Consequently

$$
\left[\begin{array}{c}
\dot{c}_{a} \\
\dot{\omega}
\end{array}\right]=\left[\begin{array}{cc}
R_{a} / L_{a} & K_{E} / L_{a} \\
K_{T} / J_{M}+J_{L} & B / J_{M}+J_{L}
\end{array}\right] \cdot\left[\begin{array}{c}
I_{a} \\
\omega
\end{array}\right]+\left[\begin{array}{c}
-V_{a r m} / L_{a} \\
\tau_{f}+\tau_{g r} / J_{M}+J_{L}
\end{array}\right]
$$

- A linear system of two equations (differential)
- Q: can you write a transfer function from these equations?
- Q: can you transform the equations into a block diagram?

By Laplace-transforming

$$
\begin{gathered}
V_{a r m}(s)=R_{a} I_{a}(s)+L_{a} I_{a}(s) s+\omega(s) K_{E} \Rightarrow I_{a}(s)=\frac{V_{a r m}(s)-\omega(s) K_{E}}{R_{a}+L_{a} s} \\
\tau=K_{T} I_{a} \\
K_{T} \frac{V_{a r m}(s)-\omega(s) K_{E}}{R_{a}+L_{a} s}=\left(J_{M}+J_{L}\right) \omega(s) s+B \omega(s)+\tau_{f}+\tau_{g r}
\end{gathered}
$$

and finally

$$
\frac{\omega(s)}{V_{\text {arm }}(s)}=\frac{K_{T} / L_{a} J_{T}}{s^{2}+\left[\left(R_{a} J_{T}+L_{a} B\right) / L_{a} J_{T}\right] s+\left(K_{T} K_{E}+R_{a} B\right) / L_{a} J_{T}}
$$

- Considering gravity and friction as additional inputs

Block diagram

RA 2007

Analysis tools

- Control: determine V_{a} so to move the motor as desired
- Root locus
- Frequency response

First block diagram

RA 2007

Root locus

$$
H_{\text {open_loop }}=\frac{A}{1+s \tau_{a}} \frac{K_{m}}{1+s \tau_{m}} \frac{K_{p}}{s} \quad K=A K_{m} K_{p}
$$

RA 2007

Changing K

RA 2007

Let's add something second diagram

RA 2007

Analysis

$$
\begin{gathered}
H_{\text {open_loop }}=\frac{A K_{m} K_{p}\left(1+s K_{g} / K_{p}\right)}{\left(1+s \tau_{a}\right)\left(1+s \tau_{m}\right) s} \\
K=A K_{m} K_{p} \\
Z_{\text {feedback }}=\frac{K_{g}}{K_{p}}
\end{gathered}
$$

RA 2007

Root locus (case 1)

RA 2007

Root locus (case 2)

RA 2007

Overall...

RA 2007

Error and performance

$$
\vartheta=\frac{\vartheta_{d}}{S} \quad M(s)=\frac{K_{T}}{\left(R_{a}+s L_{a}\right)\left(B+s J_{T}\right)+K_{E} K_{T}}
$$

$$
\begin{aligned}
& \vartheta(s)=\frac{1}{s} \omega(s) \\
& \begin{array}{c}
\text { closed loop } \\
\text { (position) }
\end{array} \\
& \vartheta(s)=\frac{\frac{1}{s} \omega(s)}{1+\frac{1}{s} \omega(s) K_{p}}
\end{aligned}
$$

RA 2007

finally

$$
\begin{aligned}
& \lim _{s \rightarrow 0} s H(s)=\lim _{t \rightarrow \infty} h(t) \\
& \Rightarrow \lim _{s \rightarrow 0} s \frac{\vartheta_{d}}{s} \vartheta(s)=\lim _{s \rightarrow 0} \frac{s \frac{1}{s} \frac{\vartheta_{d}}{s} \omega(s)}{1+\frac{1}{s} \omega(s) K_{p}}=\frac{\vartheta_{d}}{K_{p}}
\end{aligned}
$$

- For zero error K must be 1 or the control structure must be different

Same line of reasoning

$$
\vartheta_{\text {final }}=-\frac{\tau_{g r} R_{a}}{A K_{T} K_{p}}
$$

- Final value due to friction and gravity

$$
\left|\frac{\tau_{g r} R_{a}}{A K_{T} K_{p}}\right| \leq \vartheta_{\max } \Rightarrow K_{p} \geq \frac{\tau_{g r} R_{a}}{A K_{T} \vartheta_{\max }}
$$

$$
K_{p \text { min }}=\frac{\tau_{g r} R_{a}}{A K_{T} \vartheta_{\max }}
$$

RA 2007

PID controller

RA 2007

PID controller

- We now know why we need the proportional
- We also know why we need the derivative
- Finally, we add the integral
- Integrates the error, in practice needs to be limited

Interpreting the PID

- Proportional: to go where required, linked to the steady-state error
- Derivative: damping
- Integral: to reduce the steady-state error

Global view

RA 2007

About the amplifiers

- Linear amplifiers
- H type
- T type
- PWM (switching) amplifiers

Let's consider the linear as a starting point

RA 2007

H-type

- The motor doesn't have a reference to ground (floating)
- It's difficult to get feedback signals (e.g. to measure the current flowing through the motor)

T-type

RA 2007

On the T-type

- Bipolar DC supply
- Dead band (around zero)
- Need to avoid simultaneous conduction (short circuit)

Things not shown

- Transistor protection (currents flowing back from the motor)
- Power dissipation and heat sink
- Cooling
- Sudden stop due to obstacles
- High currents \rightarrow current limits and timeouts

T-type

$$
I_{c} \approx \frac{V_{c c}}{R_{\text {transisor }}+R_{\text {motor }}}
$$

RA 2007

PWM amplifiers

PWM signal

$P=V_{c e} I_{c}$

- Transistors either "on" or "off"
- When off, current is very low, little power too
- When on, V is low, working point close to (or in) saturation, power dissipation is low

Comparison

- 12W for a 6A current using a switching amplifier
- 72W for a corresponding linear amplifier

Why does it work?

$\frac{\omega(s)}{V_{a r m}(s)}=\frac{K_{T} / L_{a} J_{T}}{s^{2}+\left[\left(R_{a} J_{T}+L_{a} B\right) / L_{a} J_{T}\right] s+\left(K_{T} K_{E}+R_{a} B\right) / L_{a} J_{T}}$

- In practice the motor transfer function is a low-pass filter

$$
T_{s} \text { with } f_{s} \gg f_{E}\left(f_{s}>100 f_{E}\right)
$$

- Switching frequency must be high enough

PWM signal

Feedback in servo amplifiers

RA 2007

Operating characteristic

RA 2007

We've already seen this

$$
\frac{\omega(s)}{V_{i n}(s)}=\frac{K_{T} / L_{a} J_{T}}{s^{2}+\left[\left(R_{a} J_{T}+L_{a} B\right) / L_{a} J_{T}\right] s+\left(K_{T} K_{E}+R_{a} B\right) / L_{a} J_{T}} \frac{A_{v}}{\left(1+s \tau_{a}\right)}
$$

Current feedback

Current feedback

RA 2007

Motor driven by a current amplifier

$$
\frac{\omega(s)}{V_{i n}(s)}=\frac{K_{T} A_{i}}{\left(s J_{T}+B\right)\left(1+s \tau_{a}\right)}
$$

RA 2007

