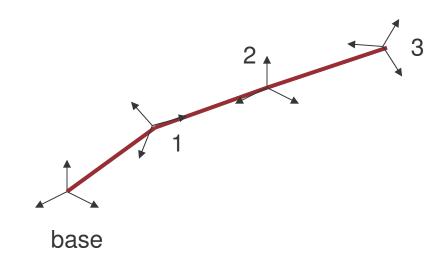

Robotica antropomorfa

Lesson 4

Giorgio Metta

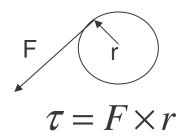
Mechanical systems


 Things we'd like to model with the help of some trivial physics

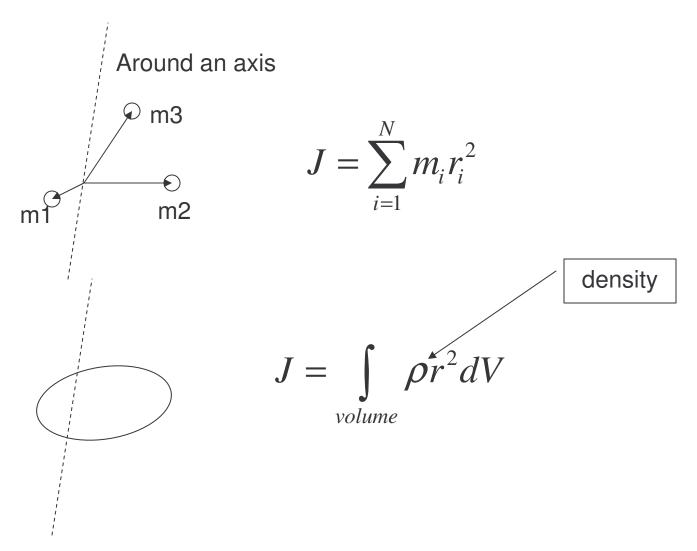
How to describe things mathematically

- One reference frame per link
 - Not needed for now...

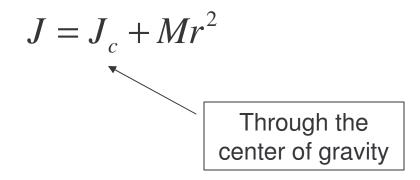
Studying what?

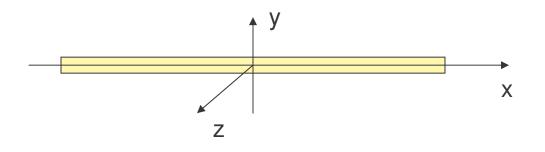

	No forces	Forces		
No motion	Styling	Static		
Motion	Kinematics	Dynamics		

Notation


$$F = \frac{d}{dt}(mv) = m\ddot{x}$$
 Since links are physical objects with mass

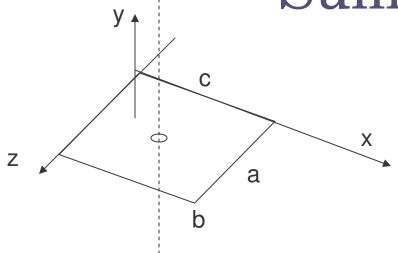
$$\tau = J \ddot{\vartheta}$$

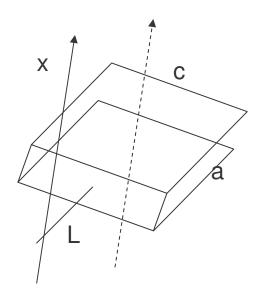

 $au = J \ddot{\vartheta}$ J = moment of inertia


Moment of inertia

Parallel axis theorem

Example


$$Mass = M, \rho = \frac{M}{l}$$


$$J_{x} = 0$$

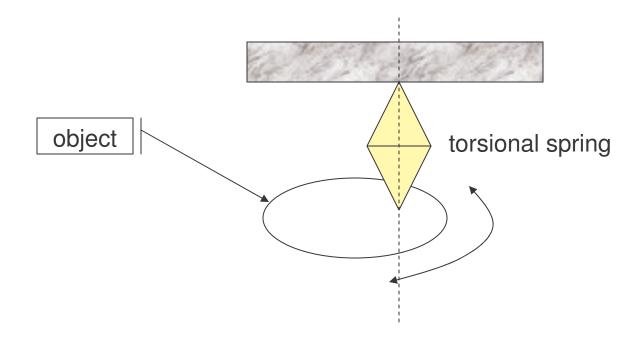
$$J_{y} = \rho \int r^{2} dV = \rho \int_{-l/2}^{l/2} x^{2} dx = \rho \frac{1}{3} x^{3} \Big|_{-l/2}^{l/2} = \frac{Ml^{2}}{12}$$

