_{x,y}(t_k)) - \mathcal{F}(f_{x,y}(t_{k-1}))| = \Delta f\}.$$

- ${\mathcal F}$  is defined as a log function,
  - provide a wide pixel range,
  - 2 make sensitive to the relative contrast.
- let Ev(x, y, t) be the compact representation of  $f_{x,y}$ ,
  - $Ev(x, y, t) = \delta(t, t_k) \cdot sign(f'_{x,y}(t)),$



| History<br>00000 | Paradigms<br>0000 | Event-based Computation • | Using the event-based paradigm | Validation<br>0000 | Conclusion<br>00 |
|------------------|-------------------|---------------------------|--------------------------------|--------------------|------------------|
| Com              | outation          |                           |                                |                    |                  |



# Goal

- exploit the data-driven acquisition advantages
- avoid the time-based issues

| History | Paradigms | Event-based Computation | Using the event-based paradigm | Validation | Conclusion |
|---------|-----------|-------------------------|--------------------------------|------------|------------|
| 00000   | 0000      | O                       | ●○○○○○○○                       | 0000       |            |
|         |           |                         |                                |            |            |

# **Optical Flow**

### Definition

Apparent motion of displacements in the 3D space projected on the 2D plane of image sensors

### Robotic field

The optical flow is an important tools used in the robotic field:

- object avoidance
- navigation ...



| History<br>00000 | Paradigms<br>0000 | Event-based Computation<br>0 | Using the event-based paradigm<br>○●○○○○○○ | Validation<br>0000 | Conclusion |
|------------------|-------------------|------------------------------|--------------------------------------------|--------------------|------------|
|                  |                   |                              |                                            |                    |            |
| ما حم ۱۸         | a da              |                              |                                            |                    |            |

### Plethora of different techniques

- differential methods,
- region-based matching,
- energy based,

methods

• phased based.

#### Two distinct families

- Purely local (e.g Lucas and Kanade),
- Global (e.g Horn and Schunck),
  - take advantage of the global image structure.

| History | Paradigms | Event-based Computation | Using the event-based paradigm | Validation | Conclusion |
|---------|-----------|-------------------------|--------------------------------|------------|------------|
| 00000   | 0000      | 0                       |                                | 0000       | 00         |
|         |           |                         |                                |            |            |

# Selection

#### Local method

Taking advantage of:

- high temporal resolution,
- sparse encoding.

# Small displacement and assumption

• The light intensity conservation

• 
$$I(x, y, t) = I(x + \delta x, y + \delta y, t + \delta t)$$

Taylor series

•  $I(x+\delta x, y+\delta y, t+\delta t) = I(x, y, t) + \frac{\partial I}{\partial x}\delta x + \frac{\partial I}{\partial y}\delta y + \frac{\partial I}{\partial t}\delta t + H.O.T$ 

• The equation of the optical flow

• 
$$I_x V_x + I_y V_y = -I_t$$

| History | Paradigms | Event-based Computation | Using the event-based paradigm | Validation | Conclusion |
|---------|-----------|-------------------------|--------------------------------|------------|------------|
| 00000   | 0000      | 0                       | ○○○●○○○○                       | 0000       |            |
| Least   | Square    | e Method                |                                |            |            |

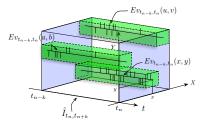
### Estimation

 Local constancy •  $\begin{cases} I_x(q_1)V_x + I_y(q_1)V_y = -I_t(q_1) \\ \dots \\ I_y(q_n)V_x + I_y(q_n)V_y = -I_t(q_n) \end{cases},$  The Least Square Method •  $A = \begin{bmatrix} I_x(q_1) & I_y(q_1) \\ I_x(q_2) & I_y(q_2) \\ \vdots & \vdots \\ I_x(q_n) & I_y(q_n) \end{bmatrix}, v = \begin{bmatrix} V_x \\ V_y \end{bmatrix}, b = \begin{bmatrix} -I_t(q_1) \\ -I_t(q_2) \\ \vdots \\ -I_t(q_n) \end{bmatrix}.$ •  $A^T A v = A^T h$ 

