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Sensory thresholds
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2Fondamental definitions

• The psychophysical function Ψ
relates the physical intensity of the 
stimulus to the corresponding 
sensation. Note that the 
sensations are not directly 
observable. 
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• The absolute threshold (Absolute Limen, AL) is the smallest 
amount of stimulus energy necessary to produce a sensation

• The difference threshold (Difference Limen, DL) is the amount of 
changes of a stimulus required to produce a just noticeable 
difference (JND) in the sensation. Note that difference thresholds 
refer to the stimuli while JND refer to sensations.

P=Ψ(S)
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3The psychometric function

• The psychometric function is the probability 
of some observer’s response as a function 
of the stimulus intensity.

F(S) = Prob(R | S)

• Typically, psychometric functions have an 
ogival (sigmoidal) shape. 
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• In experiments aimed at measuring thresholds, the stimulus intensity is 
systematically manipulated. 
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4Response matrix

• Many psychophysical experiments involve the 
repeated presentation of a limited number of of 
stimuli {S1,..,SM} and a limited set of possible 
responses {R1,...,RN}. 

• The response matrix is the matrix conditional 
probabilities Prob(Rj|Si) where Prob(Rj|Si) is the 
probability of the response Rj for the stimulus 
Si.

• The outcome of the experiment can be 
described by the conjoint probability P(Rj and 
Si).

Prob(Rj and Si) = Pr(Rj |Si)P(Si) 

• Unlike the matrix of conjoint probabilities, the 
response matrix is a description of the 
observer, not of the experiment. As a matter of 
fact, the conjoint probabilities depends not only 
on the observer but also on the the probability 
of the stimulus P(S), which is under control of 
the experimenter. 
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Psychophysical tasks
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6Psychophysical tasks
• Many psychophysical tasks that differ in subtle ways exist. Methods of 

analysis (e.g., definition of sensory tresholds) are in general task 
specific.

• Detection tasks are used to measure the absolute thresholds. The 
observer’s task is to indicate whether he has detected the stimulus. 

• Yes-no procedure
• 2AFC detection task

• Discrimination tasks are used to measure difference thresholds. In 
these tasks, the experimenter present two stimuli, a reference 
(standard) stimulus and a comparison stimulus. The task of the 
subject is to indicate whether he has perceived a difference between 
the two stimuli.

• 2AFC discrimination task
• discrimination task with reminder
• same-different task

• Identification o classification tasks where the observer must 
identify the stimulus.

• The same taks can be used to build psychophysical scales, but 
specific methods for that purpose also exist (see scaling methods).
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7Yes-no detection task 

• The absolute threshold (or 
Absolute Limen, AL) is defined 
as the value of the stimulus that 
elicits 50% of positive 
responses:

Prob(R = “Yes" |  S = AL) = 0.5
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• In a simple Yes-No detection task, the experimenter presents a 
stimulus during a an interval and the subject must  indicate wether 
is has detected the stimulus or not.

• The outcome of the Yes-No detection task is strongly influcend by 
the response bias of the observer. For this reason, this task is little 
used nowdays.
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82AFC detection task
• Two alternative forced choice task: The experimenter presents the 

stimulus during one of two intervals (time-separated presentations) or at 
one of two possible locations (space-separated presentations) and the 
subject must indicate in which interval or location the stimulus is present.

The position of the stimulus in space or in time must be randomized 
between trials.

• The psychometric function relates the 
proportion of correct responses as a function 
of the stimulus intensity. The psychometric 
function ranges from 50% to 100% because 
observers respond randomly when the intenisty 
of the stimulus is below threshold. 

• The absolute threshold is defined as the 
stimulus intensity that elicit a 75% of correct 
response (a different proportion can be used as 
long as it is larger than 0.5)
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• Unlike the yes-no task, the 2AFC task is little influenced by the response 
bias because the response is based on the comparison of two stimuli. Any 
bias present in the evaluation of the magnitude of a stimulus will affect both 
stimuli equally and is thus cancelled when the two stimuli are compared.  
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9Absolute thresholds

All these examples show large variations of the absolute thresholds 
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10Discrimination tasks

• Discrimination tasks are used to measure difference thresholds. In 
these tasks, the experimenter present two stimuli, a reference 
(standard) stimulus and a comparison stimulus, separated in time or 
space. The order or position of the stwo stimuli must be randomized 
to counterbalance possible systematic effects due the their temporal 
or spatial separation.

• In the forced choice discrimination task, the observer does not know 
which stimulus is the standard. The task of the subject is to indicate 
which one of the two stimuli possess more fo some quality.

• In the discrimination task with reminder, the observer is aware of 
which stimulus is the standard and the task is to say if the 
comparison felt larger than the standard.  This task variant is 
susceptible to responses biases and should be avoided.