$$J_{y=-l/2} = \frac{Ml^2}{12} + M \frac{l^2}{4} = M \frac{l^2}{3}$$

Sum of J

$$J_x = \frac{M}{12}(a^2 + b^2)$$

$$J_{y} = \frac{M}{12}(a^2 + c^2)$$

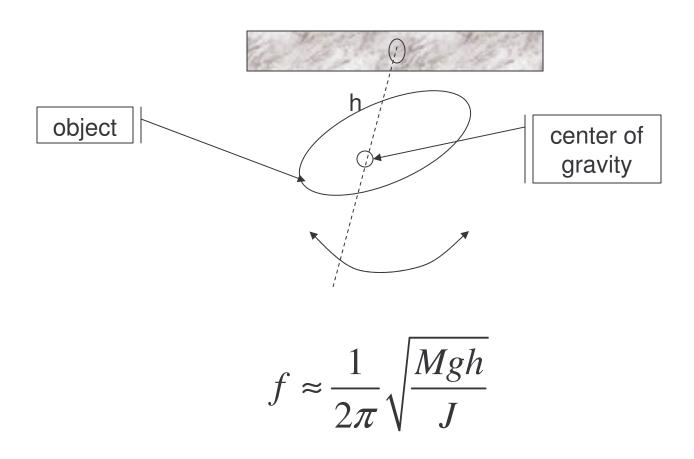

$$J_z = \frac{M}{12}(b^2 + c^2)$$

$$J_{y} = \frac{M}{12} (a^{2} + c^{2}) \qquad \text{e.g.} \rightarrow J_{top-x} = \frac{M_{top}}{12} (a^{2} + c^{2}) + M_{top} (\frac{a}{2} + L)^{2}$$

$$\boldsymbol{J}_{hand-x} = \boldsymbol{J}_{top-x} + \boldsymbol{J}_{side-x} + \boldsymbol{J}_{bottom-x}$$

RA 2007

Experimental estimation of J



Use a photodiode and a computer to measure the frequency

Requires calibration from known J

$$f = \frac{1}{2\pi} \sqrt{\frac{K}{J}}$$

Experimental estimation of J

Work and power

$$E = const$$

$$E = const$$
 if $\sum F_{ext} = 0$

$$W = \int_{s1}^{s2} F ds$$
 $W = \Delta E, E = \text{energy}$

$$W = \Delta E, E = \text{energy}$$

$$K = \frac{1}{2}mv^2$$

kinetic energy

$$P = \frac{dW}{dt} \qquad \text{Power} \to \qquad P = Fv$$

Power
$$\rightarrow$$
 $P = Fv$

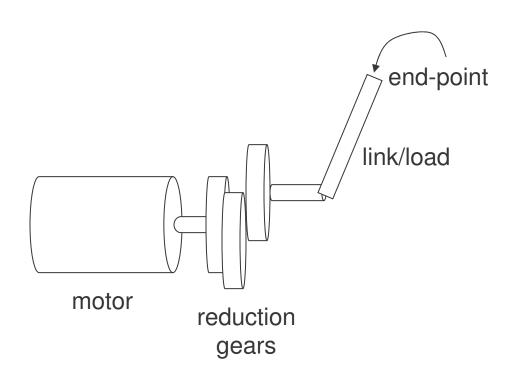
Rotational case

$$E = const$$

$$E = const$$
 if $\sum \tau_{ext} = 0$

$$W = \int_{\vartheta_1}^{\vartheta_2} \tau d\vartheta \qquad W = \Delta E, E = \text{energy}$$