• To solve:

• 
$$v = (A^T A)^{-1} A^T b$$

| History | Paradigms | Event-based | Computation |
|---------|-----------|-------------|-------------|
|         |           |             |             |


Using the event-based paradigm

Validation 0000 Conclusion 00

# **Event-based** Optical Flow

# Derivative

$$\begin{cases} \frac{\partial l_{t_i,t_n}}{\partial x}(x,y) &\sim (Ev_{t_i,t_n}(x,y) - Ev_{t_i,t_n}(x-1,y))\Delta f\\ \frac{\partial \hat{l}_{t_i,t_n}}{\partial y}(x,y) &\sim (Ev_{t_i,t_n}(x,y) - Ev_{t_i,t_n}(x,y-1))\Delta f\\ \frac{\partial \hat{l}_{t_i,t_n}}{\partial t}(x,y) &\sim \frac{Ev_{t_i,t_n}(x,y) - Ev_{t_i,t_{n-k}}(x,y)}{t_n - t_{n-k}}\Delta f \end{cases}$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| History<br>00000 | Paradigms<br>0000 | Event-based Computation<br>O | Using the event-based paradigm | Conclusion |
|------------------|-------------------|------------------------------|--------------------------------|------------|
|                  |                   |                              |                                |            |

# Optical Flow Algorithm

#### Algorithm: Event-based optical flow

**Require:** 
$$\mathbf{p} = [x, y]^t$$

For each event occurring at time t at pixel  $[x, y]^t$ : Define a  $(n \times n)$  neighborhood N of  $[x, y]^t$  and compute the

partial derivatives:

• 
$$grad(I)(\mathbf{p}) = \begin{bmatrix} \frac{\partial \hat{l}_{t_j,t_n}}{\partial x}(\mathbf{p}) \\ \frac{\partial \hat{l}_{t_j,t_n}}{\partial y}(\mathbf{p}) \end{bmatrix}$$
  
•  $\frac{\partial I}{\partial t}(\mathbf{p}) = \frac{Ev_{t_{n-k},t_n}}{t_n - t_{n-k}} \Delta f$ 

Solve equation of the flow over  $\mathbb{N}$  for  $[v_x, v_y]^t$ 

Paradigms Event-based Computation

00000000

Using the event-based paradigm

Validation

Conclusion

# Optical Flow Algorithm and noise

Algorithm: Event-based optical flow 2

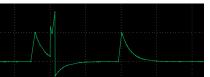
**Require:**  $\mathbf{p} = [x, y]^t$ 

е

For each event occurring at time t at pixel  $[x, y]^t$ :

if activity  $Act_{t_n-k,t_n}(x,y) > a$  then Define a  $(n \times n)$  neighborhood N of  $[x, y]^t$  and compute the partial derivatives:

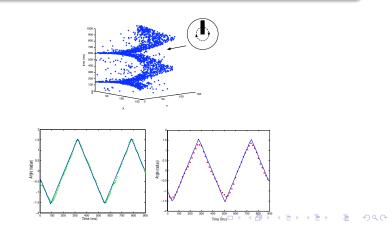
• 
$$grad(I)(\mathbf{p}) = \begin{bmatrix} \frac{\partial \hat{l}_{t_j,t_n}}{\partial x}(\mathbf{p}) \\ \frac{\partial \hat{l}_{t_j,t_n}}{\partial y}(\mathbf{p}) \end{bmatrix}$$
  
•  $\frac{\partial I}{\partial y}(\mathbf{p}) = \frac{Ev_{t_{n-k},t_n}}{\Delta f} \Delta f$ 


$$\frac{\partial I}{\partial t}(\mathbf{p}) = \frac{L v_{t_{n-k},t_n}}{t_n - t_{n-k}} \Delta$$