• Note: The distinction between these two variants is not always clear but it has 
implication on their analysis within the signal detection theory framework (MacMillan & 
Creelman, chapter 7).
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11Difference threshold
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• The  point of subjective equality (PSE) is 
the stimulus that elicits 50% of positive 
responses.

• The difference threshold corresponds to 
the increase of stimulus value DLπ value 
such that the stimulus Sπ = PSE + DLπ elicits 
π=75% of positive response. Note that this 
definition depends on the choice of π.

• Alternatively, the difference threshold can be defined as half the distance 
between the two stimoli S1-π and Sπ that elicit 1- π = 25% e π=75% of positive 
responses:

DL = (Sπ - S1-π)/2

The two definitions are equivalent if the psychometric function is symmetric 
with respect to the PSE. 

• In general, the psychometric function relates the probability of judging the 
comparison stimulus as being larger than the standard to the intensity of the 
comparison stimulus.  
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12Same-different task

• The same-different task is a variant of the forced choice 
discrimination task where the subject must indicate whether he has 
perceived a difference between the two stimuli.

• In many instances, the difference between standard and comparison stimuli has a 
sign (e.g. the comparison can be either smaller or larger than the standard). One 
can decides to use only comparison stimuli larger than the standard or the sign of 
the difference can be randomized across trials. In the latter case, the psychometric 
function should relate the absolute value of the difference to the probability of 
perceiving a differenc. Note that this procedure might present some problems in 
presence of assymetries (e.g., a difference is perceived more easily when the 
comparison is smaller than the standard than when the opposite true). 

• The psychometric function relates 
the proportion of correct responses 
to the difference between the 
comparison stimulus. It ranges from 
50% (chance level) to 100%.

• The difference treshold is defined 
as the stimulus difference that 
eleicity a given proportion (e.g., 
75%) of the “different” response.
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13The Weber ratio and Weber’s Law

• The difference threshold is closely related to the 
slope of the psychophysical function. Unless the 
psychophysical function is linear, its value 
depends on the intensity of the stimulus.  

• The Weber function f relates the difference 
threshold (DL) to the value of the reference 
stimulus (St) 

DL(St) = f(St)

In general, the difference threshold increases 
with the stimulus

• The Weber ratio K is the ratio between the 
difference threshold and the standard

K(St) = DL(St) / St

• Weber’s Law is the postulate that Weber ratio is 
constant 

K = DL(St) / St

Continuum Fisico

AL ST ST+DL

DL

0

P

P + JND

JN
D

C
o

n
tin

u
u

m
 S

e
n

so
ri

a
le

G
ab

r i
e

l 
B

au
d

-B
o

vy

14Modified Weber Law

• Weber’s ratio typically increases markedly when the stimulus becomes 
weaker. 

• A modified Weber’s Law can account for this observation

where a is a free parameter.
Sa

SDL
K

+
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Psychophysical methods
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16Psychophysical methods

• Computation of a sensory threshold implies the presentation of a
series of stimuli near in the vicinity of the threshold. The following 
methods define the order in which to present the stimuli. They might 
be adapted to the various previously defined tasks to measure the 
absolute or difference threshold.

• Several classical methods dating back to the very beginning of 
Pyschophysics are still in use today 

• Method of constant stimuli
• Method of limits
• Method of adjustement

• Adaptive methods use the previous response(s) of the observer to 
fixe the next stimulus. 

• Staircase methods
• Modern adaptive methods (PEST, QUEST, etc.) select the stimuli in 

some statistically optimal fashion.
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17Method of constant stimuli

• The method of constant stimuli is the 
procedure of repeatedly using the same set of 
M stimuli. Typically, the set contains between 5 
and 9 stimuli, which are presented between 10 
and 100 times each (20 is a common value).

• The method of constant stimuli can be used 
with detection and discrimination tasks. For 
each stimulus value, the proportion of positive 
responses is computed (e.g., proportion of 
“yes” response in a yes-no detection task or 
proportion of “different” responses in a same-
different discrimination task)

• The method of constant stimuli provide all the 
information necessary to fit a psychometric 
function and compute the absolute or 
difference tresholds.
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18Issues with the method of constant stimuli
• Advantages:

• If the the stimuli are well selected and the number of repetitions large enough, 
the method of constant stimuli provides a complete and precise view of the 
psychometric function. 

• Under the same conditions, this method yields unbiased and reliable threshold 
estimates.

• Easy to administer.

• Disadvantages:
• For this method to be efficient, the stimuli must corresponds to the interval where 

the psychometric function increases from 0 to 1. This method requires that the 
experimenter has some knowledge of this range of values before before the 
experiment. Still, when there is a lot of variability between subject, the methods 
can still be quite inefficient as many trials are waster over stimulus values away 
from the threshold.