$$W = \Delta E, E = \text{energy}$$

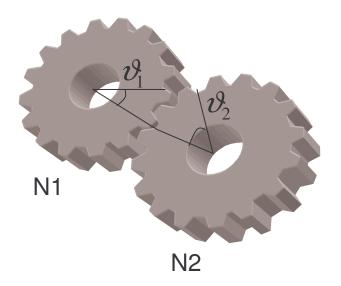

$$K = \frac{1}{2}J\omega^2$$

kinetic energy

$$P = \frac{dW}{dt} \qquad \text{Power} \to \qquad P = \tau \omega$$

Power
$$ightarrow$$
 $P= au a$

As I mentioned, we'd like to model a single joint


Motor

• Let's imagine for now that it is something that generates a given torque

Mechanical transmission

- Gears
- Belts
- Lead screws
- Cables
- Cams
- etc.

Gears

• Distance traveled is the same:

$$r_1 \mathcal{V}_1 = r_2 \mathcal{V}_2$$

• Because the size of teeth is the same:

$$\frac{N_1}{r_1} = \frac{N_2}{r_2}$$

RA 2007

Furthermore...

$$r_1 \vartheta_1 = r_2 \vartheta_2$$

$$\frac{N_1}{r_1} = \frac{N_2}{r_2}$$

• No loss of energy $\tau_1 \vartheta_1 = \tau_2 \vartheta_2$

Combining...

$$\frac{N_1}{N_2} = \frac{r_1}{r_2} = \frac{\vartheta_2}{\vartheta_1} = \frac{\tau_1}{\tau_2} = \frac{\omega_2}{\omega_1} = \frac{\alpha_2}{\alpha_1}$$

Inverse relationship between speed and torque

input
$$\tau_2 = \tau_1 \frac{N_2}{N_1} \qquad TR = \frac{N_1}{N_2}$$
 output mechanical parameter

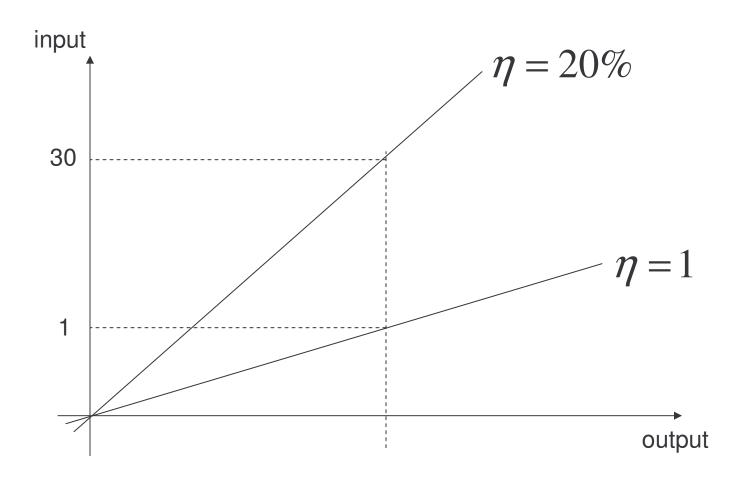
of teeth

Equivalent J

$$\ddot{\vartheta}_{1}J_{1} \Leftarrow \tau_{1} = \tau_{2}\frac{N_{1}}{N_{2}} = \ddot{\vartheta}_{2}J_{2}\frac{N_{1}}{N_{2}}$$

$$J_1 = \frac{\ddot{\vartheta}_2}{\ddot{\vartheta}_1} J_2 \frac{N_1}{N_2} \Longrightarrow \left(\frac{N_1}{N_2}\right)^2 J_2$$

$$J_1 = TR^2 J_2$$


 \bullet J as seen from the motor

In reality

$$\tau_2 = \tau_1 \frac{1}{TR} \eta$$

- Where η is the efficiency of the mechanism (from 0 to 1)
- η is related to power, speed ratio doesn't change
- η is also the ratio of input power vs. power at the output