Solve equation of the flow over  $\mathbb{N}$  for  $[v_x, v_y]^t$ else

set 
$$v_x = 0$$
 and  $v_y = 0$   
nd if

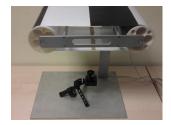
| History<br>00000 | Paradigms<br>0000                                                                                                                                     | Event-based Computation<br>0            | Using the event-based paradigm<br>○○○○○○○● | Validation<br>0000 | Conclusion |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|--------------------|------------|--|--|
| Noise            | e issue                                                                                                                                               |                                         |                                            |                    |            |  |  |
| Si               | mple filte                                                                                                                                            | r                                       |                                            |                    |            |  |  |
| Ν                |                                                                                                                                                       | ive on the events                       |                                            |                    |            |  |  |
|                  | <ul> <li>Accumulation and inhibition:</li> <li>leaky integration over Δt,</li> <li>comparison to a threshold,</li> <li>hyper-polarization.</li> </ul> |                                         |                                            |                    |            |  |  |
|                  | - · ·                                                                                                                                                 | endent on stimulu<br>eters should be va |                                            |                    |            |  |  |

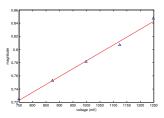





| History<br>00000 | Paradigms<br>0000 | Event-based Computation<br>0 | Using the event-based paradigm | Validation<br>●○○○ | Conclusion |
|------------------|-------------------|------------------------------|--------------------------------|--------------------|------------|
| Orier            | ntation           |                              |                                |                    |            |

### Protocol

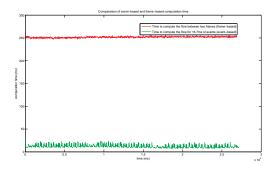

Use of a black bar painted on a white disk, rotating with a constant angular velocity




| History<br>00000 | Paradigms<br>0000 | Event-based Computation<br>O | Using the event-based paradigm | Validation<br>○●○○ | Conclusion |
|------------------|-------------------|------------------------------|--------------------------------|--------------------|------------|
| Amp              | litude            |                              |                                |                    |            |

#### Protocol

Use of a moving pattern of bars whose translational speed can be accurately set by adjusting the supply voltage of a DC motor.






| History<br>00000 | Paradigms<br>0000 | Event-based Computation<br>0 | Using the event-based paradigm | Validation<br>○○●○ | Conclusion |
|------------------|-------------------|------------------------------|--------------------------------|--------------------|------------|
| Com              | putatior          | nal cost                     |                                |                    |            |

# Protocol

Comparison of the computational times required by the frame-based and the event-based methods for computing optic flow



▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

| History | Paradigms | Event-based Computation | Using the event-based paradigm | Validation | Conclusion |
|---------|-----------|-------------------------|--------------------------------|------------|------------|
| 00000   | 0000      | O                       |                                | ○○○●       | 00         |
| Com     | outation  | al cost                 |                                |            |            |

### Comparison

- frame-based, 60 fps (16.7 ms)
  - number of processed pixels at each step: 16384,
  - mean computation time: 251.7ms

### mean computation of a pixel: $15.4e^{-3}ms$

- event-based  $(1e^{-3}ms)$ 
  - mean number of events (period of 16.7ms): 1340,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• mean computation time: 9.65ms

# mean computation of an event: $7.2e^{-3}ms$

| History | Paradigms | Event-based Computation | Using the event-based paradigm | Validation | Conclusion |
|---------|-----------|-------------------------|--------------------------------|------------|------------|
| 00000   | 0000      | 0                       |                                | 0000       | ●○         |
| Conc    | lusion    |                         |                                |            |            |

### The data-driven, bioinspired sampling

- removes redundancies,
- better captures the dynamic content of visual input.

### event-based optical flow

The experiments showed that the new asynchronous event-based paradigm allows for

- high dynamic computation
- fast and low cost computation

| History | Paradigms | Event-based Computation | Using the event-based paradigm | Validation | Conclusion |
|---------|-----------|-------------------------|--------------------------------|------------|------------|
| 00000   | 0000      | 0                       |                                | 0000       | ○●         |
| Disci   | ission    |                         |                                |            |            |

#### Further works

The method is sensible to noise, to deal with different method are explored:

- short term depression in input synapses,
- spike frequency adaptation of the leaky integration.