• The method of constant stimuli is less efficient than adaptative methods to 
compute thresholds (Watson & Fitzhug, 1990). Still, there is some value in using 
a method that gives the whole psychometric function and pilot experiments a 
faster methods such as the method of limits can be executed to fix the testing 
interval.

• Reference: Watson & Fitzhugh (1990) The method of constant stimuli is 
inefficient. Perception & Psychophysics, 47(1):87-91.
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19The methods of limits

• The experimenter starts by 
presenting a stimulus well 
above or well below 
threshold; on each successive 
presentation the threshold is 
approaced by changing the 
stimulus intentisity by small 
amount until the response of 
the subject senses. Typically, 
the experimenter alternate 
between the ascending and 
descending series. 

• For each series, a 
instantaneous threshold is 
computed (mid-distance 
btween the two last stimuli). 
The threshold is the average 
value of all 
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20Issues with the methods of limits

• Advantages:
• The methods of limits is a simple and efficient procedure for 

determining sensory thresholds.

• Often used in clinics (e.g., audiometry or oculometry)

• Disadvantages:
• Errors of habituation correspond to a tendency to repeat the 

same answer  even after the sensation has changed. The effect 
is to increase the threshold in ascending series and to decrease
it in descending ones.

• Error of expectations corresponds to an anticipation of the 
change of sensation. The effect of errors of expectation on thre
thresholds is opposite to the effect of errors of habituation. 

• The choice of the initial value of the series can also have an 
effect. For this reason, initial values are varied between 
repetation.
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21Staircase method

• First observation made at best guess 
available for PSE [ F-1(0.5)].

• When  a positive response (cross in Figure) 
is obtained, the following observation is 
taken at the next lower leve, and when a 
negative response (circle) is obtained, the 
following observation is taken at the next 
higher level.

• The procedure is terminated after:
– a fixed number of observations
– a fixed number of reversals (or runs).

• Computation of absolute threshold or PSE 
[F-1(0.5)]: 

– Average of final observations (e.g., all 
observations after first run).

– Average of peak and valleys (example: 
(2+1+2+0+1+0)/6=1) or average of last n
peak and valleys.

– Fitting a psychometric function using 
maximum likelihood

• Computation of difference threhsold
– Standard deviation of peaks and valleys

migh be viewed an estimate of σPSE

– Fitting of a psychometric function

The Staircase Method (=Up-Down rule, 
Dixon and Mood, 1948):
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22Issues with the staircase method

•Advantages

• Main advantage of staircase method is its simplicity and enonomicity in terms of 
number of trials necessary to obtain an estimate of the threshold.

• Issues

• Selection of initial value: It is difficult to have a good estimate for the initial 
value of the staircase method. If the estimate is not good, there is often a bias 
in the estimated PSE in the direction of the initial value.

• Selection of the step value: It is important that the subject does not perceive 
the link existing between his response and the choice of the next stimulus in the 
staircase method. Ideally, the subject should not be able to perceive the 
direction of the sequence. This imposes the use of small steps. On the other 
hand, small steps make the experiment long since it might be necessary to 
present more stimuli to see a reversal. Finding the ideal step is not obvious. 

• Systematicity. The subject might count the number of positive and negative 
responses to artificially stabilize the sequence around some value. 

• Using the standard deviation of reversal points is not a reliable way to estimate 
the slope of the psychometric function.
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23Double staircase method

• Interleaved presentation of two sequences (A e B) of 
stimulus (see Figure). L'alternance systematic 
(ABAB...) is not to be recommended.

• Since the sequence are randomly alternated, the 
subject cannot perceive any logical order in the 
presentation of the stimuli. This make it impossible to 
detect, for example, the link existing the reponse and 
the selection of the next stimulus.

• The threshold is estimated by computing the mean 
stimulus intensity values corresponding to the last n
peaks and valleys (or to the average of their 
intermediary points).

• One sequence has a starting point clearly above 
(sequence B) and the other sequence clearly below 
(sequence A) the threshold.

• Possible to test for an effect of the sequence by 
comparing last n peak and valleys values of each 
sequence (using a t test). 

• To accelerate the convergence of the 
sequences, it is possible to use a larger 
step at the beginning of the sequences 
and to decreases it after after, for example, 
the first reversal. 

• For more info: Cornsweet (1962) The 
Staircase-Method in psychophysics. Amer. 
J. Psychol., 75:485-491.
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24Double staircase example

Viviani, Baud-Bovy, Redolfi (1997) Perceiving and tracking 
kinesthetic stimuli: Further Evidence of Motor-Perceptual 
Interactions. J. Exp. Psychol.: Hum. Percept. and Perf., 
25(4):1232-1252.