For example

Example

Specifications									
reduction ratio (nominal)	eight length length with motor thout without			operation operation of rotation		of rotation	efficiency		
	motor	motor L2	1319 T L1	1331 T L1	1336 U L1	M max. mNm	M max.	(reversible)	%
3,71:1	g 17	mm 20,9	mm 34,1	mm 45,9	mm 50,9	200	mNm 300	=	90
14 :1	20	25,0	38,2	50,0	55,0	300	450	=	80
43 :1	24	29,2	42,4	54,2	59,2	300	450	=	70
66 :1	24	29,2	42,4	54,2	59,2	300	450	=	70
134 :1	27	33,3	46,5	58,3	63,3	300	450	=	60
159 :1	27	33,3	46,5	58,3	63,3	300	450	=	60
246 :1	27	33,3	46,5	58,3	63,3	300	450	=	60
415 :1	30	37,4	50,6	62,4	67,4	300	450	=	55
592 :1	30	37,4	50,6	62,4	67,4	300	450	=	55
989 :1	30	37,4	50,6	62,4	67,4	300	450	=	55
1 526 :1	30	37,4	50,6	62,4	67,4	300	450	=	55

Motion conversion

• Start with

$$\tau_2 = \frac{N_2}{N_1} \tau_1$$

• Design *TR*, more torque (usually)

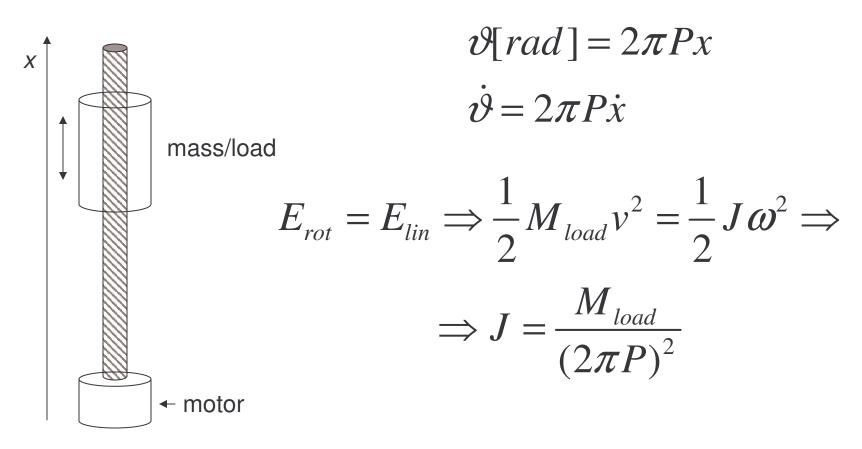
$$TR < 1$$

$$N_2 > N_1$$

$$J_1 < J_2 \iff \omega_2 < \omega_1$$

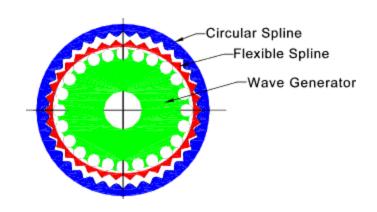
Viscous friction

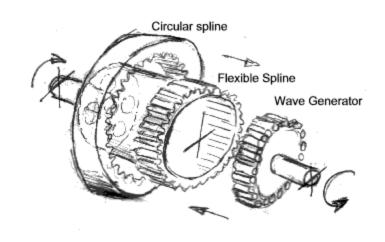
• Easy:


$$\begin{split} &\tau_{viscous} = B_2 \dot{\vartheta}_2 \\ &\tau_{eq_viscous} = TR \cdot \tau_{viscous} = TR \cdot B_2 \dot{\vartheta}_2 \\ &B_{eq} \dot{\vartheta}_1 = TR \cdot B_2 \dot{\vartheta}_2 \Longrightarrow B_{eq} = TR^2 B_2 \end{split}$$

• Coulomb friction:

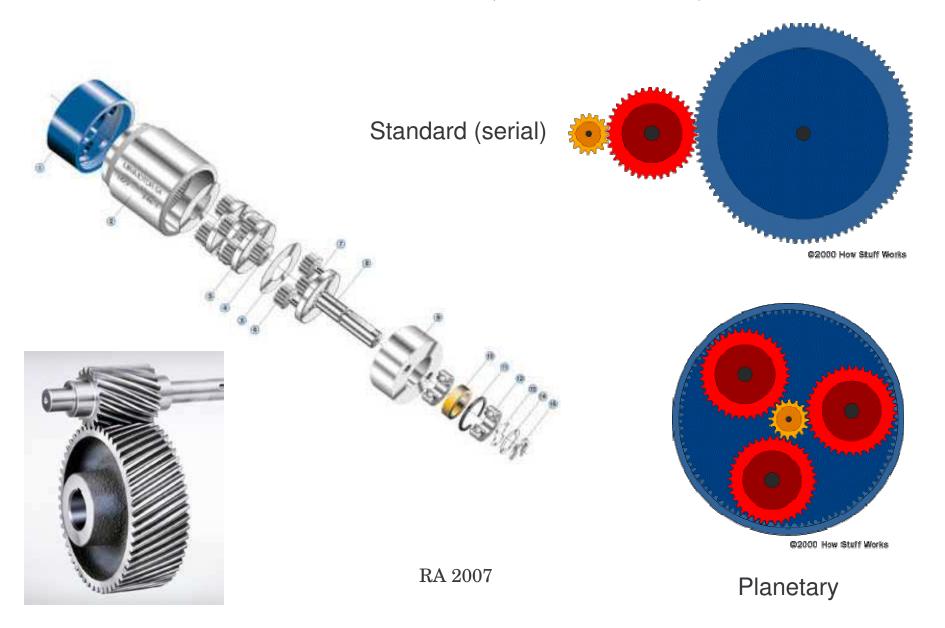
$$\tau_{eq} = TR \cdot F_c \operatorname{sgn}(\dot{\vartheta}_2)$$


Lead screw


 Rotary to linear motion conversion (P=pitch in #of turns/mm or inches)

RA 2007

Harmonic drives

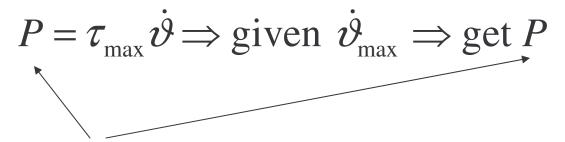


From the harmonic drive website http://www.harmonicdrive.de

Gearhead (for real)

Example

- Designing the single joint
 - Given:


$$\ddot{\vartheta}_{\max} \Rightarrow \tau = J_{eq} \ddot{\vartheta} \Rightarrow \tau_{\max} = J_{eq} \ddot{\vartheta}_{\max} = J_{load} T R^2 \ddot{\vartheta}_{\max}$$

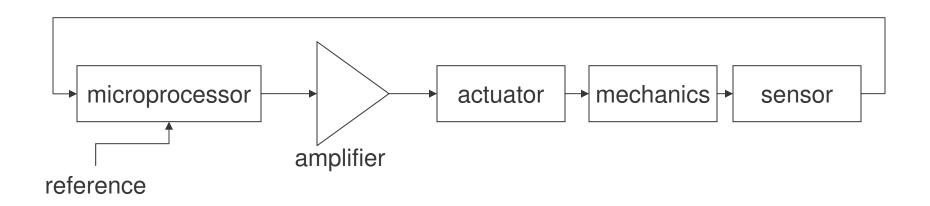
• Then taking into account some more realistic components:

$$au_{ ext{max}} = J_{load} \, rac{TR^2}{\eta} \, \ddot{\mathcal{Y}}_{ ext{max}}$$

Example (continued)

$$\tau_{\text{max}} = J_{load} \frac{TR^2}{\eta} \ddot{\vartheta}_{\text{max}}$$

motor power, from catalog


This guarantees that the motor can still deliver maximum torque at maximum speed

More on real world components

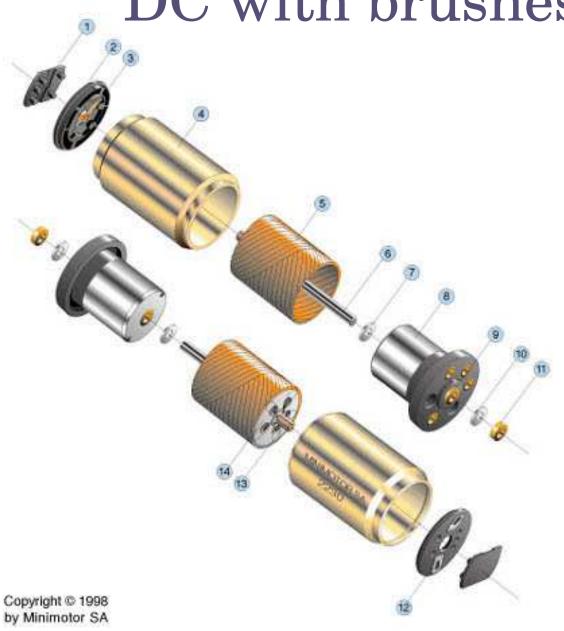
- Efficiency
- Eccentricity
- Backlash
- Vibrations

