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Open Questions

*How can we predict the trajectory followed by the system when it is driven
by a given force field F? (Dynamic model of the limb)

«Is there a way of choosing the ‘complete’ set of elementary force fields Fk?
(A trivial solution to the spinal field synthesis problem)

*How should we choose joint torques t so as to obtain a given basis force
field Fk? (The map 7 -> FK)

*How do we choose muscle activations so as to obtain a given joint torque?

*Which is the minimum number of elementary force fields that we need to
perform a ‘complete’ set of movements?

«Is there a way of choosing the primitives to accommodate different
kinematic structures?
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A (not so trivial) observation

Applied
force

In which direction will the end-effector move?

Applied force WRONG!!

/

Applied
force

direction
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Control Model of the spinal field experiment

The spinal fields experiment has been modeled in terms of the
linear superposition of a finite number of force fields:

= &, = Basis field should be
F(P,v,) :Z ’11( F (P@ convergent to an equilibrium
=t /'

Force fields in this model depend also on
the velocity of P. This new feature is
justified if we want to introduce a certain
degree of damping in the system.

Today we use a different notation:

End effector
position

— K -
PH@ v,,<—>® T P =) AF (2.2
k=1

End effector
velocity
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Modelling a limb as a kinematic chain

A kinematic chained has the following properties:

+ ltis composed by nlinks L, ..., L,

* Ljis attached to L;; by a 1 DOF rotational joint (non
restrictive assumption)

* the joint angle (between L;; and L)) is denoted g

« the end-effector position will be denoted z and belongs
to an m-dimensional space, with m<n.
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Example: 2DOF planar kinematic chain (1/2)

P

4 Vector of — Vector of
9= joi <= nd-effector
joint angles y end-effecto

9, P position
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Example: 2DOF planar kinematic chain(2/2)

. . L First link Second

« Direct kinematics: length ‘ / link length
o= Xp _|\Ufa @q“(ﬂ =A®Q)
Yp llsql +12Sql+q2

» Jacobian: Sine of q1 %

io Xp _ _llsql _l2sql+q2 _lzsqnqz 4q,

Yp _llcql _lchnqz _ZZqu+qZ 4,
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Dynamic model of the limb (1/3) “repetita iuvant”

+ The dynamic model of a kinematic chain describes the map from
applied forces to trajectories of the joint variables. Let the applied
forces be the vector of applied torques. Then:

7,(1) q,(1)
: rely, o] > : rely, 1]
7,(t) Integration of || g, (1)
the dynamic
model

Time evolution of the
joint angles

Time evolution of the
applied torques
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Dynamic model of the limb (2/3) “repetita iuvant”

» The dynamic model can be computed following the Lagrangian

approach:
d oL JL . .
————=T where  L(q,q)=K(q,9)—V(q)
dt 9 dq =
Kinetic Potential
energy energy

computations

(@i + g
Inertia Matrix \
Coriolis matrix Gravity effect
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Dynamic model of the limb (3/3)

+  LEMMA: the matrices of the dynamic model of a kinematic chain
satisfy the following two properties:

Follows from the fact
that the kinetic energy is
2 zero and equals zero

(1) M(q) = M(q)T > 0 only at rest

P

(2) M (9)—2C(g,q) s skew symmetric

i

(passivity property) It

implies that in absence of
friction the total energy of
the system is conserved A AT

A given matrix A is skew
symmetric if and only if:
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Example: dynamics of 2DOF planar chain (1/4)

q2 On the horizontal
plane, i.e. NO
GRAVITY!

q, m,

x
L1 1
K@) =5 mlf 0. DF +5 s 0.0
w
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Example: dynamics of 2DOF planar chain (2/4)
Computing the velocities:

{xm]:| _ ley V() = |:).le} _ {_lllsql O}|:q11|
Yo llsql Yt Ca 0] 4,

xmz _ llcql +lchl+q2 v (q q):r‘mz}: _Ilsql_lzsqwz _IZSql+q2 {%}
s +1s o V2 heg+hepn bl |

Y2 1°g1 gl+q2

1241420,y 1) +t,12c(,:]{ 4 }

NI SR
[v.(a. =4, q:{ Ll i 0

IR A 7
.l =14, qz{o OLJ
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Example: dynamics of 2DOF planar chain (3/4)

« Kinetic energy:

Ke0=Li {. ‘ g

L~ +m,llc

1 a+2pc, 5+ pc 1. .
= - P lg==4d"M(q
5+ fe,, P 2
-~
This matrix will turn out to be the inertia matrix
+ Dynamics e e
gravity
d dL JL -
o T =T where L(q.9) = K(q.9)
dt ¢ dq
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Example: dynamics of 2DOI:= planar chain (4/4)

aL all .,
=TT M(@)q |= M (9)4
% aq[zq (@)q (@)q
diL_d d 254, =P,
M M —\M M * N
e = M@dl=M@i+- M@ki= (q)q+[ pg, 0 fi
oL _ 01, . 0 0 |4
1P I
dg  9dgql2 _ﬁsqqu _ﬁsqz‘h 4,
M(q) Clgq)
doL_oL_ [@+2Be,, 6+pe,] [~Bopte —Bopa+id]a] [
e N S N A R N P P
/ N
" " o " " Try to verify the skew symmetry
Given the applied torques the joint trajectories of the matrix
b i il ing thi: i p .
squatin! N W (@)-20(g.4)
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State Space form of the dynamic equation

M(@)i+C(q.q+Glq) =7 m==> x=f0)+gxu
Can be rewritten in the

S

q M~ (9)
q
fx)= - .
-M 7 (9)C(q.9)+G(g)]
Therefore all tools of (nonlinear) dynamical
systems theory can be used!
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PD control of a kinematic ch=ain

Without loss of generality let us assume G(g) = 0. If this is not
the case let us assume that it has been compensated choosing:

t=t+G(q) === M(q)j+C(q.{)g=1

«  FACT: the following PD (proportional + derivative) control law:

f:_qu._Kp(q_qd)
Is such that the corresponding system has a unique equilibrium point
(g,) which is globally asymptotically stable.

«  PROOF: (sketch) try to use the following Lypunov function:
N .1
V(g.) ="M@+ (a-a.) K, (a-q,)

and take advantage of the passivity property.
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Back to Bizzi’s experiment

In case of non-redundant manipulators, we the following equivalences:

For 7¢¢q i q

And therefore the spinal field model can be rewritten as follows:

~ K K
k=1 =
[ Basis field should be =t
convergent to an equilibrium
PRB: How should we choose the elementary control actions so that:

1. Each elementary controller should drive the system towards a
unique (globally asymptotically stable) equilibrium point

2. The combinations of the elementary controllers should be
capable of driving the system to any desired configuration
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A trivial solution to the synthesis problem (1/2)

7, =-K 4-kK, (g—qu,) Lo

And impose the following for all admissible g,

K
Y An(gd)= -K,4-K,(g-q,)

Which can be rewritten:

K
z’lk[K»vC}"'K,;(q_q(i,k)]: qu'+Kp(q_qd)

k=1
Which is verified if:

K K
2/7'1( =1 and z/ide.k =9,
k=1 P
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A trivial solution to the synthesis problem (2/2)
Rewriting the previous expression:

A
n+l{ |:‘]d.1 qd,K:| - |:‘L/}
1 e 1 1
| /1K
K
Which has a solution for any g, if and only if the matrix on the left has full

row rank. This observation gives a criteria to choose the equilibrium point
realized by the elementary controls.

Moreover, we can have full row rank only if: This can be proven to be the
minimum number of

’ primitives necessary to
control a n-DOF kinematic

chain!
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Back to the end-effector space

In the redundant case we can go back :

.9 =0 A47(q.q) ===  F(z.2)=y 4F (2.2
k=1 k=1

Using the following equations:

The direct kinematics can be (locally) inverted:
INVERSE KINEMATIC

=AM = q=A,(2)
i=lgg = §=J@"': => ¢=[/@n, @]
g =" (@QF = F@.9=7"(@t(q.q) = _.

L= F(z,) =07 (A, ()7, (2.1 (9)2)

inv
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Graphical representation of the fields(2DOF chain)
7.(q,9) F(z,2)

Can be graphically represented (null
velocities): 7,(q,

Looks quite different in the
Cartesian space: [} (z,0)

EXAMPLE Identity
7.(q,0) =K qg—q,,)
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Interested?

Check out my web page
(http://www.dei.unipd.it/~iron)

and have a look at Bizzi Lab web site
(http://web.mit.edu/bcs/bizzilab/)