• In Experiment 1, a robot was used to move the hand of the 
blindfolded subject along a predefined trajectory. The 
shape could vary from an horizontally oriented ellipse 
(eccentricity<0) to a vertically oriented ellipse 
(eccentricity>0). The circle correspond to an ellipse with 
zero eccentricity. 

• On each trial, the subject indicated wether he or she 
perceived an horizontally or vertically oriented ellipse.The
eccentricy of the ellipse presented to the subject was 
changed in function of the response of the subject 
according to the UD rule:  When the subject responded 
"vertically oriented ellipse", the eccentricity was decreased 
and vice-versa.  The two staircases were interleaved. Initial 
values corresponded to an easily perceived vertical 
(ecc=0.7) and horizontal (ecc=-0.7) ellipses respectively. 
The temination criterion was at least 16 reversals for both 
staircases. The horizontal dashed line represented the 
average values for the last 10 reversal and denotes the 
stimulus judged as circular. 

• In Condition A, which corresponds to a constant velocity 
profile, the subject responded casually when stimulus was 
circular (eccentricity close to zero). In conditions B and C, 
the velocity profile was modulated as it would be with an 
horizontally or vertically-oriented ellipse (eccentricity). In 
these conditions, the shape perceived as circular was 
either and horizontally oriented ellipse (condition B) or a 
vertically oriented ellipse (condition C).
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25The Up-Down Transformed Rule

• The staircase method (or UD rule) yields the 
intensity of the stimulus that corresponds to 
50% of positive responses. The objective of 
the UDTR rule is to estimate the intensity of 
the stimulus that yield a probability P of 
positive responses different from 0.5..

• The UDTR Rule: Move intensity of the 
stimulus down the after D positive responses 
(cross in Figure) and move up after U 
negative responses (Figure shows an 
example with 3 positives and 1 negative)

• The first observation should be made at best 
guess availabe for the desired level [ F-1(p)] 
(see p. 6 of the article for more details on the 
starting scheme). 

• The value of the stimulus that correspond to 
the desired percentage point P is obtained 
by average the peaks and valley ("Wetherill
estimate").

Wetherill & Levitt (1965) Sequential estimation of points 
on a psychometric function. The British Journal of 
Mathematical and Statistical Psychology, 18(1):1-10.
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26The Up-Down Transformed Rule

• The point estimated on the psychometric function will depend on the 
number of successive positive and negative responses used in the UPTR 
before changing the value of the stimulus. For example, the Wetherill
estimate computed using the UPTR with D=3 and U=1 correspond to 79.4 
of correct responses.

• The Table show the percentage point estimated for various UPTRs.
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27Example of UDTR

• stimuli:small  random movements of the 
arm with a mean of zero and a standard
devation of sigma. 

• standard: SDref = 0.05, 0.1, 0.2, 0.4, 0.8, 
1.6 and 3.2 mm. Order of presentation 
randomized across subjects. 

• Standard remained fixed for 50 trials 
(experimental condition). Initial value was 
of comparison stimulus (SDsig) was initially 
set to twice that of the standard. SDsig was 
varied from trial to trial according to a 
transformed up-down procedure aiming at 
identifying 71% of correct responses: 
Difference between SDref and SDsig is
halfed after two corrected responses and 
doubled after one incorrect one.

• Standard and comparions stimuli were 
simultaneously presented to the left and 
right arm (standard was randomly assigned 
to left or right arm on each trial).

• Differential threshod: geometric mean of 
the absolute difference between standard 
and comparison for the last 30 trials.

Jones et a. (1992) Differential thresholds for limb movement measured using 
adaptive techniques. Perception & Psychophysics, 52(5):529-535.
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28Issues with transformed staircase methods

• A restriction of transformed up-down staircase methods is that 
they can estimated only limited number of target levels. To 
address this issue, Kaernbach (1991) described a variant of the 
simple up and down procedure where different step sizes are 
used for the two directions.Unlike the number of positive and 
negative responses, step sizes can be adjusted to estimate any 
target probability level.

– Reference: Kaernbach C (1991) Simple adaptive testing with the weighted up-down 
method. Perception & Psychophysics, 49:227-229.

• Choosing fixed step size can present difficulty. Intuitively, step 
size should be larger at the beginning smaller at the end.

• There might be a bias due to the initial starting point. 

• Study of efficiency of staircase procedures: 
– García-Pérez MA (1998) Forced-choice staircases with fixed step sizes: asymptotic 

and small-sample properties. Vision Research, 38(12):38:1861-1881
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29Modern adaptive methods

• "Modern" adaptive methods aim at selecting the value of the 
next stimulus in an optimal fashion, i.e. by finding the value of 
the stimulus that will bring most information. 

• The following methods have used diverse theoretical arguments 
to select the value of the next stimulus in an optimal fashion and 
to determine the value of the threshold with the minimum 
number of trial possible (efficiency).