 To get better results during design mechanical systems can be simulated

Control of a single joint

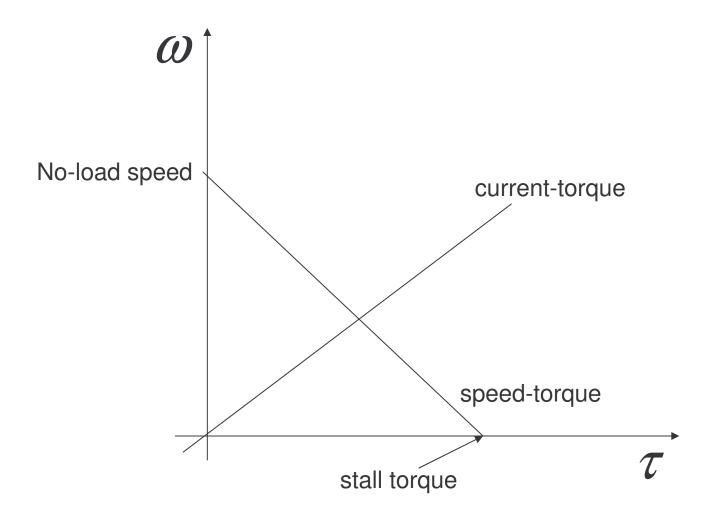
Components

- Digital microprocessor:
 - Microcontroller, processor + special interfaces
- Amplifier (drives the motor)
 - Turns control signals into power signals
- Actuator
 - E.g. electric motor
- Mechanics/load
 - The robot!
- Sensors
 - For intelligence


Actuators

- Various types:
 - -AC, DC, stepper, etc.
 - -DC
 - Brushless
 - With brushes
- We'll have a look at the DC with brushes, simple to control, widely used in robotics

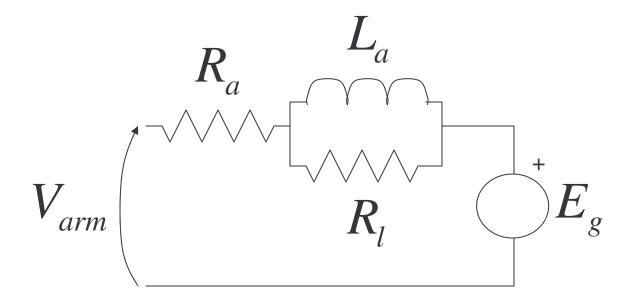
DC-brushless


DC with brushes

Modeling the DC motor

• Speed-torque and torque-current relationships are linear

In particular



Real numbers!

http://www.minimotor.ch

		1331 T		006 SR	012 SR	024 SR	
1	Nominal voltage	Un)ii	6	12	24	Volt
2	Terminal resistance	R		2,83	13,7	52,9	Ω
3	Output power	P _{2 max}		3,11	2,57	2,66	W
4	Efficiency	η max.		81	80	80	%
5	No-load speed	n _o		10 600	9 900	10 400	rpm
6	No-load current (with shaft ø 1,5 mm)	lo .		0,0220	0,0105	0,0055	A
7	Stall torque	Мн		11,20	9,90	9,76	mNm
8	Friction torque	MR		0,12	0,12	0,12	mNm
9	Speed constant	k _n		1 790	835	439	rpm/V
10	Back-EMF constant	k _E		0,56	1,20	2,28	mV/rpm
11	Torque constant	kм		5,35	11,4	21,8	mNm/A
12	Current constant	kı		0,187	0,087	0,046	A/mNm
13	Slope of n-M curve	Δη/ΔΜ		946	1 000	1 070	rpm/mNm
14	Rotor inductance	L		70	310	1 100	μH
15	Mechanical time constant	T m		7	7	7	ms
16	Rotor inertia	J		0,71	0,67	0,63	gcm ²
17	Angular acceleration	OL max.		160	150	160	·10³rad/s²
18	Thermal resistance	Rth 1 / Rth 2	6 / 25				K/W
19	Thermal time constant	Tw1/Tw2	5 / 190				s
20	Operating temperature range:		and the second				
	- motor		- 30 + 85 (optional - 5		°C		
	– rotor, max. permissible	+ 125		°C			

