AdaBoost: an Introduction

Carlo Ciliberto SINA – Genova – 28/11/2011

Inputs:

• Training set $\{(x_i,y_i)\}_{i=1}^n$ $x\in\mathcal{X}$ $y_i\in[-1,1]$

Training set

Inputs:

- Training set $\{(x_i,y_i)\}_{i=1}^n$ $x\in\mathcal{X}$ $y_i\in[-1,1]$
- ullet Weak Learners $\ensuremath{\mathcal{H}}$

Training set

Inputs:

- Training set $\{(x_i,y_i)\}_{i=1}^n$ $x\in\mathcal{X}$ $y_i\in[-1,1]$
- ullet Weak Learners $\ensuremath{\mathcal{H}}$

Initialization:

ullet Uniform initial distribution $\,D_1(i)=1/n\,$

Training set

Weight distribution

Weak learners

Training:

For t = 1,...,T:

Training set

Training:

For
$$t = 1,...,T$$
:

ullet Find the current best weak learner: $h_t = argmin_{i/y_i
eq h(x_i)} oldsymbol{\sum_{i/y_i
eq h(x_i)}} D_t(i)$

Training:

For
$$t = 1,...,T$$
:

ullet Find the current best weak learner: $h_t = argmin_{i/y_i
eq h(x_i)} oldsymbol{\sum_{i/y_i
eq h(x_i)}} D_t(i)$

Training:

For t = 1,...,T:

- ullet Find the current best weak learner: $h_t = argmin_{h} \sum_{i/y_i
 eq h(x_i)} D_t(i)$
- Set $lpha_t = rac{1}{2} \log rac{1-\epsilon_t}{\epsilon_t}$, $\epsilon_t = \!\!\!\! \sum_{i/y_i \,
 eq \, h(x_i)} \!\!\!\! D_t(i)$

Best weak learner

Weak learners

Training:

For t = 1,...,T:

- ullet Find the current best weak learner: $h_t = argmin \sum_{i/y_i
 eq h(x_i)} D_t(i)$
- Set $lpha_t = rac{1}{2} \log rac{1-\epsilon_t}{\epsilon_t}$, $\epsilon_t = \!\!\!\! \sum_{i/y_i \,
 eq \, h(x_i)} \!\!\!\! D_t(i)$

Training:

For t = 1,...,T:

- ullet Find the current best weak learner: $h_t = argmin \sum_{i/y_i
 eq h(x_i)} D_t(i)$
- ullet Update the weights $D_{t+1}(i) = rac{D_t(i)exp(-lpha_t y_i h_t(x_i))}{Z_t}$

Training set

Weak learners

h h h h h
h h h h
h h h

Training:

For t = 1,...,T:

- ullet Find the current best weak learner: $h_t = argmin \sum_{i/y_i
 eq h(x_i)} D_t(i)$
- ullet Update the weights $D_{t+1}(i) = rac{D_t(i)exp(-lpha_t y_i h_t(x_i))}{Z_t}$

Training set

Weak learners

Test:

h_t

Test:

h₁ - - - h₁

Test:

For any novel example $x \in \mathcal{X}$:

S

h₁ - -

. . .

 $h_{\!\scriptscriptstyle T}$

Test:

For any novel example $x \in \mathcal{X}$:

$$ullet$$
 The strong classifier returns $H(x) = sign igg(\sum_{t=1}^T lpha_t h_t(x) igg)$

(S)

h_t

Test:

For any novel example $x \in \mathcal{X}$:

• The strong classifier returns
$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

$$\begin{array}{|c|c|c|}\hline (S) \\ \hline (h_1) \oplus \cdots \oplus & h_T \\ \hline \end{array}$$

Face Detection

Face Detection

ullet Training set $\{(x_i,y_i)\}_{i=1}^n$

ullet Weak Learners $\ensuremath{\mathcal{H}}$

$$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ -1 & \text{otherwise} \end{cases}$$

$$ii(x,y) = \sum_{x' \le x, y' \le y} i(x', y')$$

$$D = ii(x_4, y_4)$$

$$D = ii(x_4, y_4) - ii(x_3, y_3)$$

$$D = ii(x_4, y_4) - ii(x_3, y_3) - ii(x_2, y_2)$$

$$D = ii(x_4, y_4) - ii(x_3, y_3) - ii(x_2, y_2) + ii(x_1, y_1)$$