• Example of methods:
– PEST: Parametric Estimation by Sequential Testing (Taylor &

Creelman, 1967)
– APE: Adaptive Probit Estimation (Watt & Andrews) 
– QUEST (Watson & Pelli. 1983)
– ZEST (King-Smith et al., 1994)

• Review:

– Leek MR (2001) Adaptive procedures in psychophysical research. 
Perception & Psychophysics, 63(8):1279-1292.
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30PEST: Parametric Estimation by Sequential Testing

• Method based on the presentation of a block of trials at the same 
intensity level. The intensity level is changed when the number of correct 
responses deviates significantly form that expected from the threshold-
criterion probability.

• A new block is presented at a lower or higher intensity depending on the
wether the observed probability was above or below the criterion.

References:

Taylor MM,Creelman CD (1967) 
PEST: Efficient estimates on 
probability functions. Journal of the
Accoustical Society of America, 
41:782-787.

Harvey LO (1997) Efficient 
estimation of sensory threshold 
with ML-PEST [description of a set 
of C/C++ routines implementing a 
variant of PEST].
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31QUEST

• The main idea of the QUEST method is to use Baye's theorem to combine 
new information (the response of the subject to the presentation of the 
stimulus) with the previous (prior) knowedlge about the threshold position in 
order to obtain a new more accurate (posterior) estimate of threshod
position.

• QUEST method is commonly used and popular because it has been 
implemented both in C and Matlab. It is also part of Psychotoolbox, a set of
Matlab routines, that have been developped to do psychophysics of the 
vision and that are used by many groups.

• For more information and software, see the website of Denis Pelli at New-
York University:  http://www.psych.nyu.edu/pelli/software.html

• If you need it, you can also ask me. I have implemented my own version of 
QUEST in C and R.

• Reference: Watson AB, Pelli DG (1983) Quest: A Bayesian adaptative
psychometric method. Perception & Psychophysics, 33(2):113-120.
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32

• The initial guess about the location of the treshold is represented 
by a probabolity density function qprior(T) .  As an initial guess 
(before the first trial), Watson and Pelli propose to use a
gaussian pdf centered on our best guess about the threshold 
location with a relatively large standard deviation (since were are 
not sure yet about the correctness of our guess).

• Baye's theorem is used to update the priod pdf qprior(T) into 
another pdf qposterior(T | D) that incorporates the data D (i.e., the 
response ri of the subject to the current stimulus xi):

• The best estimate for the threshold at any point in time in the 
experiment is the value that corresponds to the mean1 of the 
posterior pdf . This value (or a value nearby) is used as the next 
stimulus xi+t=E[qposterior(T | D)].

• This procedure is repeated for each trial. Note that the posteriod 
pdf for one trial becomes the prior pdf for the next trial.

1  In their original paper, Watson & Pelli used the mode instead of the mean. 
King-Smith et al. 1994 showed that using the mean was more effecient and 
called their variant ZEST.

QUEST details
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33Slope estimation with adaptive methods

• When estimating the slope parameter, stimuli 
should be paced at two intensities above and 
below threshold (King-Smith & Rose, 1997).

• The PEST, QUEST and ZEST methods can be
adapated to find the stimulus intensity that 
correspond to various probabilities of positive 
responses.

• It also exists methods that can simultaneously 
estimate the threshold and slope of the 
psychometric function (remember that the slope 
is a fixed parameter in the QUEST). 

• The figure in the left show the values of the 
stimuli at the "high" (empty circles) and "low" 
(solid circles) intensities during the experiment. 
The threshold and slope are estimated after 
each response during the experiment (see 
middle and bottom panels)

King-Smith PE, Rose D (1997) Principles of 
an adaptive method for measuring the slope 
of the psychometric function. Vision 
Research, 37(12):1595-1604.
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Fitting psychometric functions 
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• When a stimulus is presented several 
times (e.g., as it is the case with the 
method of constant stimuli), it is possible 
to compute the proportion of positive 
response pi for the ith stimulus:

where ni is the number of repetitions for 
the ith stimulus

• In this case, the data set is formed by the 
proportions of positive response and the 
number of repetition for each stimulus:

{(xi, pi, ni), i=1,..,NS}

where NS is the number of stimulus

• We assume that only two responses are 
possible. For example,

- "Yes" when stimulus is perceived and "No" 
when the stimulus is not perceived for a 
detection task. 

- "Stimulus>Standard" and"Stimulus<Standard" 
for a discrimination task. 

• Let yi be the subject's response to 
presentation of ith stimulus xi:

A "positive response" can be "Yes" for a 
detection task or " Stimulus>Standard" for a 
discrimination task.