Electrical diagram

$$E_g = \omega(t) K_E$$

Meaning of components

 R_a

• Armature resistance (including brushes)

 $V_{\it arm}$

Armature voltage

 R_l

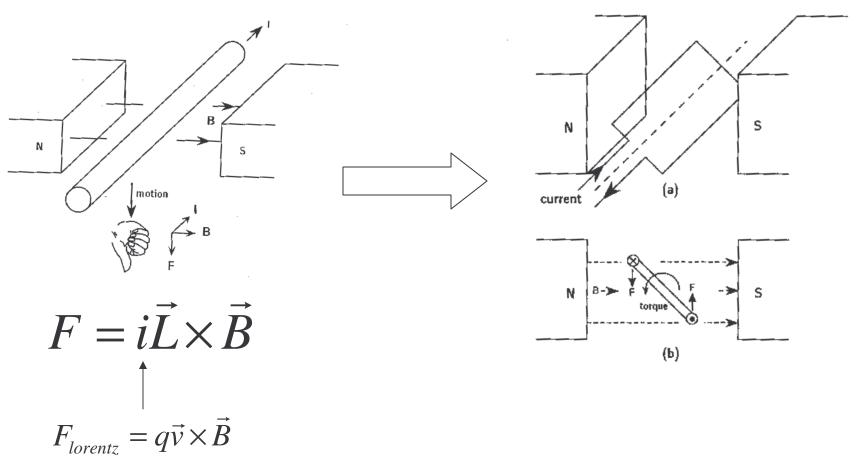
Losses due to magnetic field

 E_g

• Back EMF produced by the rotation of the armature in the field

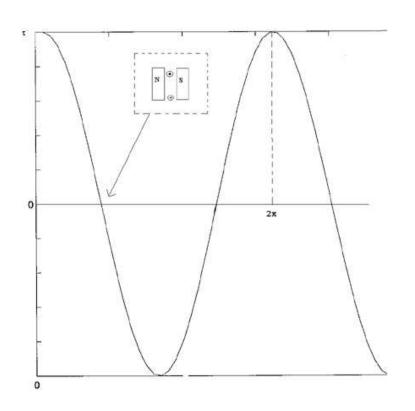
 L_a

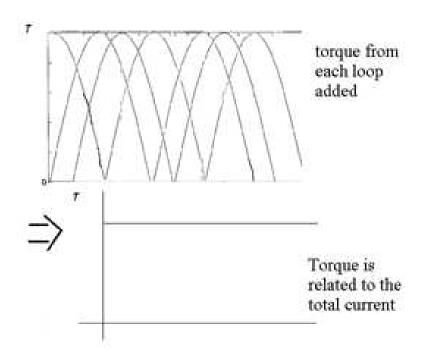
Coil inductance


We can write...

$$V_{arm} = R_a I_a + L_a \dot{I}_a + \omega(t) K_E$$
for $R_l \ll R_a$

which is the case at the frequency of interest, and we also have...


$$\tau = K_T I_a$$


On torque and current

RA 2007

Thus for many coils...

Back to motor modeling...

$$\tau = (J_M + J_L)\dot{\omega}(t) + B\omega(t) + \tau_f + \tau_{gr}$$

 \mathcal{T}

Torque generated

 \boldsymbol{J}_{M}

Inertia of the motor

 $oldsymbol{J}_L$

Inertia of the load

 au_f

Friction

 τ_{gr}

Gravity

Furthermore...

$$V_{arm} = R_a I_a + L_a \dot{I}_a + \omega(t) K_E$$

$$\tau = K_T I_a$$

$$\tau = (J_M + J_L) \dot{\omega}(t) + B\omega(t) + \tau_f + \tau_{gr}$$