• The data set is the compete list of stimulus 
and subject's response:

{(x1,y1),...,(xN,yN)} = {(xi,yi), i=1,..,N}

where N is the total number of presentation

Data sets
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36Data set 1 (ungrouped data)

i xi yi i xi yi

1 2.0 0 11 4.5 1

2 3.0 0 12 4.6 0

3 3.1 0 13 4.9 1

4 3.1 0 14 4.9 1

5 3.3 0 15 5.0 1

6 3.5 0 16 5.4 1

7 3.6 0 17 5.4 1

8 4.1 1 18 6.5 1

9 4.3 0 19 6.6 1

10 4.3 0 20 6.6 1

2 3 4 5 6

Stimulus intensity

R
e

sp
o

n
se

0

1

• Results of an experiment with 20 stimulus values xi and the corresponding subject's 
response yi.  

• Note that most stimulus value were presented only once.
• Typically, these values will have been obtained using an adaptative methods (e.g., 

staircase or QUEST method) but the results of any psychophysical method can be 
presented in this format..

• The plot shows a candidate psychometric function.  
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37Data set 2 (grouped data)

i xi pi ni

1 4.00 0.2 5

2 4.25 0.0 5

3 4.50 0.0 5

4 4.75 0.4 5

5 5.00 0.2 5

6 5.25 0.8 5

7 5.50 1.0 5

8 5.75 0.8 5

9 6.00 1.0 5 4.0 4.5 5.0 5.5 6.0

0.0

0.2

0.4

0.6

0.8

1.0

Stimulus Intensity

P
ro

p
o

rt
io

n
• Results of an experiment with 9 stimulus values xi and five repetitions per stimulus. 

The table indicate the proportion pi of positive responses.  
• Typically, these values will have been obtained using the method of constant stimuli.
• The plot shows a candidate psychometric function.  
• Note that the data in this table corresponds to 45 subject's responses. For example, 

for the first stimulus (x1=4) the subject responded once positively and four times 
negatively, etc. 

• Exercise. Make a table with the all the subject's responses. Why are all the responses 
multiple of 0.2?
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• By definition, the psychometric function F(x|θ) models the probability π
of a positive response  

where θ represents the parameters of the psychometric function. 

• Various functions F(x|θ) have been used to model the probability of 
positive response (e.g., the logistic, the probit or the Weibull function). 
Although the analytical form of these functions differ (see next slide), 
they have many common properties:

1. They are all S-shaped (sigmoidal) and they all increase monotonically from 
0 to 1.

2. They have parameters θ which needs to be fitted to the data (the fitting 
problem).

• In the following, we start by describing the properties of these
psychometric functions and then we will introduce methods to estimate 
the parameters of the psychometric function

Psychometric functions

)|()|1Pr( θπ xFxY ===
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• The logistic function

• The "probit" function (= integral of a
gaussian probability density function)

• The Weibull function (not shown)

Psychometric functions
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• Most theoretical psychometric functions have two parameters α and β that are related to the 
location (AL or PSE) and slope (DL) of the curve. The precise meaning of these parameters, 
and their relation to the AL, PSE or DL, depends on the variant of the psychometric function 
used.
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• Definition The logisitic function is

where α is the intercept and β the slope. 
Both formulations are completetly
equivalent. 

• The PSE (or AL) and the DLπ can be 
recovered from the values of α and β

Logistic function
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41The logistic regression

• In literature about logistic regression, the 
logistic  model is sometimes presented as 
linear regression between the so-called
logit of the proportions and the predictor 
variables:

where the logit is defined as

• It can be easily shown that this formulation 
is stricly equivalent to the previous one.

• This formulation justifies the interpretation 
of the parameters α and β in terms of odd 
ratios (see a textbook on logistic 
regression).
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• Proof:

• Proof

Inverse of the logistic function
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• The inverse of the logistic function is

• The inverse of the logistic function can be 
used to compute  the PSE and DL:
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• A slighlty different formulation of the the 
logistic function is

• The relationship between α and α' is 
simple

• Note that α' can be directly interpreted as 
the PSE (or AL) with this formulation.

• The value of β and the definition of the DL 
are the same with both formulations.

A variant of the logistic function
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44The probit function

• Definition The probit function is the integral 
of the standardized normal distribution

where α is the intercept and β the slope 
estimated by most softwares.

• The mean and standard deviation of 
underlying normal distribution are

• The PSE (or AL) and DLπ correspond to:

where uπ is the critical values such that 
Pr(Z<uπ)=π for the standardized normal 
probability distribution (e.g, uπ = 0.6745 for 
π=0.75).
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45A variant of the probit function

• A variant of the probit function is the integral of the normal distribution with mean µ
and standard deviation σ :

• In this case, the parameters are the mean and standard deviation of underlying 
normal distribution.

• As before, the PSE (or AL) and DLπ are simply PSE =µ and DLπ= uπσ.

• The probit function cannot be inversed.
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46Exercise

• Plot the logistic and probit psychometric functions over for 
various values of α and β: 
– Use values α=0.0 and β=1.0, α=0.0 and β=3.5,  α=2.0 and β=3.5, .

– Plot the values of the psychometric function for range of stimulus 
intensities  from -2.5 to +2.5 spaced by 0.25  

– Make the plots with SPSS (using CDFNORM for the probit function) 
and/or EXCEL (using NORMSDIST for the probit function)

• For each psychometric function and pair of values α and β, 
compute the PSE and the DL.

α β Logistic Probit

PSE DL PSE σ DL

0.0 1.0 0 1.099 0 1.000 0.674

0.0 3.5 0 0.314 0 0.286 0.193

-2.0 3.5 0.571 0.314 0.571 0.286 0.193
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47The fitting problem

• The problem: Given a data set (responses of a subject for each 
presentation of the stimulus), how do we estimate (compute) the 
parameters of the psychometric function?

• It exists two principal methods to fit a curve to the data (i.e. to 
estimate parameters estimate

1. The minimum-squares method

2. The maximum likelihood estimation method

• Both methods are extremely general and can be used to fit about 
any model (including all psychometric functions considered so 
far) to the data. However, it is more correct to use the maximum-
likelihood estimation method when fitting a psychometric 
function.
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• The likelihood function this the probability of observing a given data set (i.e., the 
subject's responses {y1,...,yN} ) for a given the psychometric function.

where θ are the parameters of the psychometric funtion.

• The idea of maximum likelihood estimatation is to find the parameters θ of the 
psychometric function that  maximize the likelihood function, i.e. that maximize the 
probability of observing the given data set

• Unlike linear regression, there are no analitical formula to compute the values of 
the parameters θ that maximize the likelihood function. It is necessary to use an 
iterative algorithm:

- These algorithms start with an initial guess that will be iteratively improved.

- It is important to verify that the algorithm has converged toward a stable value.

• Estimates can slightly differ between softwares if different convergence criteria are 
used.

Maximum likelihood estimation

),...,,|,...,Pr()( 11 NN xxyyL θθ =



G
ab

r i
e

l 
B

au
d

-B
o

vy

49Exercise.

• Compute the parameters of the 
logistic and cumulated normal 
probability functions that best fit 
the first data set.

• Plot the data and both 
psychometric functions on the 
same plot.

• Compute the PSE and DL0.75 for 
both psychometric functions.

2 3 4 5 6

Stimulus intensity

R
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50

• By definition, the psychometric function models the probability of a positive response for 
any stimulus intensity x:

• If we assume that the parameters of the psychometric functions are known, then it is 
possible to compute the probability πi of observing the response yi for a given stimulus xi:

• Assuming that the responses yi are independent, then the probability of observing a 
given set of responses (the data) is:

• Maximizing the likelihood function is equivalent to maximizing its logarithm (the so-called 
log-likelohood function)

Computing the likelihood function
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• Let assume a small data set with three observations (two positive and one 
negative): 

y1 = 1 for stimulus x1,  y2 = 0 for stimulus x2,  y3 = 1 for stimulus x3.

• The likelihood function is

where πi = F(xi | θ).

• The log-likelihood is

Example 
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• Derivation of the fomula for the log-
likelihood:

using the fact that 1-yi = 1 if yi=0 and 
vice-versa to sum over i.

• A relatively simple expression for the log-
likelihood of the logistic function can be 
obtained by rewriting the previous equation

Substituting the logistic function yields

which can be simplified to

Mathematical details
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53Fit psychometric function [MATLAB]

X=data(:,1); % stimuli
Y=data(:,2); % responses

% fminsearch: minimization loglikelihood with simplex method
options=optimset('fminsearch');

disp('Maximum likelihood fit of various psychometric functions:  ');

[x,fval,exitflag]  = fminsearch(@loglikelihood,[-10 3],options,@probit,X,Y);
disp('Probit: ');
disp(['alpha=' num2str(x(1)) ' beta=' num2str(x(2)) ' log-likleihood=' num2str(-fval)]);

[x,fval,exitflag]  = fminsearch(@loglikelihood,[-20 3],options,@logistic,X,Y);
disp('Logit: ');
disp(['alpha=' num2str(x(1)) ' beta=' num2str(x(2)) ' log-likleihood=' num2str(-fval)]);

function ll=loglikelihood(par,fhandle,X,Y)
% fhandle must refer to a psychometric function that computes
% the probability of a positive response (e.g. probit or logistic)
P = feval(fhandle,X,par(1),par(2));
% log-likelihood function
ll= -sum(Y.*log(P+eps)+(1-Y).*log(1-P+eps))

function p=logistic(x,alpha,beta)
% logistic
p = 1./(1+exp(-(alpha+beta.*x)));

function p=probit(x,alpha,beta)
% probit
x = alpha+beta.*x;
p=0.5+0.5*erf(x./sqrt(2));

probit.mlogisitic.m

loglikelihood.m

main.m
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54Fit probit function in R (glm)

Script:

# make data set
data<-data.frame(

x=seq(4,6,0.25),
p=c(0.2,0.0,0.0,0.4,0.2,0.8,1.0,0.8,1.0),
n=rep(5,9))

# fit probit function 
fit<-glm(p~x,data=data,family=binomial(link = "probit"),weights=data$n)
summary(fit)

# compute PSE and DL
-coef(fit)["(Intercept)"]/coef(fit)["x"] # 5.0136
prnorm(0.75)/coef(fit)["x"] # 0.4252891

Ouput:

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  -9.1170     2.2398  -4.071 4.69e-05 ***
x             1.8185     0.4447   4.089 4.33e-05 ***
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55Fit logisitic function in R (glm) 

Script:

# fit logistic function
fit<-glm(p~x,data=data,family=binomial(link = "logit"),

weights=data$n)
summary(fit)

# compute PSE and DL
-coef(fit)["(Intercept)"]/coef(fit)["x"] # 5.026206 
log(0.75/(1-0.75))/coef(fit)["x"] # 0.3320319

Output:

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -16.6305     4.5853  -3.627 0.000287 ***
x             3.3088     0.9093   3.639 0.000274 ***
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56Minimum-squares estimation

• The idea of the method is to find the 
values of the parameters α and β that 
minimize the sum of the squares of 
the distance between the data points
yi and values predicted by the 
psychometric function:

• The method is the same as the one used in linear regression to estimate the 
parameters of the regression line. However, unlike in the case of the linear 
regression, there are no formulae to compute directly the values of the 
parameters of the psychometric function. One needs to use a minimization 
algorithm that start with initial values for the parameters and then change them 
in small steps until the "best" values are found.

• General caveats with minimization/maximization algorithm:
1. It is important to check that the algorithm has converged toward stable values (you 

can increase maximum number of iterations if not)
2. The best values are not always found (problem of local minima)
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57Exercises

• Repeat the same analysis using the other formula of the logistic function:

• Recompute PSE and DL from the values of α and β estimated with this 
variant of the logistic function

• Check that that psychometric function f(x|α, β)=0.75 when x = PSE+DL0.75.

• Estimate the parameter of the probit function. Hint: you need to use 
CDFNORM(alpha+beta*x) in Model Expression and you should also 
change the initial value of α to -15. 

– Results:
Parameter   Estimate    Std. Error     Lower         Upper
ALPHA     -13.87223409  5.068203621 -25.85663129 -1.887836900
BETA       2.742900994  1.000819205   .376339630  5.109462358

• Compute the PSE and DL0.75 from the results of the probit analysis. 
– Results: PSE=5.0575 and DL0.75 = 0.2459
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58MATLAB (nlinfit)

% Define data set
x = 4:0.25:6;
y = [0.2 0.0 0.0 0.4 0.2 0.8 1.0 0.8 1.0];

% Define logistic function (note: beta(1) is alpha)
f = inline('1./(1+exp(-beta(2).*(x-beta(1))))','beta','x');

% Nonlinear least-squares data fitting by the Gauss-Newton method
[beta,r,J] = nlinfit(x,y,f,[5 3]);

% 95% interval of confidence
ci = nlparci(beta,r,J);

>> beta
beta =

5.0638
4.5947

>> ci
ci =

4.8430    5.2846
0.4814    8.7081

• Output

• Script
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59R (nls)

# define data set
data<-data.frame(

x=seq(4,6,0.25),
p=c(0.2,0.0,0.0,0.4,0.2,0.8,1.0,0.8,1.0),
n=rep(5,9))

# fit logistic function with Gauss-Newton algorithm
fit<-nls(p~1/(1+exp(-beta*(x-alpha))),

data = data,
start= list(beta=3,alpha=5))

summary(fit)

Formula: p ~ 1/(1 + exp(-beta * (x - alpha)))
Parameters:

Estimate Std. Error t value Pr(>|t|)    
beta   4.59542    1.73992   2.641   0.0334 *  
alpha  5.06383    0.09336  54.237  1.9e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.1634 on 7 degrees of freedom

• Output

• Script
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60Fitting methods

0.8930.221Beta

SSML

2.77(3.37)SS

(50.66)25.54deviance

15.31416.703Alpha

Fitting methodParameter
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Fit:

ML

SS

-20 -10 0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Predictor

P
ro

b
a

b
ili

ty

Fit:

ML
SS

• ML fit has a smaller slope because binomial error 
give more weight to inconsistent responses than 
SS method

• Both fitting methods give similar results when 
inconsistent responses (cross) are removed

• The two methods can give quite different results
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